Responsive image
博碩士論文 etd-0019114-232221 詳細資訊
Title page for etd-0019114-232221
論文名稱
Title
利用藍相液晶製作可調式隨機雷射元件之研究
Study of Tunable Random Lasing in Blue Phase Liquid Crystals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-25
繳交日期
Date of Submission
2014-01-19
關鍵字
Keywords
液晶、藍相、散射、隨機雷射
blue phase, liquid crystal, scattering, random laser
統計
Statistics
本論文已被瀏覽 5654 次,被下載 128
The thesis/dissertation has been browsed 5654 times, has been downloaded 128 times.
中文摘要
對於一般的共振腔型雷射來說,光散射是一個會降低雷射品質的成因;但對於一個隨機雷射元件來說,光散射是再重要不過的元素了。隨機雷射是在混亂的增益介質中利用多重散射和伴隨的干涉效應來激發出雷射光。這樣的雷射擁有須多特別而重要的性質,例如:多波長雷射、低空間同調性、寬廣的出射角、無須反射鏡的共振腔和簡單的元件製程。因此,在雷射成像、照明和光通訊等應用上,隨機雷射具有相當大的潛力。但是,對於一般的隨機雷射系統來說,是很難在單一元件中調控其散亂程度,進而控制其雷射特性。
雖然藍相液晶在巨觀上呈現光學各向同性,但晶粒之間的不連續面依然會造成微弱的光散射。這個現象可以很容易地在一片厚度大於100微米的藍相液晶樣本中發現到。本篇論文研究雷射染料摻雜藍相液晶之散亂晶粒排列引致的隨機雷射現象,及其切換與調控性質。利用藍相液晶的熱遲滯效應,我們能夠將此元件輸出之隨機雷射切換在同調型和非同調型之間。另外,輸出波長之隨機程度亦可利用降溫速率控制藍相液晶的晶粒大小達成調控。利用聚合物穩固效果,可以固定隨機雷射輸出之多波長,並且將雷射輸出之溫度範圍大幅擴展到較寬之藍相溫度區間及均勻相區間。最後,利用雷射染料放射頻譜隨溫度變化之特性,製作出可溫控輸出閾值及波長之隨機雷射元件。
Abstract
For conventional lasers, light scattering is the most unwanted factor due to the reduction in lasing quality, while scattering is the key to developing random lasers. The feedback mechanism of random lasing is based on multiple scattering and interference effects in a chaotic amplifying medium. Such a laser possesses several unique and useful features, including multimode lasing, low spatial coherence, omnidirectional output, mirrorless cavity and simple fabrication process. Therefore, random lasers have enormous potential for applying to spackle-free imaging, lighting and optical communication devices. However, for typical random laser systems, including organic and inorganic media, it is hard to modulate the scattering domain size within one sample.
Although blue phase liquid crystals exhibit optical isotropy on a macro scale, the discontinuity across the platelet boundaries still causes light scattering. This phenomenon can easily be observed when infusing a blue phase liquid crystal into a thick sandwich cell (d > 100 μm). Disordered platelet texture enables random lasing in liquid crystal blue phases, whose switchability and tunability of laser characteristics are reported in this thesis. The lasing action can be switched between coherent type and incoherent type by the thermal hysteresis effect. The randomness of lasing wavelengths can be determined by the platelet (domain) size, which can be set by controlling the cooling rate. After the blue phase scattering system is polymer-stabilized, coherent random lasing may occur in both the blue phase with an extended temperature interval and the isotropic liquid state; also, the selected modes are constant from one pulse to another. Additionally, if the laser dye is sensitive to temperature, the excitation threshold and the emission spectrum could be altered via thermal control.
目次 Table of Contents
CONTENTS
摘要................................................................................................................................ I
ABSTRACT.................................................................................................................II
CONTENTS............................................................................................................... III
LIST OF FIGURES ....................................................................................................V
LIST OF TABLES....................................................................................................VII
CHAPTER 1 INTRODUCTION.............................................................................1
1.1 Liquid Crystals..................................................................................1
1.1.1 Physical Characteristics of Liquid Crystals.......................1
1.1.2 Classification of Thermotropic Mesophases ......................8
1.1.3 Blue Phase Liquid Crystals (BPLCs)................................12
1.2 Random Lasing ...............................................................................16
1.2.1 Mechanism of Random Laser Action................................17
1.2.2 Literature Review: Random Lasing in Liquid Crystals .20
1.3 Scope of Thesis ................................................................................22
CHAPTER 2 MATERIALS AND METHODS ....................................................24
2.1 Sample Preparation ........................................................................24
2.1.1 Pure (Non-Polymer) Blue Phase Liquid Crystals............24
2.1.2 Polymer-Stabilized Blue Phase Liquid Crystals ..............26
2.2 Experimental Layout ......................................................................29
2.2.1 Setup for Phase Identification ...........................................29
2.2.2 Setup for Platelet Size Measurement ................................31
2.2.3 Setup for Lasing Signal Analysis.......................................322.2.4 Setup for Excitation Threshold Measurement.................33
2.2.5 Setup for Temperature Dependence Measurement of Dye
Fluorescence ....................................................................................34
CHAPTER 3 RESULTS AND DISCUSSION ......................................................35
3.1 Mechanism of Random Lasing in BPLCs.....................................35
3.2 Emission Behaviors in Various Phases..........................................36
3.2.1 Emission from the Non-Polymer System..........................36
3.2.2 Emission from the Polymer-Stabilized System ................38
3.3 Is That Really Random Lasing? ....................................................40
3.4 Control of Mode Stability...............................................................43
3.5 Thermal Tunability in Polymer-Stabilized System ......................48
3.5.1 Thermal Tuning of Emission Band ...................................48
3.5.2 Thermal Tuning of Excitation Threshold.........................51
CHAPTER 4 CONCLUSIONS AND FURTHER WORK..................................54
BIBLIOGRAPHY ......................................................................................................56
參考文獻 References
BIBLIOGRAPHY
1. F. Reinitzer, "Beiträge zur Kenntniss des Cholesterins," Monatshefte für
Chemie (Wien) 9, 421-441 (1888).
2. D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Handbook of
Liquid Crystals (Wiley, 2011).
3. J. Li, S. Gauza, and S.-T. Wu, "Temperature effect on liquid crystal refractive
indices," J. Appl. Phys. 96, 19-24 (2004).
4. A. Yariv, Optical Electronics in Modern Communications (Oxford University
Press, 1997).
5. A. Yariv, Quantum Electronics (John Wiley & Sons, Incorporated, 1975).
6. P. J. Collings and M. Hird, Introduction to Liquid Crystals: Chemistry and
Physics (Taylor & Francis, 1997).
7. Y. Zhou, Y. Huang, and S.-T. Wu, "Enhancing cholesteric liquid crystal laser
performance using a cholesteric reflector," Opt. Express 14, 3906-3916 (2006).
8. H. Coles and S. Morris, "Liquid-crystal lasers," Nature Photon. 4, 676-685
(2010).
9. S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J.
Coles, "The emission characteristics of liquid-crystal lasers," J. Soc. Inf.
Display 14, 565-573 (2006).
10. A. Fuh, T.-H. Lin, J. H. Liu, and F. C. Wu, "Lasing in chiral photonic liquid
crystals and associated frequency tuning," Opt. Express 12, 1857-1863 (2004).
11. T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang,
"Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett.
86, 161120-161123 (2005).
12. S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, "Theory of the
Blue Phase of Cholesteric Liquid Crystals," Phys. Rev. Lett. 46, 1216-1219
(1981).
13. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, "Polymer-
stabilized liquid crystal blue phases," Nature Mater. 1, 64-68 (2002).
14. A. Saupe, "On Molecular Structure and Physical Properties of Thermotropic
Liquid Crystals," Mol. Cryst. Liq. Cryst. 7, 59-74 (1969).
15. H. Kikuchi, "Liquid crystalline blue phases," in Liquid Crystalline Functional
Assemblies and Their Supramolecular Structures (Springer, 2008), pp. 99-117.
16. J. Yan and S.-T. Wu, "Polymer-stabilized blue phase liquid crystals: a tutorial
[Invited]," Opt. Mater. Express 1, 1527-1535 (2011).
17. J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, "Extended
Kerr effect of polymer-stabilized blue-phase liquid crystals," Appl. Phys. Lett. 57
96, 071105-071103 (2010).
18. H. C. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Y. Liu, T. H. Huang, C. Y. Tsai,
C. H. Lin, and S. T. Wu, "Blue-Phase Liquid Crystal Displays With Vertical
Field Switching," J. Display Technol. 8, 98-103 (2012).
19. Y. H. Chen, C. T. Wang, C. P. Yu, and T. H. Lin, "Polarization independent
Fabry-Perot filter based on polymer-stabilized blue phase liquid crystals with
fast response time," Opt. Express 19, 25441-25446 (2011).
20. I. C. Khoo and T. H. Lin, "Nonlinear optical grating diffraction in dye-doped
blue-phase liquid crystals," Opt. Lett. 37, 3225-3227 (2012).
21. W. Y. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-
dimensional photonic crystal of the liquid crystal blue phase II," Nature Mater.
1, 111-113 (2002).
22. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li,
"Polarizer-free and fast response microlens arrays using polymer-stabilized
blue phase liquid crystals," Appl. Phys. Lett. 96(2010).
23. V. Letokhov, "Quantum statistics of multi-mode radiation from an ensemble of
atoms," Sov. Phys. JETP 26, 1246-1251 (1968).
24. H. Cao, "Lasing in random media," Waves Random Media 13, R1-R39 (2003).
25. H. Cao, "Review on latest developments in random lasers with coherent
feedback," J. Phys. A: Math. Gen. 38, 10497 (2005).
26. D. S. Wiersma, "The physics and applications of random lasers," Nature Phys.
4, 359-367 (2008).
27. B. Redding, M. A. Choma, and H. Cao, "Speckle-free laser imaging using
random laser illumination," Nature Photon. 6, 355-359 (2012).
28. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, "Coherent Backscattering
of Light from Amplifying Random Media," Phys. Rev. Lett. 75, 1739-1742
(1995).
29. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, "Generation of
spatially incoherent short pulses in laser-pumped neodymium stoichiometric
crystals and powders," J. Opt. Soc. Am. B 10, 2358-2363 (1993).
30. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang,
"Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-
2281 (1999).
31. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, "Random laser action in
ZnO nanorod arrays embedded in ZnO epilayers," Appl. Phys. Lett. 84, 3241-
3243 (2004).
32. H.-C. Hsu, C.-Y. Wu, and W.-F. Hsieh, "Stimulated emission and lasing of
random-growth oriented ZnO nanowires," J. Appl. Phys. 97, 064315-064314 58
(2005).
33. G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, "Plasmonically enhanced
diffusive and subdiffusive metal nanoparticle-dye random laser," Appl. Phys.
Lett. 86, 131105-131103 (2005).
34. S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman,
"Stimulated emission in high-gain organic media," Phys. Rev. B 59, R5284-
R5287 (1999).
35. M. Anni, "A flexible organic random laser based on poly(9,9-dioctylfluorene)
deposited on a surface corrugated poly-phthalate-carbonate substrate," Appl.
Phys. Lett. 98, 253304-253303 (2011).
36. R. C. Polson and Z. V. Vardeny, "Random lasing in human tissues," Appl. Phys.
Lett. 85, 1289-1291 (2004).
37. Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus,
and Y. L. Kim, "Random lasing in bone tissue," Opt. Lett. 35, 1425-1427
(2010).
38. A. Smuk, E. Lazaro, L. P. Olson, and N. M. Lawandy, "Random laser action in
bovine semen," Opt. Commun. 284, 1257-1258 (2011).
39. C. Wald, "Photon Marathon," Phys. Rev. Focus 14, 6 (2004).
40. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan,
"Scaling Theory of Localization: Absence of Quantum Diffusion in Two
Dimensions," Phys. Rev. Lett. 42, 673-676 (1979).
41. P. W. Anderson, "Absence of Diffusion in Certain Random Lattices," Phys.
Rev. 109, 1492-1505 (1958).
42. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of
light in a disordered medium," Nature 390, 671-673 (1997).
43. C. Vanneste, P. Sebbah, and H. Cao, "Lasing with Resonant Feedback in
Weakly Scattering Random Systems," Phys. Rev. Lett. 98, 143902 (2007).
44. R. C. Polson and Z. V. Vardeny, "Organic random lasers in the weak-scattering
regime," Phys. Rev. B 71, 045205 (2005).
45. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and
R. Bartolino, "Random lasing and weak localization of light in dye-doped
nematic liquid crystals," Opt. Express 14, 7737-7744 (2006).
46. P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and
H. J. Coles, "Band-edge and random lasing in paintable liquid crystal
emulsions," Appl. Phys. Lett. 98(2011).
47. D. S. Wiersma, "Laser physics: Random lasers explained?," Nature Photon. 3,
246-248 (2009).
48. C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. 59
Kuo, and H.-C. Yeh, "Electrically controllable liquid crystal random lasers
below the Fréedericksz transition threshold," Opt. Express 19, 2391-2400
(2011).
49. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, "Electronic control
of nonresonant random lasing from a dye-doped smectic A(*) liquid crystal
scattering device," Appl. Phys. Lett. 86(2005).
50. S. M. Morris, D. J. Gardiner, M. M. Qasim, P. J. W. Hands, T. D. Wilkinson,
and H. J. Coles, "Lowering the excitation threshold of a random laser using the
dynamic scattering states of an organosiloxane smectic A liquid crystal," J.
Appl. Phys. 111, 033106-033106 (2012).
51. C. R. Lee, S. H. Lin, C. H. Guo, S. H. Chang, T. S. Mo, and S. C. Chu, "All-
optically controllable random laser based on a dye-doped polymer-dispersed
liquid crystal with nano-sized droplets," Opt. Express 18, 2406-2412 (2010).
52. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, "Quasi-two-
dimensional diffusive random laser action," Phys. Rev. Lett. 93(2004).
53. D. S. Wiersma and S. Cavalieri, "Light emission: A temperature-tunable
random laser," Nature 414, 708-709 (2001).
54. P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, "Lasing from chiral photonic
band gap materials based on cholesteric glasses," TLCT 30, 1391-1400 (2003).
55. S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I.
H. White, and H. J. Coles, "Electrically switchable random to photonic band-
edge laser emission in chiral nematic liquid crystals," Appl. Phys. Lett.
100(2012).
56. P. V. Shibaev, V. I. Kopp, and A. Z. Genack, "Photonic Materials Based on
Mixtures of Cholesteric Liquid Crystals with Polymers," J. Phys. Chem. B 107,
6961-6964 (2003).
57. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, "Thermo-
recurrent nematic random laser," Opt. Express 17, 2042-2047 (2009).
58. D. S. Wiersma and S. Cavalieri, "Temperature-controlled random laser action
in liquid crystal infiltrated systems," Phys. Rev. E 66(2002).
59. C. R. Lee, J. D. Lin, B. Y. Huang, T. S. Mo, and S. Y. Huang, "All-optically
controllable random laser based on a dye-doped liquid crystal added with a
photoisomerizable dye," Opt. Express 18, 25896-25905 (2010).
60. S. Mujumdar, S. Cavalieri, and D. S. Wiersma, "Temperature-tunable random
lasing: numerical calculations and experiments," J. Opt. Soc. Am. B 21, 201-
207 (2004).
61. S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and
G. Strangi, "Thermal behavior of random lasing in dye doped nematic liquid 60
crystals," Appl. Phys. Lett. 89, 121109-121103 (2006).
62. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and
R. Bartolino, "Random lasing in dye doped nematic liquid crystals: the role of
confinement geometry," 65870P-65870P (2007).
63. S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G.
Strangi, "Statistical analysis of random lasing emission properties in nematic
liquid crystals," Phys. Rev. E 78, 011707 (2008).
64. V. Barna, V. Vlad, A. Petris, I. Dancus, T. Bazaru, E. Barna, A. De Luca, S.
Ferjani, and G. Strangi, "Efficient random laser effect in a new dye-nematic
liquid crystalline composite," Rom. Rep. Phys. 62, 444-454 (2010).
65. V. Barna, G. Strangi, A. De Luca, and S. Ferjani, "Amplification of light and
random laser action in partially ordered dye-doped nematics,"
OPTOELECTRON. ADV. MAT. 5, 1154-1158 (2011).
66. P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, "Lasing from chiral photonic
band gap materials based on cholesteric glasses," Liq. Cryst. 30, 1391-1400
(2003).
67. H.-C. Jeong, S. Aya, S. Kang, F. Araoka, K. Ishikawa, and H. Takezoe, "Are
chiral dopants with higher twisting power advantageous to induce wider
temperature range of the blue phases?," Liq. Cryst. 7, 951-958 (2013).
68. E. Schmälzlin, U. Bitterer, H. Langhals, C. Bräuchle, and K. Meerholz,
"Determination of the first hyperpolarizability of multiphoton fluorescent
nonlinear optical chromophores via hyper-Rayleigh scattering using
fluorescence quenching," Chem. Phys. 245, 73-78 (1999).
69. S. Gauza, S.-T. Wu, Z. Ge, L. Rao, H.-K. Hsu, and C.-l. Chin, "Liquid crystals
composition and liquid crystal display with patterned electrodes," US Patent
8,377,331 B2 (2013).
70. W. Zheng and C. C. Chan, "Two-photon absorption in diacrylate mesogens at
632.8 nm wavelength," Europhys. Lett. 93, 13001 (2011).
71. J. Enqvist and M. Enqvist, "Polymer composition and polymerizable
composition for thermally curable multifunctional encapsulation material for
communications optoelectronics," EP Patent 1,791,000 A1 (2007).
72. K.-C. Liao, T. Hogen-Esch, F. J. Richmond, L. Marcu, W. Clifton, and G. E.
Loeb, "Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo,"
Biosens. Bioelectron. 23, 1458-1465 (2008).
73. R. J. Miller, H. F. Gleeson, and J. E. Lydon, "Kossel diagram of an aligned
cholesteric phase," Phys. Rev. E 59, 1821-1827 (1999).
74. D. Armitage and R. J. Cox, "Liquid-Crystal Blue Phase to Isotropic Transition
and Electric-Field Response," Mol. Cryst. Liq. Cryst. 64, 41-50 (1980).
75. B. Jerome, P. Pieranski, V. Godec, G. Haran, and C. Germain, "Determination
of the Blue Phase-II Structure," J. Phys. France 49, 837-844 (1988).
76. D. Demus, H. G. Hahn, and F. Kuschel, "Density-Measurements in Cholesteryl
Myristate," Mol. Cryst. Liq. Cryst. 44, 61-70 (1978).
77. R. N. Kleiman, D. J. Bishop, R. Pindak, and P. Taborek, "Shear Modulus and
Specific-Heat of the Liquid-Crystal Blue Phases," Phys. Rev. Lett. 53, 2137-
2140 (1984).
78. H. Choi, H. Higuchi, and H. Kikuchi, "Fast electro-optic switching in liquid
crystal blue phase II," Appl. Phys. Lett. 98(2011).
79. C.-W. Chen, H.-C. Jau, C.-H. Lee, C.-C. Li, C.-T. Hou, C.-W. Wu, T.-H. Lin,
and I. C. Khoo, "Temperature dependence of refractive index in blue phase
liquid crystals," Opt. Mater. Express 3, 527-532 (2013).
80. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified Extended
Modes in Random Lasers," Phys. Rev. Lett. 93, 053903 (2004).
81. C. T. Wang, H. C. Jau, and T. H. Lin, "Bistable cholesteric-blue phase liquid
crystal using thermal hysteresis," Opt. Mater. 34, 248-250 (2011).
82. C. T. Wang, H. Y. Liu, H. H. Cheng, and T. H. Lin, "Bistable effect in the liquid
crystal blue phase," Appl. Phys. Lett. 96(2010).
83. S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, "Laser
Emission from a Polymer-Stabilized Liquid-Crystalline Blue Phase," Adv.
Mater. 18, 48-51 (2006).
84. F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S.
Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, "Blue-phase
templated fabrication of three-dimensional nanostructures for photonic
applications," Nature Mater. 11, 599-603 (2012).
85. C. T. Wang and T. H. Lin, "Multi-wavelength laser emission in dye-doped
photonic liquid crystals," Opt. Express 16, 18334-18339 (2008).
86. Y. H. Huang and S. T. Wu, "Multi-wavelength laser from dye-doped cholesteric
polymer films," Opt. Express 18, 27697-27702 (2010).
87. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H.
Chang, "Ultraviolet lasing in resonators formed by scattering in semiconductor
polycrystalline films," Appl. Phys. Lett. 73, 3656-3658 (1998).
88. C.-W. Chen, H.-C. Jau, C.-H. Lee, C.-C. Li, C.-T. Hou, C.-W. Wu, T.-H. Lin,
and I. C. Khoo, "Temperature dependence of refractive index in blue phase
liquid crystals," Opt. Mater. Express 3, 527-532 (2013).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code