Responsive image
博碩士論文 etd-0019115-030842 詳細資訊
Title page for etd-0019115-030842
論文名稱
Title
人工膝關節之平面機構設計
Planar Mechanism Design of Artificial Knee Joints
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
187
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-09
繳交日期
Date of Submission
2015-01-19
關鍵字
Keywords
Hertz接觸應力、滾滑動、屈戍關節、脛股關節接觸輪廓、極心線
Hinge joint, tibiofemoral joint, Polode, Slip, Hertz contact stress
統計
Statistics
本論文已被瀏覽 5721 次,被下載 79
The thesis/dissertation has been browsed 5721 times, has been downloaded 79 times.
中文摘要
肘、膝、踝、指以及趾等可動關節均歸納為人體的屈戍關節,且在作動上,還可分為偏向滾動或滑動運動。其中膝關節又可分為脛股關節(Tibiofemoral joint)及髕股關節(Patellofemoral joint)兩大部份。而較偏向滑動的脛股關節為人體關節中,最大且構造最為複雜的屈戍關節之一,也使得在機構的設計上,常以個別描述的手法來分別探討其關節特徵。因此,導致關節輪廓無法對應極心線的位置,而難以分析關節接觸力與極心之間的關係。
針對脛股關節之內外部義肢的設計方法而言,一般外部義肢均以股骨極心線作為設計依據。反之,內部義肢則以脛股關節輪廓和滾滑動為主。因此,當以連桿機構的極心線描述關節接觸輪廓與滾滑動時,而無法描述股骨極心線。反之,當以連桿機構的極心線描述股骨極心線時,卻無法描述關節接觸輪廓與滾滑動運動。然而,單憑以一機構來達到關節輪廓對應股骨極心線所延伸的問題還很多。例如關節結構還包含股骨極心線與骨髁半徑等組織,而難以考量前後十字韌帶等設計因素。此外,對於膝關節不同的運動步態,所產生的屈曲角度循環圖也有所不同,相對地,對於關節所承受體重負載循環也不同等問題。
因此,本論文所欲呈現的成果,即藉由四連桿機構與最佳化設計工具的運用,將關節輪廓與極心線和滾滑動運動作為多目標函數,以連桿長度、前後十字韌帶、股骨骨髁半徑與走路步態等因素,來探討脛股關節之平面運動與力學模型分析。以期望對於未來膝關節疾病之患者,如退化性關節炎等等,能針對復健與局部組織修補等給予參考其關節輪廓、滾滑動比與接觸力和極心線之間的對位關係。以期望其結果能更貼合於人體實際作動的情形,而提高其設計後的舒適性。
最後,以脛股關節探討為基礎來探討同為屈戍關節之手指關節機構設計的關連性。其關連性可分為兩部分,其一為脛股和手指關節於文獻所描述設計方法的相似性與其二為退化性關節炎特徵的關連性,藉此了解可動關節的作動原理。最後,藉由接觸力的計算,再延續探討因素對於各目標函數與Hertz接觸應力的敏感度分析,以了解主要影響因素與最大Hertz接觸應力對應步態或極心線位置為何等分析。
Abstract
The hinge joint is movable joints in the human leg connecting the elbow, knee, ankle, finger and toe joints. Among hinge joints, Tibiofemoral (TF) joint has complex joint structure with six degrees of freedom. Thus, it is important to analyzed tibiofemoral joint throughly in order to understand other moving joint of human being. The exo-prosthesis of the knee depends only on the femoral polode. Conversely, the endo-prosthesis of the knee relies upon the TF condylar surface and the slip ratio variation, without needing to consider the femoral polode.
However, femoral polode is difficult to understand if the contact joint surface and slip are described by moving polode of linkage mechanism. Conversely, the contact joint surface and slip cannot be described if the femoral polode is described by moving polode of linkage mechanism. Therefore, the endo-prosthesis design can be more suitable for human but it is difficult to achieve if the contact joint surface cannot be correspond with femoral polode.
There are many difficulties to achieve these goals. Firstly, the joint structure includes femoral polode and femoral condylar radius, etc. Therefore, it is too complicated to describe the anterior/posterior cruciate ligament for mechanical analysis. Moreover, the different cycles of flexion-extension and body weight can be produced by gait cycle.
Therefore, the purpose of this study is to explore the planar kinematic and kinetic mechanism so that the joint surface can be correspond with femoral polode. The objective functions include the line shape of the joint surface, femoral polode and slip and factors, the length of bar, the anterior/posterior cruciate ligament and gait, etc. the main objective of this study is to assistance the people with some knee disease such as osteoarthritis or joint surface repair techniques.
Finally, that tibiofemoral joint analysis is as a basic foundation, we also explored the correlation between the tibiofemoral joint and the finger joint. Firstly, the finger joint design method is similar to tibiofemoral joint. Moreover, to support people with osteoarthritis.
In addition, the pain of osteoarthritis is sometime from stress abrasion of tibiofemoral joint. Therefore, the sensitivity analysis of factors such as Hertz contact stress is also discussed to understand the main influencing factors and the gait location of maximum Hertz contact stress.
目次 Table of Contents
論文審定書---------------------------------------------------- i
誌 謝----------------------------------------------------------- ii
摘要------------------------------------------------------------- iii
Abstract---------------------------------------------------------- iv
目 錄------------------------------------------------------------ vi
圖目錄----------------------------------------------------------- viii
表目錄----------------------------------------------------------- xi
符號表----------------------------------------------------------- xii
第 一 章 緒論---------------------------------------------------- 1
1-1前言---------------------------------------------------- 1
1-2 人體關節簡介------------------------------------------- 7
1-2-1 人體關節概要------------------------------------- 7
1-2-2 手指關節的基本構造------------------------------- 10
1-2-3 膝關節的基本構造--------------------------------- 12
1-3 文獻回顧----------------------------------------------- 19
1-3-1 手指關節的研究回顧------------------------------- 19
1-3-2 膝關節的研究回顧--------------------------------- 24
1-4 研究目的----------------------------------------------- 36
1-5 研究方法----------------------------------------------- 39
1-6 論文架構----------------------------------------------- 39
第二章 創建脛股關節機構模型之方法討論---------------------------- 41
2-1平面運動模型的建立------------------------------------- 41
2-1-1基本理論----------------------------------------- 41
2-1-2建立平面運動模型之方法推論------------------------ 60
2-1-3因素與目標函數的訂定------------------------------ 77
2-2平面力學模型的建立-------------------------------------- 79
2-2-1基本理論----------------------------------------- 79
2-2-2建立平面力學模型之方法推論------------------------ 82
2-2-3因素與目標函數的訂定------------------------------ 89
2-3 Hertz接觸理論------------------------------------------ 92
2-4敏感度分析---------------------------------------------- 95
第三章 最佳化方法結果-------------------------------------------- 96
3-1平面運動模型之分析規劃---------------------------------- 96
3-2平面力學模型之分析規劃---------------------------------- 108
3-3 Hertz接觸理論與敏感度分析規劃--------------------------- 114
3-3-1連桿機構的敏感度分析------------------------------- 114
3-3-2接地桿與韌帶的敏感度分析--------------------------- 118
3-4 Hertz接觸應力----------------------------------------- 121
第四章 討論------------------------------------------------------ 123
4-1平面運動模型之結果分析---------------------------------- 123
4-2平面力學模型之結果分析---------------------------------- 127
4-3 Hertz接觸理論與敏感度之結果分析------------------------- 131
第五章 結論與建議------------------------------------------------ 133
參考文獻--------------------------------------------------------- 136
作者簡歷--------------------------------------------------------- 152
著作目錄--------------------------------------------------------- 152
附錄------------------------------------------------------------- 154
附錄A:基因演算法------------------------------------------------- 154
附錄B:折衷演算法與柏拉圖前緣等級法------------------------------- 159
附錄C:田口方法--------------------------------------------------- 162
參考文獻 References
[1] M. H. Dickinson, "Bionics: Biological insight into mechanical design," Proceedings of the National Academy of Sciences, vol. 96, no. 25, pp.14208-14209, 1999.
[2] B.B. Seedhom, D. Dowson, V. Wright, E.B. Longton, "A technique for the study of geometry and contact in normal and artificial knee joints," Wear, vol. 20, no. 2, pp.189-199, 1972.
[3] M.A. Wimmer, T.P. Andriacchi, "Tractive forces during rolling motion of the knee: implications for wear in total knee replacement," Journal of Biomechanics, vol. 30, no. 2, pp. 131-137, 1997.
[4] Y.M. Moon, "Bio-mimetic design of finger mechanism with contact aided compliant mechanism," Mechanism and Machine Theory, vol. 42, no. 5, pp. 600-611, 2007.
[5] Innchyn Her, T.S Shih, C.W. Wu, "The Design of an Anthropomorphic Robotic Hand with Seven-Bar Underactuated Fingers," International Journal of Robotics and Automation, vol. 28, no. 1, pp. 1-8, 2013.
[6] P.N. Smith, K.M. Refshauge, J.M. Scarvell, "Development of the concepts of knee kinematics," Archives of Physical Medicine and Rehabilitation, vol. 84, no. 12, pp. 1895-1902, 2003.
[7] M. Karami, G. Maurice, J. M. Andre, "A model of exo-prosthesis of the knee optimized with respect to the physiological motion of condyles," ITBM-RBM, vol. 25, no. 3, pp. 176-184, 2004.
[8] Y. P. Lin, C. T. Wang, K.R. Dai, "Reverse engineering in CAD model reconstruction of customized artificial joint," Medical Engineering & Physics, vol. 27, no. 2, pp. 189-193, 2005.
[9] P.S. Walker, G. Yildirim, J. Sussman-Fort, G.R. Klein, "Relative positions of the contacts on the cartilage surfaces of the knee joint," The Knee, vol. 13, no. 5, pp. 382-388, 2006.
[10] H. Nagerl, K.H. Frosch, M.M. Wachowski, C. Dumont, C. Abicht, P. Adam, D. Kubein-Meesenburg, "A novel total knee replacement by rolling articulating surfaces. In vivo functional measurements and tests," Acta of Bioengineering and Biomechanics, vol. 10, no. 1, pp.55-60, 2008.
[11] C. W. Radcliffe, "Four-bar linkage prosthetic knee mechanisms: kinematics, alignment and prescription criteria," Prosthetics and orthotics international, vol. 18, no. 3, pp.159-173, 1994.
[12] J.K. Chakraborty, K.M. Patil, "A new modular six-bar linkage trans-femoral prosthesis for walking and squatting," Prosthetics and orthotics international, vol. 18, no. 2, pp. 98-108, 1994.
[13] J. de Vries, "Conventional 4-bar linkage knee mechanisms: a strength-weakness analysis," Journal of Rehabilitation Research & Development, vol. 32, no. 1, pp. 36-42, 1995.
[14] B. Siegmer, H. W. Scherer, U. Wellershaus, J.W. Michael, "Design Principles, Biomechanical Data and Clinical Experience with a Polycentric Knee Offering Controlled Stance Phase Knee Flexion: A Preliminary Report," Journal of Prosthetics and Orthotics, vol. 9, no. 1, pp. 18-24, 1997.
[15] N. Sancisi, R. Caminati, V. Parenti-Castelli, "Optimal Four-Bar Linkage for the Stability and the Motion of the Human Knee Prostheses," in Atti del XIX CONGRESSO dellAssociazione Italiana di Meccanica Teorica e Applicata. Ancona, pp. 1-10, 1995.
[16] A. Hamon, Y. Aoustin, “Cross four-bar linkage for the knees of a planar bipedal robot,” 2010 IEEE-RAS International Conference on Humanoid Robot, Nashville, TN, USA, pp. 6-8.
[17] Y. Geng, X. Xu, L. Chen, P.Yang, "Design and Analysis of Active Transfemoral Prosthesis," IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, pp. 1495-1499.
[18] S.Gong, P. Yang, L. Song, "Development of an intelligent prosthetic knee control system," Electrical and Control Engineering (ICECE), 2010 International Conference on, Wuhan, China, pp. 819-822.
[19] S. Qiao , L. Chen; X. Wang, R. Chen, "The Design of Bionic leg and Motion Simulation on Passive Dynamic Bipedal Robot," Digital Manufacturing and Automation (ICDMA), 2010 International Conference on, Chang Sha, China, pp. 656-659
[20] D. Petković, S. Shamshirband, N. D. Pavlović, H. Saboohi, T. A. Altameem, A. Gani, "Determining the joints most strained in an underactuated robotic finger by adaptive neuro-fuzzy methodology," Advances in Engineering Software, vol. 77, pp. 28-34, 2014.
[21] X. Zhang, G. Zhang, K. Nakamura, S. Ueha, "A robot finger joint driven by hybrid multi-DOF piezoelectric ultrasonic motor," Sensors and Actuators A: Physical, vol. 169, no. 1, pp. 206-210, 2011.
[22] J. N. A. L. Leijnse, C. W. Spoor, "Reverse engineering finger extensor apparatus morphology from measured coupled interphalangeal joint angle trajectories-a generic 2D kinematic model," Journal of Biomechanics, vol. 45, no. 3, pp. 569-578, 2012.
[23] F. De Groote, T. De. Laet, T. De. Wilde, H. Bart, V.J. Sloten, "Kinematic reconstruction of the lower limb based on measurements of the body surface," 2006 Proceedings of the 7th National Congress on Theoretical and Applied Mechanics, Mons, Belgium, pp. 29-30.
[24] A. Ribeiro, J. Rasmussen, P. Flores, L. F. Silva, "Modeling of the condyle elements within a biomechanical knee model," Multibody System Dynamics, vol.28, no.1-2, pp. 181-197, 2012.
[25] D. J. van den Heever, C. Scheffer, P. Erasmus, E. Dillon, "Mathematical Reconstruction of Human Femoral Condyles," Journal of Biomechanical Engineering, vol. 133, no. 6, pp. 064504, 2011.
[26] S. Koo, J. H. Rylander, T. P. Andriacchi , "Knee joint kinematics during walking influences the spatial cartilage thickness distribution in the knee," Journal of Biomechanics, vol. 44, no. 7, pp. 1405-1409, 2011.
[27] S. Amiri, T. D. V. Cooke, U. P. Wyss, “Conceptual design for condylar guiding features of a total knee replacement,” Journal of Medical Devices, Transactions of the ASME, vol. 5, no. 2, 2011.
[28] J. Kosel, I. Giouroudi, C. Scheffer, E. Dillon, P. Erasmus, "Anatomical study of the radius and center of curvature of the distal femoral condyle," Journal of Biomechanical Engineering, vol. 132, no. 9, pp. 091002_1-6, 2010.
[29] S. Chandrasekaran, J.M. Scarvell, G. Buirski, K.R. Woods, P.N. Smith, "Magnetic resonance imaging study of alteration of tibiofemoral joint articulation after posterior cruciate ligament injury," The Knee, vol. 19, no. 1, pp. 60-64, 2012.
[30] J.H. Hollman, R.H. Deusinger, L.R. Van Dillen, M.J. Matava, "Knee Joint Movements in Subjects Without Knee Pathology and Subjects With Injured Anterior Cruciate Ligaments," Physical Therapy, vol. 82 no. 10, pp.960-972, 2002.
[31] J.H. Hollman, R.H. Deusinger, D.Zou, M. J. Matava, "Estimation of knee joint surface rolling/gliding kinematics via instant center of rotation measurement," Proceedings of the American Society of Biomechanics Annual Meeting, Chicago, American Society of Biomechanics, pp. 19-22, 2000.
[32] 蔣君宏,平面機構之運動學與設計,第二版,高立圖書有限公司,民95。
[33] C.K. Fitzpatrick, R.D. Komistek, P.J. Rullkoetter, "Developing simulations to reproduce in vivo fluoroscopy kinematics in total knee replacement patients," Journal of Biomechanics, vol. 47, no. 10, pp. 2398-2405, 2014.
[34] A.M. Bull, A.A. Amis, "Knee joint motion: description and measurement," Proceedings of the Institution of Mechanical Engineers, Vol. 212, no. 5, pp. 357-372, 1998.
[35] M. Muller, "The Angles of Femoral and Tibial Axes with Respect to the Cruciate Ligament Four-bar System in the Knee Joint," Journal of Theoretical Biology, vol. 161, no. 2, pp. 221-230, 1993.
[36] M. Muller, "The relationship between the rotation possibilities between femur and tibia and the lengths of the cruciate ligaments," Journal of Theoretical Biology, vol. 161, no. 2, pp. 199-220, 1993.
[37] M. Muller, M. De. Ruijter, "The derivation of knee joint types from the geometry of the cruciate ligament four-bar system," Journal of Theoretical Biology, vol. 193, no. 3, pp. 507-518, 1998.
[38] M. Biscević, D. Tomić, V.Starc, D. Smrke, "Gender differences in knee kinematics and its possible consequences," Croatian Medical Journal, vol. 46, no. 2, pp.253-230, 2005.
[39] S.C Montgomery, J.D Moorehead, J.S Davidson, D Lowe, P.H Dangerfield, "A new technique for measuring the rotational axis pathway of a moving knee," The Knee, vol. 5, no. 4, pp. 289-295, 1998.
[40] S. K. Chittajallu, K.G. Kohrt, "FORM2D-a mathematical model of the knee," Mathematical and Computer Modelling, vol. 24, no. 9, pp. 91-101, 1996.
[41] Y. Ishii, K. Terajima, Y. Koga, H.E. Takahashi, J.E. Bechtold, R.B. Gustilo, "Comparison of knee joint functional laxity after total knee replacement with posterior cruciate-retaining and cruciate-substituting prostheses," The Knee, vol. 2, no. 4, pp. 195-199, 1995.
[42] J. W. Smith, "Observations on the postural mechanism of the human knee joint," Journal of Anatomy,vol. 90, no. 2, pp. 236-260, 1956.
[43] S. L. Woo, R. E. Debski, J. D. Withrow, M. A. Janaushek, "Biomechanics of knee ligaments," The American Journal of Sports, vol. 27, no. 4, pp. 533-543., 1999.
[44] F. Stief, H. Böhm, C.U.Dussa, C. Multerer, A. Schwirtz, A.B. Imhoff, L. Döderlein, "Effect of lower limb malalignment in the frontal plane on transverse plane mechanics during gait in young individuals with varus knee alignment," The Knee, vol. 21, no. 3, pp. 688-693, 2014.
[45] T. Ishida, M. Yamanaka, N. Takeda, Y. Aoki, "Knee rotation associated with dynamic knee valgus and toe direction," The Knee, vol. 21, no. 2, pp. 563-566, 2014.
[46] S. Farrokhi, C.A. Voycheck, B.A. Klatt, J.A. Gustafson, S. Tashman, G.K.Fitzgerald, "Altered tibiofemoral joint contact mechanics and kinematics in patients with knee osteoarthritis and episodic complaints of joint instability," Clinical Biomechanics, vol. 29, no. 6, pp. 629–635, 2014.
[47] S.H. Kang, S.J. Lee, L.Q. Zhang., "Real-time tracking of knee adduction moment in patients with knee osteoarthritis," Journal of Neuroscience Methods, vol. 231, no. 15, pp. 9-17, 2014.
[48] M.A.R. Freeman, "How the knee moves," Current Orthopaedics, vol. 15, no. 6, pp.444-450, 2001.
[49] Deborah Pate, DC, DACBR, "Knee Osteoarthritis: Biomechanical Risks," Dynamic Chiropractic, vol. 29, no. 10, 2011.
[50] L. Birglen, "The kinematic preshaping of triggered self-adaptive linkage-driven robotic fingers," Mechanical Sciences, vol. 2, no. 1, pp. 41-49, 2011.
[51] N. Z. Azlan, H. Yamaura, "Anthropomorphic finger with optimized geometric parameters for pinching and grasping tasks," Mechanism and Machine Theory, vol. 49, pp. 52-66, 2012.
[52] D. Petković, S. Shamshirband, N. D. Pavlović, H. Saboohi, T. A. Altameem, A. Gani, "Determining the joints most strained in an underactuated robotic finger by adaptive neuro-fuzzy methodology," Advances in Engineering Software, vol. 77, pp. 28-34, 2014.
[53] H. Khakpour, L. Birglen, "Numerical Analysis of the Grasp Configuration of a Planar 3-DOF Linkage-Driven Underactuated Finger," Journal of computational and nonlinear dynamics, vol. 8, no. 2, pp. 021010-1-021010-8, 2013.
[54] K. S. Fok, S. M. Chou, “Development of a finger biomechanical model and its considerations”, Journal of Biomechanics, vol. 43, no. 4, pp. 701-713, 2010.
[55] L. S. Matthew, P. Igor, S. Joe, R. Chris, "Results of surface replacement proximal interphalangeal joint arthroplasty", Journal of Arthroscopy and Joint Surgery, vol. 1, no. 2, pp. 82-86, 2014.
[56] M.D. Crema, D.T. Felson, F.W. Roemer, K. Wang, M.D. Marra, M.C. Nevitt, J.A. Lynch, J. Torner, C.E. Lewis, A. Guermazi, "Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study," Osteoarthritis and Cartilage, vol. 21, no. 2, pp. 306-313, 2013.
[57] M. Jarraya, D. Hayashi, A. Guermazi, C.K. Kwoh, M.J. Hannon, C.E. Moore, J.M.Jakicic, S.M. Green, F.W. Roemer, "Susceptibility artifacts detected on 3T MRI of the knee: frequency, change over time and associations with radiographic findings: data from the Joints on Glucosamine Study," Osteoarthritis and Cartilage, vol. 22, no. 10, pp. 1499-1503, 2014.
[58] C.J. Westphal, A. Schmitz, S.B. Reeder, D.G. Thelen, "Load-dependent variations in knee kinematics measured with dynamic MRI," Journal of Biomechanics, vol. 46, no. 12, pp. 2045-2052, 2013.
[59] D.C. Morgenroth, J.R. Medverd, M. Seyedali, J.M. Czerniecki, "The relationship between knee joint loading rate during walking and degenerative changes on magnetic resonance imaging," Clinical biomechanics, vol. 29, no. 6, pp. 664-670, 2014.
[60] M.K. Mulcahey, K.O. Monchik, C. Yongpravat, G.J. Badger, P.D. Fadale, M.J. Hulstyn, B.C. Fleming, "Effects of single-bundle and double-bundle ACL reconstruction on tibiofemoral compressive stresses and joint kinematics during simulated squatting," The Knee, vol. 19, no. 4, pp. 469-476, 2012.
[61] A.C. Schirm, B.O. Jeffcote, R.L.Nicholls, H. Jakob, M.S. Kuster,"Sensitivity of knee soft-tissues to surgical technique in total knee arthroplasty," The Knee, vol. 18, no. 3, pp. 180-184, 2011.
[62] E. J. Miller, R. F. Riemer, T. L. Haut Donahue, K. R. Kaufman, "Experimental validation of a tibiofemoral model for analyzing joint force distribution," Journal of Biomechanics, vol. 42, no. 9, pp. 1355-1359, 2009.
[63] J.M. Cottrell, P. Scholten, T. Wanich, R.F. Warren, T.M. Wright, S.A. Maher, "A new technique to measure the dynamic contact pressures on the Tibial Plateau," Journal of Biomechanics, vol. 41, no. 10, pp. 2324-2329, 2008.
[64] S. M. N. Arosha Senanayake, Owais Ahmed Malik, , Pg. Mohammad Iskandar, , Dansih Zaheer, "A knowledge-based intelligent framework for anterior cruciate ligament rehabilitation monitoring," Applied Soft Computing, vol. 20, pp. 127-141, 2014.
[65] Z. Li, C.-Y. Su, A. Xue, “Development and Learning Control of a Human Limb With a Rehabilitation Exoskeleton,” Industrial Electronics, IEEE Transactions, vol. 61 , no. 7, pp. 3776-3785, 2014.
[66] J.A. McClelland, J.A. Feller, H.B. Menz, K.E. Webster, "Patterns in the knee flexion-extension moment profile during stair ascent and descent in patients with total knee arthroplasty," Journal of Biomechanics, vol. 47, no. 8, pp.1816-1821, 2014.
[67] A.L.M. Minnoye, D. H. Plettenburg, "Design, fabrication, and preliminary results of a novel below knee prosthesis for snowboarding: A case report," Prosthetics and orthotics international, vol. 33, no. 3, pp. 272-283, 2009.
[68] S.G. Urwin, D.F. Kader, N. Caplan, A. St Clair Gibson, S. Stewart, "Gait analysis of fixed bearing and mobile bearing total knee prostheses during walking: Do mobile bearings offer functional advantages?," The Knee, vol. 21, no. 2, pp. 391-395, 2014.
[69] Q. Lian, D. Li, Z. Jin, Z. Wang, Y. Sun, "Patient-specific design and biomechanical evaluation of a novel bipolar femoral hemi-knee prosthesis," Journal of Bionic Engineering, vol. 11, no. 2, pp.259-267. 2014.
[70] A. Elbaz, E.M. Debbi, G. Segal, A. Mor, Y. Bar-Ziv, S. Velkes, V. Benkovich, N. Shasha, R. Shoham-Blonder, R. Debi, "New approach for the rehabilitation of patients following total knee arthroplasty," Journal of Orthopaedics, vol. 11, no. 2, pp. 72-77, 2014.
[71] P.U. Brucker, A. von Campe, D.C. Meyer, D. Arbab, L. Stanek, PP. Koch,"Clinical and radiological results 21 years following successful, isolated, open meniscal repair in stable knee joints," The Knee, vol. 18, no. 6, pp. 396-401, 2011.
[72] K. Henrik, T. Emmanuel, "Fast-track knee arthroplasty-status and future challenges," The Knee, Suppl 1:S29-33, 2013.
[73] D.K. Bae, S.J. Song, S.D. Cho, "Clinical Outcome of Total Knee Arthroplasty With Medial Pivot Prosthesis-A Comparative Study Between the Cruciate Retaining and Sacrificing," The Journal of Arthroplasty, vol. 26, no. 5, 2011.
[74] D. Joshi, A. Mishra, S. Anand, "ANFIS based knee angle prediction: An approach to design speed adaptive contra lateral controlled AK prosthesis," Applied Soft Computing, vol. 11, no. 8, pp. 4757-4765, 2011.
[75] V.G. Marchese, B.H. Connolly, C. Able, A.R. Booten, P. Bowen, B.M. Porter, S.N. Rai , M.L. Hancock, C.H. Pui, S. Howard, M.D. Neel, S.C. Kaste, "Relationships among severity of osteonecrosis, pain, range of motion, and functional mobility in children, adolescents," Physical Therapy, vol. 88, no. 3, pp. 341-350, 2008.
[76] D. Kumar, K.T. Manal, K.S. Rudolph, "Knee joint loading during gait in healthy controls and individuals with knee osteoarthritis," Osteoarthritis Cartilage, vol. 21, no. 2, pp. 298-305, 2013.
[77] M.B. Nebel, E.L. Sims, F.J. Keefe, V.B. Kraus, F. Guilak, D.S. Caldwell, J.J. Pells, R. Queen, D. Schmitt, "The Relationship of Self-Reported Pain and Functional Impairment to Gait Mechanics in Overweight and Obese Persons with Knee Osteoarthritis," Archives of Physical Medicine and Rehabilitation, vol. 90, no. 11, pp. 1874-1879, 2009.
[78] Halûk Küçük, "The effect of modeling cartilage on predicted ligament and contact forces at the knee," Computers in Biology and Medicine, vol. 36, no. 4, pp. 363-375, 2006.
[79] F. Carola, van Eck, H. Fu Freddie, "Anatomic anterior cruciate ligament reconstruction using an individualized approach," Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, vol. 1, no. 1, pp. 19-25, 2014.
[80] H. Lee, M. Gregory, H. Ian, "Task based rehabilitation protocol for elite athletes following Anterior Cruciate ligament reconstruction: a clinical commentary," Physical Therapy in Sport, vol. 14, no. 4, pp. 188-198, 2013.
[81] P. F. Williams, G. D. Peura, A. H. Hoffman, "A Model of Knee Motion in the Sagittal Plane," Bioengineering Conference: Proceedings of the 1991 IEEE Seventeenth Annual Northeast, Hartford, CT, USA, pp. 273-274.
[82] A. Metcalfe, C. Stewart, N. Postans, D. Barlow, A. Dodds, C. Holt, G. Whatling, A. Roberts, "Abnormal loading of the major joints in knee osteoarthritis and the response to knee replacement," Gait & Posture, vol. 37, no. 1, pp. 32-36, 2013.
[83] M. M. Ardestani, M. Moazenb, Z Jin, "Gait modification and optimization using neural network-genetic algorithm approach: Application to knee rehabilitation," Expert Systems with Applications, vol. 41, no. 16, pp. 7466-7477, 2014.
[84] S. Ogaya, H. Naito, A. Iwata, Y. Higuchi, S. Fuchioka, M. Tanaka, "Knee adduction moment and medial knee contact force during gait in older people," Gait & Posture, vol. 40, no. 3, pp. 341–345, 2014.
[85] H. Baan, R. Dubbeldam, A.V. Nene, M.A. van de Laar, "Gait Analysis of the Lower Limb in Patients with Rheumatoid Arthritis A Systematic Review," Seminars in Arthritis and Rheumatism, vol. 41, no. 6, pp. 768-788, 2012.
[86] M. Adouni, A. Shirazi-Adl, R. Shirazi, "Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses," Journal of Biomechanics, vol. 45, no. 12, pp. 2149-2156, 2012.
[87] M. Wünschel, J.M. Leasure, P. Dalheimer, N. Kraft, N. Wülker, O. Müller, "Differences in knee joint kinematics and forces after posterior cruciate retaining and stabilized total knee arthroplasty," The Knee, vol. 20, no. 6, pp. 416-421, 2013.
[88] E. C. McCarty, R.G. Marx, K.E. DeHaven, "Meniscus Repair: Considerations in Treatment and Update of Clinical Results," Clinical Orthopaedics and Related Research, vol. 402, pp.122-134, 2002.
[89] B.J. Cole, M. Noerdlinger, S.J. Nho, R. Sellards, "Allograft Meniscus Transplantation: Background, techniques, and results," Orthopedic Special Edition 8, pp. 23-30, 2002.
[90] N.A. Sgaglione, "Meniscus repair: Update on new techniques," Techniques in Knee Surgery, vol. 1, no. 2, pp. 113-127, 2002.
[91] F.R. Noyes, T.P. Heckmann, S.D. Barber-Westin, "Meniscus Repair and Transplantation:A Comprehensive Update," journal of orthopaedic & sports physical therapy, vol. 42, no. 3, pp. 274-291, 2012.
[92] D.J. van den Heever, C. Scheffer, P. Erasmus, E. Dillon, "Contact stresses in a patient-specific unicompartmental knee replacement," Clinical Biomechanics, vol. 26, no. 2, pp. 159-166, 2011.
[93] D.V.D. Heever, C. Scheffer, P. Erasmus, E. Dillon, "In vitro measurement of tibiofemoral kinematics after patient-specific unicompartmental knee replacement," Journal of Biomedical Science and Engineering, vol.5, no.12, 2012.
[94] M. D. Rosenthal, C. E. Rainey, A. Tognoni, R. Worms, "Evaluation and management of posterior cruciate ligament injuries," Physical Therapy in Sport, vol. 13, no. 4, pp. 196-208, 2012.
[95] T. Floerkemeier, K.H. Frosch, M. Wachowski, D. Kubein-Meesenburg, R. Gezzi, J. Fanghänel, K.M. Stürmer, H. Nägerl, "Physiologically shaped knee arthroplasty induces natural roll-back," Technology and Health Care, vol. 19, no. 2, pp. 91-102, 2011.
[96] S.D. Masouros, A.M.J. Bull, A.A. Amis, "(i) Biomechanics of the knee joint," Orthopaedics and Trauma, vol. 24, no. 2, pp. 84-91, 2010.
[97] M.E. Maitland, G.D. Bell, N.G. Mohtadi, W. Herzog, "Quantitative analysis of anterior cruciate ligament instability," Clinical Biomechanics (Bristol, Avon), vol. 10, no. 2, pp. 93-97, 1995.
[98] M.Z.Bendjaballah, A. Shirazi-Adl, D.J. Zukor, "Finite element analysis of human knee joint in varus-valgus," Chical Biomechanics, vol. 12, no. 3, pp. 139-148, 1997.
[99] A. Jilani, A. Shirazi-Adl, M.Z. Bendjaballah, "Biomechanics of human tibio-femoral joint in axial rotation," The Knee, vol. 4, no. 4, pp. 203-213, 1997.
[100] M.Z. Bendjaballah, A. Shirazi-Adl, D.J. Zukor, "Biomechanical response of the passive human knee joint under anterior-posterior forces," Clinical Biomechanics, vol. 13, no. 8, pp. 625-633, 1998.
[101] K.M. Varadarajan, A.L. Moynihan, D. D'Lima, C.W. Colwell, G. Li, "In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities," Journal of Biomechanics, vol. 41, no. 10, pp. 2159-2168, 2008.
[102] M. Michaelidis, G.A. Koumantakis, "Effects of knee injury primary prevention programs on anterior cruciate ligament injury rates in female athletes in different sports: A systematic review," Physical Therapy in Sport, vol. 15, no. 3, pp. 200-210, 2014.
[103] P.W. Kong, S.F. Burns, " Bilateral difference in hamstrings to quadriceps ratio in healthy males and females," Physical Therapy in Sport, vol. 11, no. 1, pp. 12-17, 2010.
[104] M.A. de Britto, F.P. Carpes, G. Koutras, E. Pappas, "Quadriceps and hamstrings prelanding myoelectric activity during landing from different heights among male and female athletes," Journal of Electromyography and Kinesiology, vol. 24, no. 4, pp. 508-512, 2014.
[105] Alexandre Almeida, Márcio Rangel Valin, Ramon Ferreira, Nayvaldo Couto de Almeida, Ana Paula Agostini, "Correlation between the result from arthroscopic reconstruction of the anterior cruciate ligament of the knee and the return to sports activity," Revista Brasileira de Ortopedia (English Edition), vol. 49, no. 3, pp. 240-244, 2014.
[106] K. Button, A.S. Iqbal, R.H. Letchford, R.W. van Deursen, "Clinical effectiveness of knee rehabilitation techniques and implications for a self-care treatment model," Physiotherapy, vol. 98, no. 4, pp. 287-299, 2012.
[107] W. Hetta, G. Niazi, "MRI in assessment of sports related knee injuries," The Egyptian Journal of Radiology and Nuclear Medicine, Available online 18 July 2014, DOI: 10.1016/j.ejrnm.2014.06.009.
[108] P.E.Roos, K. Button, V. Sparkes, R.W. van Deursen, " Altered biomechanical strategies and medio-lateral control of the knee represent incomplete recovery of individuals with injury during single leg hop," Journal of Biomechanics, vol. 47, no. 3, pp. 675-680, 2014.
[109] P. Li, T.Y. Tsai, J.S. Li, S. Wang, Y. Zhang, Y.M. Kwon, H.E. Rubash, G. Li, "Gender analysis of the anterior femoral condyle geometry of the knee," The Knee, vol. 21, no. 2, pp. 529-533, 2014.
[110] S. Almosnino, S.C. Brandon, A.G. Day, J.M. Stevenson, Z. Dvir, D.D. Bardana, " Principal component modeling of isokinetic moment curves for discriminating between the injured and healthy knees of unilateral ACL deficient patients," Journal of Electromyography and Kinesiology, vol. 24, no. 1, pp. 134-143, 2014.
[111] D.A. Hobson, L.E. Torfason, "Computer optimization of polycentric prosthetic knee mechanisms," Bulletin of Prosthetics Research, pp. 187-201, 1975.
[112] H.G.van Keeken, A.H. Vrieling, A.L. Hof, K. Postema, B. Otten, " Stabilizing moments of force on a prosthetic knee during stance in the first steps after gait initiation," Medical Engineering & Physics, vol. 34, no. 6, pp. 733-739, 2012.
[113] N. Ghaemi, M. Dardel, M.H. Ghasemi, H. Zohoor, "Optimization of Six Bar Knee Linkage for Stability of Knee," Majlesi Journal of Mechatronic Systems, vol. 1, no. 4, pp. 38-45, 2012.
[114] A. Hamon, Y. Aoustin, "Walking gait of a planar bipedal robot with four-bar knees," Movement & Sport Sciences-Science & Motricité, 2013- [hal-00760889 -version 1].
[115] C. Fiedler, R. Gezzi, K.H. Frosch, M.M. Wachowski, D. Kubein-Meesenburg, J. Dörner, J. Fanghänel, H. Nägerl, "Mathematical study on the guidance of the tibiofemoral joint as theoretical background for total knee replacements," Acta of Bioengineering and Biomechanics, vol. 13, No. 4, 2011.
[116] M.A.R. Freeman, V. Pinskerova, "The movement of the normal tibio-femoral joint," Journal of Biomechanics, vol. 38, no. 2, pp. 197-208, 2005.
[117] P. Johal, A. Williams, P. Wragg, D. Hunt, W. Gedroyc, "Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI," Journal of Biomechanics, vol. 38, no. 2, pp. 269-276, 2005.
[118] K. J. Lin, C. H. Huang, Y. L. Liu, W. C. Chen, T. W. Chang, C. T. Yang, Y. S. Lai, C. K. Cheng, "Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion," Clinical Biomechanics, vol. 26, no. 8, pp. 847-852, 2011.
[119] R. Shenoy, P.S. Pastides, D. Nathwani,"(iii) Biomechanics of the knee and TKR," Orthopaedics and Trauma, vol. 27, no. 6, pp. 364-371, 2013.
[120] M. T. Murphy, T.L. Skinner, A.G. Cresswell, R.W. Crawford, S.F. Journeaux, T.G. Russell, " The Effect of Knee Flexion Contracture Following Total Knee Arthroplasty on the Energy Cost of Walking," The Journal of Arthroplasty, vol. 29, no. 1, pp. 85-89, 2014.
[121] S.K. Saevarsson, C.I. Romeo, C. Anglin, "Are static and dynamic kinematics comparable after total knee arthroplasty?," Journal of Biomechanics, vol. 46, no. 6, pp. 1169-1175, 2013.
[122] H. Ida, Y. Nagano, M. Akai, M. Ishii, T. Fukubayashi, "Estimation of tibiofemoral static zero position during dynamic drop landing," The Knee, vol. 20, no. 5, pp. 339-345, 2013.
[123] J. S. Li, A. Hosseini, L. Cancre, N. Ryan, H. E. Rubash, G. Li, "Kinematic characteristics of the tibiofemoral joint during a step-up activity," Gait & Posture, vol. 38, no. 4, pp. 712-716, 2013.
[124] K. B. Shelburne, M. G. Pandy, F. C. Anderson, M. R. Torry, "Pattern of anterior cruciate ligament force in normal walking," Journal of Biomechanics, vol. 37, no. 6, pp. 797-805, 2004.
[125] A. Abdulrahman, K. Iqbal, G. White, "Improving Inverse Dynamics Accuracy in a Planar Walking," Journal of Robotics, Volume 2014 (2014), Article ID 245896, 9 pages.
[126] K. Sasaki, R. R. Neptune, "Individual muscle contributions to the axial knee joint contact force during normal walking," Journal of Biomechanics, vol. 43, no. 14, pp. 2780-2784, 2010.
[127] M. Sandau, H. Koblauch, T. B. Moeslund, H. Aanæs, T. Alkjær, E. B. Simonsen, "Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane," Medical Engineering & Physics, vol. 36, no. 9, pp. 1168-1175, 2014.
[128] K.A. Taylor, H.C. Cutcliffe, R.M. Queen, G.M. Utturkar, C.E. Spritzer, W.E. Garrett, L.E. DeFrate, " In vivo measurement of ACL length and relative strain during walking," Journal of Biomechanics, vol. 46, no. 3, pp. 478-483, 2013.
[129] M. Maleki, A. Babahaji, A. Mohtat, " Further analytical investigation into centrodes of the planar FBL:Symbolic representations, double points, tacnodes, degenerate forms," Mechanism and Machine Theory, vol. 44, no. 4, pp. 739-750, 2009.
[130] J. Buskiewicz, R. Starosta, and T. Walczak, “On the application of the curve curvature in path synthesis,” Mechanism and Machine Theory, vol. 44, pp. 1223-1239, 2009.
[131] O. Poliakov, O. Chepenyuk, Y. Pashkov, M. Kalinin, V. Kramar, "Multicriteria Synthesis of a Polycentric Knee Prosthesis For Transfemoral Amputees," 2012 World Academy of Science, Engineering and Technology, Amsterdam, The Netherlands, vol. 65, pp. 273-278.
[132] F. T. S. Marin, A. P. Gonzalez, "Open-path synthesis of linkages through geometrical adaptation," Mechanism and Machine Theory, vol. 39, no. 9, pp. 943-955, 2004.
[133] C. S.Cai, B.Roth, "On the Planar Motion of Rigid Bodies with Point Contact," Mechanism and Machine Theory, vol. 21, no. 6, pp. 453-466, 1986.
[134] H. Nagerl, J. Walters, K. H. Frosch, C. Dumont, D. Kubein-Meesenburg, J. Fanghanel, M.M. Wachowski, “Knee Motion Analysis of the Non-Loaded and Loaded Knee: A Re-Look at Rolling and Sliding,” Journal of Physiology and Pharmacology, vol. 60, no. 8, pp. 69-72, 2009.
[135] M. Fukunaga, J. Kawanoya, S. Hirokawa,"Control of Femoral Rollback of Ps Knee Prosthesis through Slip Ratio," Tribology Online, vol. 6, no. 1, pp. 32-35, 2011.
[136] 郭信川、張建仁、陳佩玉,2004,"應用田口式直交表法於傳統遺傳演算法求解全域最佳化問題之參數最適組配",第一屆台灣作業研究學會學術研討會暨2004年科技與管理學術研討會,台北科技大學,台北市。
[137] 劉東官,製商整合資訊系統,國立高雄第一科技大學,機械與自動化工程系,九十三學年度下學期,教學講義,民 93 年 9 月。
[138] D.W. Raiford, D.E. Krane, T.E. Doom, M.L. Raymer, "A Multi-Objective Genetic Algorithm that Employs a Hybrid Approach for Isolating Codon Usage Bias Indicative of Translational Efficiency," Bioinformatics and Bioengineering, 2007. BIBE 2007. Proceedings of the 7th IEEE International Conference on, Boston, MA, USA, pp. 278 -285.
[139] A. Setamaa-Karkkainen, K. Miettinen, J. Vuori, " Best compromise solution for a new multiobjective scheduling problem," Computers & Operations Research, vol. 33, no. 8, pp. 2353-2368, 2006.
[140] Y. Xia, S. Wang, X. Deng, "A compromise solution to mutual funds portfolio selection with transaction costs," European Journal of Operational Research, vol. 134, no. 3, pp. 564-581, 2001.
[141] R.T. Marler, J.S. Arora, "Survey of multi-objective optimization methods for engineering," Structural and Multidisciplinary Optimization, vol. 26, no. 6, pp. 369-395, 2004.
[142] 人工智慧多目標最佳化程式模組系統之開發-以基因演算法為基礎(II), http://ir.lib.cyut.edu.tw:8080/bitstream/310901800/8686/1/ (accessed OCT. 25, 2014)
[143] 陳明晏,利用Pareto Front 求解預拌車派送之最佳化排程 Applying Pareto Front to Determine the Optimal Schedule of Dispatching RMC Trucks,朝陽科技大學營建工程系,碩士論文,2008。
[144] 顏鴻森,機構學,第二版,台灣東華書局,台北,民88。
[145] S. Checa-Esteban, A.M.R. New, M. Taylor, "Effects of ligament pretension on the biomechanics of the knee: a finite element analysis," 2007 52nd Annual Meeting of the Orthopaedic Research Society, Chicago, USA, pp.19 - 22.
[146] M. Hast, S. Piazza, Estimation of Articular Contact Loads in Total Knee Replacement Using a Dual-Joint Modeling Paradigm, American Society of Biomechanics.http://www.asbweb.org/conferences/2011/pdf/175.pdf (accessed OCT. 25, 2014)
[147] K.M. Steele, M.S. Demers, M.H. Schwartz, S.L. Delp, "Compressive tibiofemoral force during crouch gait," Gait & Posture, vol. 35, no. 4, pp. 556-560, 2011.
[148] E.B. Simonsen, H. Tegner, & T. Alkjær, P.K. Larsen, J.H. Kristensen, B.R. Jensen, L. Remvig, B. Juul-Kristensen, "Gait analysis of adults with generalised joint hypermobility," Clinical Biomechanics, vol. 27, no. 6, pp. 573-577, 2012.
[149] I. Kutzner, D. Stephan, J. Dymke, A. Bender, F. Graichen, G. Bergmann, "The influence of footwear on knee joint loading during walking--in vivo load measurements with instrumented knee implants," Journal of Biomechanics, vol. 46, no. 4, pp.796-800, 2013.
[150] S. Kim, M. G. Pandy, "An Optimal Control Model for Determining Articular Contact Forces at the Human Knee During Rising from a Static Squat Position," KSME International Journal, vol. 12, no. 5, pp.847-858, 1998.
[151] P. Wretenberg, D.K. Ramsey, G. Németh, "Tibiofemoral contact points relative to flexion angle measured with MRI," Clinical Biomechanics, vol. 17, no. 6, pp. 477-485, 2002.
[152] S.J. Taylor, P.S. Walker, J.S. Perry, S.R. Cannon, R. Woledge, "The forces in the distal femur and the knee during walking and other activities measured by telemetry," The Journal of Arthroplasty, vol. 13, no. 4, 1998.
[153] A. Thambyah, B. P. Pereira, U. Wyss, "Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking," The Knee, vol. 12, no. 5, pp.383-388, 2005.
[154] K.M. Lee, J. Guo, "Kinematic and dynamic analysis of an anatomically based knee joint," Journal of Biomechanics, vo. 43, no. 7, pp. 1231-1236, 2010.
[155] D. J. van den Heever, C. Scheffer, P. Erasmus, E. Dillon, "Contact stresses in a patient-specific unicompartmental knee replacement", Clinical Biomechanics, vol. 26, no. 2, pp. 159-166, 2011.
[156] A. H. Slocum Jr, T. M. Cervantesa, E. B. Seldinc, K. K. Varanasi, "Analysis and design of rolling-contact joints for evaluating bone plate performance", Medical Engineering & Physics, vol. 34, no. 7, pp. 1009-1018, 2012.
[157] M. Qiu, A. Chyr, A. P. Sanders, B.Raeymaekers, "Designing prosthetic knee joints with bio-inspired bearing surfaces", Tribology International, vol. 77, pp. 106-110, 2014.
[158] 邱源成,磨潤學,國立中山大學,機械與機電工程學系,九十六學年度上學期,教學講義,民 96 年 9 月。
[159] Bernard J. Hamrock, Steven R. Schmid, and Bo O. Jacobson, "Fundamentals of Fluid Film Lubrication", Marcel Dekker, Inc. New York, 2004.
[160] 黃秀惠,結合田口基因演算法與直交表應用於強健參數設計,國立高雄第一科技大學,碩士論文,2005。
[161] 周至宏,實驗設計與品質工程,國立高雄第一科技大學,機械與自動化工程學系,九十三學年度上學期,教學講義,民 93 年 9 月。
[162] S. Allen, Jr. Hall, Kinematics and Linkage Design, Prentice-Hall, USA, 1961
[163] Y. Guo, X. Zhang, M. An, W. Chen, "Determination of quadriceps forces in squat and its application in contact pressure analysis of knee joint," Acta Mechanica Solida Sinica, vol. 25, no. 1, pp. 53-60, 2012.
[164] J.P. Pollard, W.L. Porter, M.S. Redfern, "Forces and moments on the knee during kneeling and squatting,"Journal of Applied Biomechanics, vol. 27, no. 3, pp. 233-241, 2012.
[165] V. Graci, G. B. Salsich, "Trunk and lower extremity segment kinematics and their relationship to pain following movement instruction during a single-leg squat in females with dynamic knee valgus and patellofemoral pain," Journal of Science and Medicine in Sport, Accepted: April 18, 2014, Published Online: April 26, 2014 (DOI: http://dx.doi.org/10.1016/j.jsams.2014.04.011)
[166] F.H. Fu, C.D. Harner, D.L. Johnson, M.D. Miller, S.L. Woo, "Biomechanics of Knee Ligaments: Basic Concepts and Clinical Application," The Journal of Bone and Joint Surgery, vol. 75, no. 11, pp.1716-1727, 1993.
[167] A.H. Slocum Jr., T.M. Cervantes, E.B. Seldin, K.K. Varanasi, "Analysis and design of rolling-contact joints for evaluating bone plate performance," Medical Engineering & Physics, vol. 34, no, 7, pp. 1009-1018, 2012.
[168] B. G. de Monsabert, L. Vigouroux, D. Bendahan, E. Berton, "Quantification of finger joint loadings using musculoskeletal modelling clarifies mechanical risk factors of hand osteoarthritis," Medical Engineering & Physics, vol. 36, no. 2, pp. 177-184, 2014.
[169] 李根榮,正常及人工膝關節運動學模型建立與分析,國立陽明大學醫學工程學系,碩士論文,2007。
[170] C. de S. Campos Jr., M. A. Bracht, M. J. dos Santos, "The effect of finger joint hypomobility on precision grip force," Journal of Hand Therapy, vol. 26, no. 4, pp. 323-329, 2013.
[171] D. G. de Oliveira, P. M. Nunes, A. S. Aruin, M. J. dos Santos, " Grip Force Control in Individuals with Hand Osteoarthritis," Journal of Hand Therapy, vol. 24, no. 4, pp. 345-355, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code