Responsive image
博碩士論文 etd-0019115-095817 詳細資訊
Title page for etd-0019115-095817
論文名稱
Title
少數模態與單模態摻鉻釔鋁石榴石晶體光纖之生長及光放大特性研究
Growth and Characterization of Few-Mode and Single-Mode Chromium-Doped YAG Crystal Fibers for Fiber Amplifiers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-11-29
繳交日期
Date of Submission
2015-01-19
關鍵字
Keywords
雷射基座加熱生長法、高折射率玻璃、光增益、淨增益、摻鉻晶體光纖、少數模態
CDF, Few-mode, LHPG, High-index glass, Gross gain, Net gain
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
摻鉻光纖具有自發輻射特性,其頻段可涵蓋整個低損耗商用玻璃光纖通訊波段1.3-1.6 m,因此摻鉻光纖具有潛力發展成寬頻光纖放大器,增加光纖通訊系統傳輸容量及可調應用性。特殊摻鉻光纖纖心材質以晶體為主,惟最大挑戰方向為如何製作出單模態傳輸摻鉻晶體光纖,單模態傳輸於具增益特性的晶體光纖中,能展現創新技術於放大器應用。
近年本實驗室研究製作摻鉻晶體光纖的方法有以下兩種:(1) 利用改良式雷射基座加熱生長法(Laser-heated pedestal growth, LHPG)製作少數模態雙層纖衣摻鉻晶體光纖,其方法為多次重複加熱擴散機制縮小纖心直徑。(2) 利用雷射基座加熱生長法(LHPG) 生長摻鉻晶體光纖及抽絲塔拉製與Cr:YAG 折射率接近之高折射率玻璃(N-SF57)管,再用高折射率玻璃管包覆摻鉻晶體光纖,製作成少數模態與單模態高折射率玻璃包覆摻鉻晶體光纖。
本論文已研製三種摻鉻晶體光纖;少數模態雙層纖衣摻鉻晶體光纖,少數模態高折射率玻璃包覆摻鉻晶體光纖及單模態高折射率玻璃包覆摻鉻晶體光纖,兹將量測遠場模態與增益特性說明如下。(1) 纖心直徑2 m與長度2 cm之少數模態雙層纖衣摻鉻晶體光纖,其在訊號光1400 nm於遠場模態量測上能展現LP11 之少數模態特性。而增益量測於雙端激發的架構下,訊號光波長1400 nm、激發光波長1064 nm與激發光總功率200 mW,可得到光增益(Gross gain) 2.3dB(1dB/cm),但研製較長長度少數模態雙層纖衣摻鉻晶體光纖具困難度且整體製程良率不佳。(2) 少數模態高折射率玻璃包覆34m長度9.8 cm之摻鉻晶體光纖,其在訊號光1400 nm遠場量測上亦呈現LP11,此少數模態高折射率玻璃包覆摻鉻晶體光纖在提升製程良率與增益特性上較少數模態雙層纖衣摻鉻晶體光纖佳。目前利用高折射率玻璃包覆晶體之少數模態摻鉻晶體光纖方法可產生較佳之光增益,於雙端激發光1064 nm波長在總功率400 mW與訊號光波長1400 nm時為4.1 dB (0.45dB/cm)。(3) 高折射率玻璃包覆直徑25m長度6.7cm之單模態摻鉻晶體光纖,在訊號光1400nm遠場量測到單模態特性LP01。單模態高折射率玻璃包覆晶體光纖在整體量測中可降低系統損耗而有淨增益(Net gain)特性,單端激發便可產生光增益為2.7dB (loss 0.4dB/cm)淨增益為 0.7 dB,故單模態摻鉻晶體光纖最具有潛力應用於光纖通訊之光放大器。
本論文已研製高折射率玻璃之單模態摻鉻晶體光纖及其光增益與淨增益量測,惟研究成果有待提升,期望進一步研發達成單模態寬頻譜光纖放大器應用於光纖通訊系統上。未來研發可嘗試利用其他材質之高折射率玻璃,例如: LaSF30的熱膨脹係數(7.1×10-6)比起N-SF57(9.9×10-6)小,使包覆晶纖過程能減少缺陷,期望單模態晶體光纖訊號光傳輸損耗降至0.02 dB/cm。並且研製長度較長(15cm 以上),直徑小於25m單模態摻鉻晶體光纖,以用於提升光增益及獲得更高淨增益光纖放大器應用於光纖通訊系統。
Abstract
Chromium-doped fiber (CDF) exhibits spontaneous emission characteristic which can cover the entire low-loss optical fiber communications band 1.3-1.6 m. Therefore, the CDF has the potential to increase transmission capacity and flexible applicability to develop the broadband optical amplifiers in optical fiber communication systems. The core material of the CDFs is a crystal-based and the challenge issue is to make the single-mode transmission in chromium-doped crystal fiber. Single mode transmission of the CDF exhibits gain characteristic crystal fibers and may demonstrate its innovative technology for amplifier application.
In this study, there were two methods for the chromium-doped crystal fiber fabrication. (1) The modified laser heated pedestal growth method (Laser-heated pedestal growth, LHPG) was used to fabricate the few mode Cr-doped double cladded crystal fibers. This method was the repeated heating diffusion mechanism to narrow core diameter. (2) The Cr:YAG crystal fibers and the high-index glass tube (N-SF57) were fabricated by LHPG method and drawing tower technology, respectively. Then, the Cr:YAG crystal fiber was inserted into high-index glass tube. Finally, the few-mode and single-mode Cr:YAG crystal fibers were obtained.
In this dissertation, three different kinds of chromium-doped crystal fiber have been fabricated: few mode chromium doped fiber cladded double crystal fiber (FMCDCCF), few mode chromium doped fiber cladded (FMCDCCF) by high refractive index glass, and single-mode chromium doped fiber cladded (SMCDCCF) by high refractive index glass. The far-field mode and gain characteristics of the CDFs are measured and demonstrated as below. (1) The FMCDCCF showed the LP11 mode by far-field pattern measurement. A FMCDCCF of 2 µm in core diameter and 20 mm in fiber length with gross gain of 2.3 dB (1dB/cm) was demonstrated by pumping power of 200 mW. However, the growth process was complex and difficult to repeat. (2) The FMCDCCF of core diameter 34 m and fiber length 9.8cm was cladded by high-index glass (N-SF57). The far-field pattern of LP11 mode could guide by FMCDCCF cladded by high-index glass. Through utilized double-pumping method, a 4.1-dB (0.45dB/cm) gross gain at the signal wavelength of 1.4μm was obtained by the pumping power of 400mW. So, the gain performance of high-index glass cladded FMCDCCF was better than the FMCDCCF. (3) The SMCDCCF by cladded high-index glass of 25 m and 6.7cm in fiber length was demonstrated LP01 mode by far-field pattern measurement. The SMCDCCF exhibited a gross gain of 2.7 dB (0.4dB/cm) and a net gain of 0.7 dB at the wavelength of 1.4 μm was demonstrated by single pumping power of 320 mW. Overall, the SMCDCCF exhibited lower pumping power loss than the FMCDCCF.
This study provided a novel method for fabricating single-mode Cr-doped crystal fibers (SMCDCCFs). The SMCDCCFs exhibited gross gain and net gain of Cr-doped crystal fibers. However, higher gross gain and net gain should be improved. Further development of 10 dB net gain of the SMCDCCFs is important to reach a broadband spectrum of fiber amplifiers in optical fiber communication systems. In the future, our research may try to use other materials of high refractive index glass. For example, SMCDCCFs also can clad by the LaSF30 (7.1×10-6) which has the lower thermal expansion coefficient difference than N-SF57 (9.9×10-6). The defects of SMCDCCFs may be reduced during growth process. We expect that the optical loss of SMCDCCFs clad by new high-index glass may reduce to 0.02 dB/cm. The development of the longer length (above 15 cm) and smaller core diameter( below 25 m) of the SMCDCCFs for higher gross gain and net gain is necessary and important. Therefore, the SMCDCCF has the potential to be used as the fiber amplifiers in optical communications.
目次 Table of Contents
論文審定書…………………………………………………………… i
誌謝…………………………………………………………………. iii
中文摘要………………………………………………………….…..iv
英文摘要………………………………………..…………………….vi
第 一 章 緒論…………………………………………………........ 1
1.1研究動機………..……………………………………………....1
1.2文獻探討…..…………………………………………………....1
1.3章節簡述……..…………..………………..………………….. 5
1.4參考文獻………..…………………………………………….. 6
第 二 章 晶體光纖與少數模態晶體光纖之製程..…………........ 7
2.1利用雷射加熱基座生長法(laser heated pedestal growth, LHPG)
生長晶體光纖……..…………………………………………....7
2.2雙層纖衣晶體光纖生長………..……………………………. 16
2.3高折射率包覆晶體光纖生長………..………………………. 21
2.4參考文獻………..……………………………………………. 28
第 三 章 Cr4+:YAG材料與光學特性.…………………..…....... 30
3.1釔鋁石榴石結構材料簡介………..…………………………. 30
3.2摻鉻晶體之光學特性………………..………………………. 40
3.3雙層纖衣晶體光纖元素組成檢測………..…………………. 43
3.4雙層纖衣內纖心晶體結構分析………..……………………. 49
3.5雙層纖衣晶體光纖內纖心端面檢測….…….………………. 54
3.6參考文獻…………………………….……….………………. 57
第 四 章 晶體光纖元件量測特性與實驗結果…………………. 60
4.1光纖波導…………………….…..…………………………….60
4.2晶體光纖損耗……………….…..…………………………….64
4.3晶體光纖折射率量測………………...……………………….69
4.4晶體光纖螢光量測………..…………………………………. 72
4.5晶體光纖模態量測………..…………………………………. 74
4.6增益特性量測………..………………………………………. 77
4.7參考文獻………..……………………………………………. 88
第 五 章 研究結論與未來方向………..……………………..... 91
5.1研究討論………..……………………………………………. 91
5.2參考文獻………..……………………………………………. 96
參考文獻 References
[1-1] I. J. Miller, A. J. Alcock, and J. E. Bernard, “Experimental Investigation of Cr4+ in YAG as A Passive Q-switch,” in Proceedings on Advanced Solid-State Lasers, Vol. 13, pp. 322-325, 1992.
[1-2] H. Yamazaki and S. Tanabe, “Compositional Dependence of Fluorescence Spectra of Cr3+/Cr4+-Doped Calcium Alumino-Silicate Glasses for Broadband Telecommunication” Japanese J. of Applied Physics, Vol. 44, pp.5011-5013 2005.
[1-3] Yi-Chung Huang, Jau-Sheng Wang, Yen-Sheng Lin, Ting-Chien Lin, Wei-Lun Wang, Yu-Kuan Lu, Szu-Ming Yeh, Hsin-Hui Kuo,Sheng-Lung Huang, and Wood-Hi Cheng, ”Development of Broadband Single-Mode Cr-doped Silica Fibers” Photonics Technology Letters, Vol. 22, pp. 914-916, 2010.
[1-4] Yi-Chung Huang, Chun-Nien Liu, Yen-Sheng Lin, Jau-Sheng Wang, Wei-Lun Wang, Fang-Yen Lo, Ta-Lung Chou, Sheng-Lung Huang, and Wood-Hi Cheng, ”Fluorescence Enhancement in Broadband Cr-doped Fibers Fabricated by Drawing Tower” Opt. Express,Vol. 21, Issue 4, pp. 4790-4795, 2013.

[2-1] C. A. Burrus and J. Stone, “Single-Crystal Fiber Optical Devices: A Nd:YAG Fiber Laser,” Appl. Phys. Lett., vol. 26, pp. 318-320, 1975.
[2-2] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 Laser Crystal Grown by the Laser-Heated Pedestal Growth Method,” J. Crys. Growth, Vol. 183, pp. 614-621, 1998.
[2-3] N. Ohnishi and T. Yao, “A Novel Growth Technique for Single-Crystal Fibers: the Micro-Czochralski (u-CZ) Method,” Japanese J. of Applied Physics, Vol. 28, pp.278-280 , 1989.
[2-4] V.V. Prokofiev, J.P. Andreeta, C.J. de Lima, M.R.B. Andreeta, A.C. Hernandes, J.F. Carvalho, A.A. Kamshilin, T. Jaaskelainen, ”The Influence of Temperature Gradients on Structural Perfection of Single-Crystal Sillenite Fibers Grown by the LHPG Method” Optical Materials , Vol. 4, pp.521-527, 1995.
[2-5] Y.-S. Luh, R.S. Feigelson, M.M. Feher and R.L. Byer,” Stoichiometric LiNbO3 Single-Crystal Fibers for Nonlinear Optical Applications” J. Crystal Growth, Vol. 78, pp.264-269 ,1986.
[2-6] R.S. Feigelson, “Pulling Optical Fibers,” J. Crystal growth, Vol. 79, pp.669-680, 1986.
[2-7] Rick K. Nubling and James A. Harrington, “Optical Properties of Single-Crystal Sapphire Fibers”, Appl. Optics, Vol. 36, pp.5934-5940, 1997.
[2-8] http://www.udel.edu/chem/GlassShop.
[2-9] http://www.schott.com/advanced_optics/english/abbe_datasheets/schott-datasheet-n-sf57.pdf?highlighted_text=N-SF57
[2-10] 王柏荃 ”摻鉻光纖材料與光學特性之研究” ,中山大學碩士班論文, 98年度.
[2-11] Wei-Lun Wang, Gia-Ling Cheng, Yi-Chung Huang, Nan-Kuang Chen, Sheng-Lung Huang, and Wood-Hi Cheng, “Few-mode Cr-doped Fibers by Cladded High Index Glass for Broadband Fiber Amplifiers” Photonics Technology Letters, Vol. 26, pp.587-590, 2014.
[2-12] M. J. F. Digonnet, C.J. Gaeta, D.O’Meara, and H.J. Shaw, ”Clad Nd:YAG Fibers For Laser Applications” J. of Lightwave Technology , Vol. 5 , pp.642-646, 1987.
[2-13] Wei-Lun Wang, Gia-Ling Cheng, Yi-Chung Huang, Nan-Kuang Chen, Sheng-Lung Huang, and Wood-Hi Cheng, “Few-Mode Cr-Doped Fibers by Cladded High Index-Glass for Broadband Fiber Amplifiers” Photonics Technology Letters, Vol. 26, pp. 587-590, 2014.
[2-14] Wei-Lun Wang, Gia-Ling Cheng, Yi-Chung Huang1, Chia-Chien Wei, Nan-Kuang Chen, Sheng-Lung Huang, and Wood-Hi Cheng, “Single-Mode Cr-Doped Crystalline Core Fibers for Broadband Fiber Amplifiers” Photonics Technology Letters, Vol. 27, pp. 205-208 , 2015 .

[3-1] Eschenfleder. A. H. “Magnetic bubble technology.” Solid-State Sciences 14.Springer-Verlag. New York. 1981
[3-2] http://www.ncku.edu.tw/~facility/facility/index.htm
[3-3] Dorota A. Pawlak, Krzysztof Wozniak, Zygmunt Frukacz, Tery L. Barr, Dean Fiorentino, and Sudipta Seal, “ESCA Studies of Yttrium Aluminum Garnets” J. Phys. Chem. B, vol. 103, pp.1454-1461, 1999 .
[3-4] 張立信 “表面化學分析技術” 中興大學材料科學與工程學系,奈米通訊19卷NO.4
[3-5] D.Briggs etc. Wiley Chichester, “Practical Surface Analysis”, Auger and X-ray Photoelectron Spectroscopy, 1990.
[3-6] 陳建誠 ”雙層纖衣摻鉻釔鋁石榴石晶體光纖之螢光光譜研究”, 中山大學博士論文, 95年度
[3-7] R.Feldman etc. “Dynamics of Chromium Ion Valence Transformations in Cr,Ca:YAG Crystals Used as Laser Gain and Passive Q-switching Media” Optical Materials, Vol. 24, pp. 333- 344, 2003.
[3-8] B. Henderson and G. F. Imbusch, “Optical Spectroscopy of Inorganic Solids Clarendon”, Oxford, 1989
[3-9] Y. Kalisky, “Cr4+-doped Crystals: Their Use as Lasers and Passive Q-switches,” Progress in Quantum Electronics 28, pp.249 -303,2004.
[3-10] Hergen Eilers, Uwe Hommerich, Stuart M. Jacobsen, William M. Yen, K. R. Hoffman, and W.Jia,” Spectroscopy and Dynamics of Cr4+:Y3Al5O12” Phys. Rev. B. , Vol. 49, p.15505-15513, 1994.
[3-11] H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron., Vol. 29, pp.2508-2512, 1993.
[3-12] Wittry, David B. "Electron Probe Microanalyzer", US Patent No 2916621, Washington, DC: U.S. Patent and Trademark Office. 1958.
[3-13] http://khvic.nsysu.edu.tw/khvic/JL/69.htm
[3-14] 黃怡禎,”礦物學”(譯著)〝Manual of Mineralogy〞2nd edition,2002
[3-15] Jansen, W.; Slaughter, M. "Elemental Mapping of Minerals by Electron Microprobe". American Mineralogist, Vol. 67, pp. 521-533, 1982.
[3-16] Transmission electron microscopy [electronic resource] : a textbook for materials science, by David B. Williams, C. Barry Carter , Boston, MA : Springer US, 2009
[3-17] http://khvic.nsysu.edu.tw/khvic/JL/52.htm
[3-18] http://khvic.nsysu.edu.tw/khvic/JL/76.htm
[3-19] Joint Commission on Powder Diffraction Standards (JCPDS) card No. 88-2048, International Center for Diffraction Data, PCPDFWIN version 2.2 (2001)
[3-20] M. A. Gulgun, W. Y. Ching, Y. N. Xu, and M. Ruhle, “Electron States of YAG Probed by Energy-Loss Near-Edge Spectrometry and Abinitio Calculations,” Phil. Mag. B, vol. 79, pp. 921-940, 1999.

[4-1] John M. Senior, “Optical Fiber Communications” principles and practice second edition.
[4-2] E. Snitzer, “ Cylindrical Dielectric Waveguide Modes” J. Opt. Soc. Am. Vol. 51, pp. 491-498, 1961.
[4-3] D. Marcuse, “Theory of Dielectric Optical Waveguides” Academic press, New York, 1974.
[4-4] D. Gloge, “Weakly Guiding Fibers”, Appl. Opt. Vol. 10 pp.2252-2258, 1971.
[4-5] 劉力瑋”少數模態摻鉻釔鋁石榴石晶體雙纖衣光纖之研製”,中山大學碩士論文, 100年度.
[4-6] D. B. Keck, R. D. Maurer and P.C. Schultz, “On the Ultimate Lower Limit of Attuation in Glass Optical Waveguides”, Appl. phys. lett. ,Vol. 22, pp. 307-309, 1973.
[4-7] R. Olshansky, “Propagation in Glass Optical Waveguides”, Rev. Mod. Phys. ,Vol. 51, pp. 341-367, 1979.
[4-8] Eakins, D. E., et al. "A Study of Fracture and Defects in Single Crystal YAG." J. of crystal growth , Vol. 267, pp.502-509, 2004.
[4-9] Merberg, Glenn N., and James A. Harrington. "Optical and Mechanical Properties of Single-Crystal Sapphire Optical Fibers." Applied Optics, Vol. 32, pp.3201-3209,1993.
[4-10] K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-Loss Propagation in Cr4+:YAG Double-Clad Crystal Fiber Fabricated by Sapphire Tube Assisted CDLHPG Technique”, Optics Express, Vol. 16, pp.12264-12271, 2008.
[4-11] D. J. KEAST and B. E. STOREY, “A Possible Contribution to Light Loss in Calcium Tungstate and Yttrium Aluminium Garnet Laser Crystals by Scattering”, J. Appl. Phys., Vol. 1, pp.524-527,1968.
[4-12] S. Ishibashi*, K. Naganuma, I. Yokohama,” Cr, Ca:Y3A15012 Laser Crystal Grown by the Laser-Heated Pedestal Growth Method”, J. Opt. Soc. Am. B, Vol. 12, pp.614-621, 1998.
[4-13] Shigeo Ishibashi and Kazunori Naganuma,” Diode-Pumped Cr4+:YAG Single-Crystal Fiber Laser”, OSA/ASSL, Advanced solid state lasers, page MD4, 2000.
[4-14] 莊智煒 ”少數模態摻鉻晶體光纖之製程與量測研究”,中山大學碩士論文, 101年度.
[4-15] C. P. Tsekrekos, R. W. Smink, B. P. de Hon, A. G. Tijhuis, and A. M. J. Koonen,”Near-Field Intensity Pattern at The Output of Silica-Based Graded-Index Multimode Fibers under Selective Excitation with A Single-Mode Fiber”, Optics Express Vol. 15, pp.3656-3662, 2007.
[4-16] http://www.pyat.com.tw/productlist.php?id=1
[4-17] Charles J. Koester and Elias Snitzer,” Amplification in A Fiber Laser”, Appl. Optics, Vol. 3, pp.1182-1186,1964.
[4-18] Wei-Lun Wang, Jau-Sheng Wang, Yi-Chung Huang, Li-Wei Liu, Sheng-Lung Huang, and Wood-Hi Cheng, “Few-Mode Cr-Doped Crystalline Core Fibers For Fiber Amplifier” Photonics Technology Letters, Vol. 24, Issue 18,pp.1628-1631, 2012.
[4-19] Wei-Lun Wang, Gia-Ling Cheng, Yi-Chung Huang, Nan-Kuang Chen, Sheng-Lung Huang, and Wood-Hi Cheng, “Few-Mode Cr-Doped Fibers by Cladded High-Index Glass for Broadband Fiber Amplifiers” Photonics Technology Letters, Vol. 26, Issue 6, pp. 587-590, 2014.
[4-20] Szu-Ming Yeh, Sheng-Lung Huang, Yi-Jen Chiu, Hidenori Taga, Pi Ling Huang, Yi-Chung Huang, Yu-Kuan Lu, Jui-Pin Wu, Wei-Lun Wang, De-Ming Kong, Kuang-Yao Huang, Jau-Sheng Wang, Pochi Yeh, and Wood-Hi Cheng,”Broadband Chromium-Doped Fiber Amplifiers for Next-Generation Optical Communication Systems” J. of Lightwave Technology, Vol. 30, pp.921-927,March 15, 2012.
[4-21] Wei-Lun Wang, Gia-Ling Cheng, Yi-Chung Huang1, Chia-Chien Wei, Nan-Kuang Chen, Sheng-Lung Huang, and Wood-Hi Cheng, “Single-Mode Cr-Doped Crystalline Core Fibers for Broadband Fiber Amplifiers” Photonics Technology Letters, Vol. 27, pp.205-208, 2015.

[5-1] Szu-Ming Yeh, Sheng-Lung Huang, Yi-Jen Chiu, Hidenori Taga, Pi Ling Huang, Yi-Chung Huang, Yu-Kuan Lu, Jui-Pin Wu, Wei-Lun Wang, De-Ming Kong, Kuang-Yao Huang, Jau-Sheng Wang, Pochi Yeh, and Wood-Hi Cheng,” Broadband Chromium-Doped Fiber Amplifiers for Next-Generation Optical Communication Systems” J. of Lightwave Technology, Vol. 30, No.6, pp.921-927,March 15, 2012.
[5-2] M. J. F. Digonnet, C.J. Gaeta, D.O’Meara, and H.J. Shaw,”Clad Nd:YAG Fibers for Laser Applications” J. of Lightwave Technology, Vol. LT-5, pp.642-646, 1987.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.191.214
論文開放下載的時間是 校外不公開

Your IP address is 3.145.191.214
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code