Responsive image
博碩士論文 etd-0019115-165758 詳細資訊
Title page for etd-0019115-165758
論文名稱
Title
新型Combretastatin A-4烯雙炔衍生物誘發神經母細胞瘤 SH-SY5Y計畫性細胞凋亡
New Combretastatin A-4 enediyne derivatives induce Program Cell Death in Neuroblastoma SH-SY5Y cell line
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-07
繳交日期
Date of Submission
2015-01-23
關鍵字
Keywords
Combretastatin A-4、LO-OMe、細胞自噬、LO-NH2、細胞凋亡、LC3、PARP、Caspase-3、p62
Combretastatin A-4, LO-OMe, LO-NH2, PARP, Caspase-3, Apoptosis, Autophagy, p62, LC3
統計
Statistics
本論文已被瀏覽 5730 次,被下載 133
The thesis/dissertation has been browsed 5730 times, has been downloaded 133 times.
中文摘要
抗有絲分裂藥物已被報導具有抗腫瘤生成的能力,其中Combretastatin A-4 (CA-4)被認為是最具有抗癌活性的藥物之一,其特色是擁有抗微管聚合的特性並可抑制腫瘤血管的新生。烯雙炔類藥物是藉由模擬CA-4的結構而達到具有抗癌活性的新型藥物,先前的研究已經指出LO-OMe與LO-NH2對於不同的癌細胞株具有高度的細胞毒殺性,但仍未有此藥物對於神經母細胞瘤細胞株SH-SY5Y的抗癌活性之報告。因此,本研究將探討CA-4其衍生物對於神經母細胞瘤細胞株SH-SY5Y的毒殺效力,並進一步深究其抗癌機制。經細胞存活試驗得知LO-OMe與LO-NH2處理48小時的IC50的濃度分別為3.2 μM與2.1 μM。LO-OMe與LO-NH2處理均導致自噬作用標幟蛋白LC3-II增加,且p62(亦稱為sequestosome, SQSTM1)蛋白有堆積的現象。此外在GFP-LC3報導H4細胞株實驗中,新型烯雙炔藥物之處理皆能顯著誘導細胞中含綠螢光量點數量之增加,且螢光量點之大小也有提升現象,顯示此藥物可能會誘導細胞自噬體之累積。另一方面,我們先前的研究也指出LO-OMe與LO-NH2會造成SH-SY5Y細胞週期停滯在G2/M時期,而此類抗微管藥物已被證實能有效誘發計畫性細胞凋亡。在LO-OMe與LO-NH2處理的SH-SY5Y細胞中可偵測到活化型Caspase-3,並造成其下游cleavaged PARP的含量顯著提升,這些數據顯示藥物處理促使SH-SY5Y走向計畫性細胞凋亡路徑。綜合前述實驗數據,我們得知這兩種新型的烯雙炔藥物會誘發SH-SY5Y細胞中自噬體之累積,而由p62蛋白堆積的現象則指出細胞自噬體可能無法順利被送達溶酶體降解,我們認為可能因新型烯雙炔藥物具有抑制微管聚合之活性所致。當細胞無法藉由自噬作用抵禦微環境的壓力便會誘發計畫性細胞凋亡,因而促使這類的新型烯雙炔藥物具有毒殺癌細胞之活性,但其詳細的分子訊息機轉有待進一步的深入探討。
Abstract
Antimitotic drug, combretastatin A-4 (CA-4) is a natural plant extract exhibits powerful anticancer and anti-angiogenesis activity by targeting microtubule formation. CA-4 enediyne derivatives, such as LO-OMe and LO-NH2 were shown to possess potent cytotoxicity in various cancer cell lines except human neuroblastoma cell. Here, we further investigate the cytotoxic effects of LO-OMe and LO-NH2 on neuroblastoma SH-SY5Y cells. Our viability assay demonstrated that LO-OMe and LO-NH2 mediated 50 percent killing of SH-SY5Y cells at a concentration of 3.2 and 2.1 µM, respectively. Cell lysates of drug treated cells were collected for analyzing markers of cellular autophagy and apoptosis using antibodies against LC3, p62, caspase-3, cleaved PARP. The results indicated a dose-dependent increase of LC3-II/LC3-I ratio and p62 protein upon drug treatments. In addition, consistent effects were observed in GFP-LC3 reporter H4 cell line. Both compounds elicited the increase in the number and the size of GFP-LC3 puncta, indicating an accumulation of autophagosomes in reporter cells. Our previous data showed LO-OMe and LO-NH2 treatment led to cell cycle arrest at G2/M. In addition, LO-OMe and LO-NH2 also significantly unregulated the level of active caspase-3, which resolved in the increase of cleaved-PARP. In summary, our results showed that LO-OMe and LO-NH2 induced the increase of autophagosomes. The accumulation of p62 indicated an inhibition in the fusion between autophagosome and lysosome, which might be due to the interference of microtubule polymerization exerted by these compounds. Unresolved cellular stress then resulted in programmed cell death of SH-SY5Y neuroblastoma cells. However, the molecular details awaits further investigation.
目次 Table of Contents
目錄
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
前言 - 1 -
第一章:抗有絲分裂試劑(Antimitotic agents) - 1 -
1.微管與抗有絲分裂試劑 - 1 -
2.微管聚合抑制劑(Microtubule-destabilizing agents,MDAs) - 3 -
3.微管聚合穩定劑(Microtubule-stabilizing agents,MSAs) - 4 -
4.Combretastatin A-4 - 4 -
5.新型烯雙炔藥物(Enediyne) - 5 -
第二章:細胞自噬(Autophagy) - 7 -
1.細胞自噬的緣起 - 7 -
2.細胞自噬的分子機制 - 8 -
3.微管、微管相關蛋白MAPL3B與細胞自噬 - 11 -
4.泛素相關蛋白P62(SQSTM1)與細胞自噬 - 13 -
第三章:細胞凋亡(Apoptosis) - 15 -
1.細胞凋亡 - 15 -
2.細胞凋亡途徑 - 16 -
3.Bcl-2家族蛋白 - 17 -
4.Caspase蛋白酶 - 18 -
5.PARP(Poly ADP ribose polymerase) - 19 -
研究動機 - 21 -
材料與方法 - 22 -
新型烯雙炔藥物 - 22 -
SH-SY5Y細胞培養與製備 - 22 -
細胞存活率試驗 - 23 -
蛋白質萃取 - 23 -
蛋白質定量 - 24 -
西方墨點法 - 25 -
共軛焦顯微鏡樣品製備 - 26 -
實驗結果 - 28 -
CA-4及其烯雙炔衍生物對SH-SY5Y細胞毒殺性 - 28 -
CA-4及其烯雙炔衍生物能夠誘發H4細胞自噬 - 29 -
CA-4及其烯雙炔衍生物能夠誘發SH-SY5Y細胞自噬 - 29 -
CA4及其烯雙炔演生物能夠誘發SH-SY5Y細胞凋亡 - 30 -
討論與總結 - 32 -
附錄 - 42 -
引用文獻 - 48 -
參考文獻 References
Reference List

1. Siegel, R., Ma, J., Zou, Z., and Jemal, A. (2014) Cancer statistics, 2014. CA: a cancer journal for clinicians 64, 9-29
2. Jordan, M. A., and Wilson, L. (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Current opinion in cell biology 10, 123-130
3. Jordan, M. A., and Wilson, L. (2004) Microtubules as a target for anticancer drugs. Nature reviews. Cancer 4, 253-265
4. Wilson, L., and Jordan, M. A. (1995) Microtubule dynamics: taking aim at a moving target. Chemistry & biology 2, 569-573
5. Panda, D., Miller, H. P., and Wilson, L. (2002) Determination of the size and chemical nature of the stabilizing "cap" at microtubule ends using modulators of polymerization dynamics. Biochemistry 41, 1609-1617
6. Mitchison, T., and Kirschner, M. (1984) Dynamic instability of microtubule growth. Nature 312, 237-242
7. Margolis, R. L., and Wilson, L. (1978) Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 13, 1-8
8. Giannakakou, P., Nakano, M., Nicolaou, K. C., O'Brate, A., Yu, J., Blagosklonny, M. V., Greber, U. F., and Fojo, T. (2002) Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proceedings of the National Academy of Sciences of the United States of America 99, 10855-10860
9. Rusan, N. M., Fagerstrom, C. J., Yvon, A. M., and Wadsworth, P. (2001) Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Molecular biology of the cell 12, 971-980
10. Zhai, Y., Kronebusch, P. J., Simon, P. M., and Borisy, G. G. (1996) Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. The Journal of cell biology 135, 201-214
11. Hayden, J. H., Bowser, S. S., and Rieder, C. L. (1990) Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. The Journal of cell biology 111, 1039-1045
12. Mitchison, T. J. (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. The Journal of cell biology 109, 637-652
13. Johnson, I. S., and Wright, H. F. (1959) Antitumor activity of glucagon. Cancer research 19, 557-560
14. Singer, W. D., Jordan, M. A., Wilson, L., and Himes, R. H. (1989) Binding of vinblastine to stabilized microtubules. Molecular pharmacology 36, 366-370
15. Hastie, S. B. (1991) Interactions of colchicine with tubulin. Pharmacology & therapeutics 51, 377-401
16. Von Hoff, D. D. (1997) The taxoids: same roots, different drugs. Seminars in oncology 24, S13-13-S13-10
17. Inclan, Y. F., and Nogales, E. (2001) Structural models for the self-assembly and microtubule interactions of gamma-, delta- and epsilon-tubulin. Journal of cell science 114, 413-422
18. Pettit, G. R., Singh, S. B., Niven, M. L., Hamel, E., and Schmidt, J. M. (1987) Isolation, structure, and synthesis of combretastatins A-1 and B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum. Journal of natural products 50, 119-131
19. Pettit, G. R., Cragg, G. M., and Singh, S. B. (1987) Antineoplastic agents, 122. Constituents of Combretum caffrum. Journal of natural products 50, 386-391
20. McGown, A. T., and Fox, B. W. (1990) Differential cytotoxicity of combretastatins A1 and A4 in two daunorubicin-resistant P388 cell lines. Cancer chemotherapy and pharmacology 26, 79-81
21. Dorr, R. T., Dvorakova, K., Snead, K., Alberts, D. S., Salmon, S. E., and Pettit, G. R. (1996) Antitumor activity of combretastatin-A4 phosphate, a natural product tubulin inhibitor. Investigational new drugs 14, 131-137
22. Gaukroger, K., Hadfield, J. A., Lawrence, N. J., Nolan, S., and McGown, A. T. (2003) Structural requirements for the interaction of combretastatins with tubulin: how important is the trimethoxy unit? Organic & biomolecular chemistry 1, 3033-3037
23. Cushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, C. M., and Hamel, E. (1991) Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization. Journal of medicinal chemistry 34, 2579-2588
24. Pettit, G. R., Temple, C., Jr., Narayanan, V. L., Varma, R., Simpson, M. J., Boyd, M. R., Rener, G. A., and Bansal, N. (1995) Antineoplastic agents 322. synthesis of combretastatin A-4 prodrugs. Anti-cancer drug design 10, 299-309
25. Nam, N. H. (2003) Combretastatin A-4 analogues as antimitotic antitumor agents. Current medicinal chemistry 10, 1697-1722
26. Shirai, R., Takayama, H., Nishikawa, A., Koiso, Y., and Hashimoto, Y. (1998) Asymmetric synthesis of antimitotic combretadioxolane with potent antitumor activity against multi-drug resistant cells. Bioorganic & medicinal chemistry letters 8, 1997-2000
27. Schobert, R., Biersack, B., Dietrich, A., Effenberger, K., Knauer, S., and Mueller, T. (2010) 4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and -N-methylimidazoles that are cytotoxic against combretastatin A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model. Journal of medicinal chemistry 53, 6595-6602
28. Nicolaou, K. C., Smith, A. L., and Yue, E. W. (1993) Chemistry and biology of natural and designed enediynes. Proceedings of the National Academy of Sciences of the United States of America 90, 5881-5888
29. Provot, O., Giraud, A., Peyrat, J. F., Alami, M., and Brion, J. D. (2005) Synthetic approach to enyne and enediyne analogues of anticancer agents. Tetrahedron Lett 46, 8547-8550
30. Lo, Y. H., Lin, Y. T., Liu, Y. P., Duh, T. H., Lu, P. J., and Wu, M. J. (2013) Design, synthesis, biological evaluation and molecular modeling studies of 1-aryl-6-(3,4,5-trimethoxyphenyl)-3(Z)-hexen-1,5-diynes as a new class of potent antitumor agents. European journal of medicinal chemistry 62, 526-533
31. Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z. W., Jimenez-Sanchez, M., Korolchuk, V. I., Lichtenberg, M., Luo, S., Massey, D. C., Menzies, F. M., Moreau, K., Narayanan, U., Renna, M., Siddiqi, F. H., Underwood, B. R., Winslow, A. R., and Rubinsztein, D. C. (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiological reviews 90, 1383-1435
32. Klionsky, D. J. (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nature reviews. Molecular cell biology 8, 931-937
33. Mizushima, N., Levine, B., Cuervo, A. M., and Klionsky, D. J. (2008) Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075
34. Yorimitsu, T., and Klionsky, D. J. (2005) Autophagy: molecular machinery for self-eating. Cell death and differentiation 12 Suppl 2, 1542-1552
35. Martinez-Vicente, M., and Cuervo, A. M. (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. The Lancet. Neurology 6, 352-361
36. Jaeger, P. A., and Wyss-Coray, T. (2009) All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Molecular neurodegeneration 4, 16
37. Sarbassov, D. D., Ali, S. M., and Sabatini, D. M. (2005) Growing roles for the mTOR pathway. Current opinion in cell biology 17, 596-603
38. Levine, B., and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental cell 6, 463-477
39. Yang, Q., and Guan, K. L. (2007) Expanding mTOR signaling. Cell research 17, 666-681
40. Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O., and Klionsky, D. J. (2007) Potential therapeutic applications of autophagy. Nature reviews. Drug discovery 6, 304-312
41. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D. M. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175
42. Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M., and Kim, D. H. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular biology of the cell 20, 1992-2003
43. Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., Guan, J. L., Oshiro, N., and Mizushima, N. (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Molecular biology of the cell 20, 1981-1991
44. Cantley, L. C. (2002) The phosphoinositide 3-kinase pathway. Science 296, 1655-1657
45. Arico, S., Petiot, A., Bauvy, C., Dubbelhuis, P. F., Meijer, A. J., Codogno, P., and Ogier-Denis, E. (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. The Journal of biological chemistry 276, 35243-35246
46. Sarkar, S., Krishna, G., Imarisio, S., Saiki, S., O'Kane, C. J., and Rubinsztein, D. C. (2008) A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Human molecular genetics 17, 170-178
47. Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., and Yamamoto, A. (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature cell biology 11, 1433-1437
48. Itakura, E., Kishi, C., Inoue, K., and Mizushima, N. (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Molecular biology of the cell 19, 5360-5372
49. Furuya, N., Yu, J., Byfield, M., Pattingre, S., and Levine, B. (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1, 46-52
50. Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B. H., and Jung, J. U. (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nature cell biology 8, 688-699
51. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J., and Codogno, P. (2000) Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. The Journal of biological chemistry 275, 992-998
52. Mizushima, N., Sugita, H., Yoshimori, T., and Ohsumi, Y. (1998) A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. The Journal of biological chemistry 273, 33889-33892
53. Mizushima, N., Kuma, A., Kobayashi, Y., Yamamoto, A., Matsubae, M., Takao, T., Natsume, T., Ohsumi, Y., and Yoshimori, T. (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. Journal of cell science 116, 1679-1688
54. Tanida, I., Ueno, T., and Kominami, E. (2004) LC3 conjugation system in mammalian autophagy. The international journal of biochemistry & cell biology 36, 2503-2518
55. Tanida, I., Sou, Y. S., Ezaki, J., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2004) HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein-phospholipid conjugates. The Journal of biological chemistry 279, 36268-36276
56. Hanada, T., Noda, N. N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F., and Ohsumi, Y. (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. The Journal of biological chemistry 282, 37298-37302
57. Kametaka, S., Matsuura, A., Wada, Y., and Ohsumi, Y. (1996) Structural and functional analyses of APG5, a gene involved in autophagy in yeast. Gene 178, 139-143
58. Kochl, R., Hu, X. W., Chan, E. Y., and Tooze, S. A. (2006) Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7, 129-145
59. Dammrich, J., and Pfeifer, U. (1983) Cardiac hypertrophy in rats after supravalvular aortic constriction. I. Size and number of cardiomyocytes, endothelial and interstitial cells. Virchows Archiv. B, Cell pathology including molecular pathology 43, 265-286
60. Filimonenko, M., Stuffers, S., Raiborg, C., Yamamoto, A., Malerod, L., Fisher, E. M., Isaacs, A., Brech, A., Stenmark, H., and Simonsen, A. (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. The Journal of cell biology 179, 485-500
61. Liang, C., Lee, J. S., Inn, K. S., Gack, M. U., Li, Q., Roberts, E. A., Vergne, I., Deretic, V., Feng, P., Akazawa, C., and Jung, J. U. (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature cell biology 10, 776-787
62. Yamamoto, A., Tagawa, Y., Yoshimori, T., Moriyama, Y., Masaki, R., and Tashiro, Y. (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell structure and function 23, 33-42
63. Wiche, G., Oberkanins, C., and Himmler, A. (1991) Molecular structure and function of microtubule-associated proteins. International review of cytology 124, 217-273
64. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., and Kirschner, M. W. (1975) A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America 72, 1858-1862
65. Mandelkow, E., and Mandelkow, E. M. (1995) Microtubules and microtubule-associated proteins. Current opinion in cell biology 7, 72-81
66. Berkowitz, S. A., Katagiri, J., Binder, H. K., and Williams, R. C., Jr. (1977) Separation and characterization of microtubule proteins from calf brain. Biochemistry 16, 5610-5617
67. Kuznetsov, S. A., and Gelfand, V. I. (1987) 18 kDa microtubule-associated protein: identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1). FEBS letters 212, 145-148
68. Seidenbecher, C. I., Landwehr, M., Smalla, K. H., Kreutz, M., Dieterich, D. C., Zuschratter, W., Reissner, C., Hammarback, J. A., Bockers, T. M., Gundelfinger, E. D., and Kreutz, M. R. (2004) Caldendrin but not calmodulin binds to light chain 3 of MAP1A/B: an association with the microtubule cytoskeleton highlighting exclusive binding partners for neuronal Ca(2+)-sensor proteins. Journal of molecular biology 336, 957-970
69. Pankiv, S., Alemu, E. A., Brech, A., Bruun, J. A., Lamark, T., Overvatn, A., Bjorkoy, G., and Johansen, T. (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. The Journal of cell biology 188, 253-269
70. Pedrotti, B., Ulloa, L., Avila, J., and Islam, K. (1996) Characterization of microtubule-associated protein MAP1B: phosphorylation state, light chains, and binding to microtubules. Biochemistry 35, 3016-3023
71. Aplin, A., Jasionowski, T., Tuttle, D. L., Lenk, S. E., and Dunn, W. A., Jr. (1992) Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. Journal of cellular physiology 152, 458-466
72. Geeraert, C., Ratier, A., Pfisterer, S. G., Perdiz, D., Cantaloube, I., Rouault, A., Pattingre, S., Proikas-Cezanne, T., Codogno, P., and Pous, C. (2010) Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. The Journal of biological chemistry 285, 24184-24194
73. Hershko, A., and Ciechanover, A. (1992) The ubiquitin system for protein degradation. Annual review of biochemistry 61, 761-807
74. Fuertes, G., Martin De Llano, J. J., Villarroya, A., Rivett, A. J., and Knecht, E. (2003) Changes in the proteolytic activities of proteasomes and lysosomes in human fibroblasts produced by serum withdrawal, amino-acid deprivation and confluent conditions. The Biochemical journal 375, 75-86
75. Cuervo, A. M., Hu, W., Lim, B., and Dice, J. F. (1998) IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Molecular biology of the cell 9, 1995-2010
76. De Domenico, I., Vaughn, M. B., Li, L., Bagley, D., Musci, G., Ward, D. M., and Kaplan, J. (2006) Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. The EMBO journal 25, 5396-5404
77. Stitt, T. N., Drujan, D., Clarke, B. A., Panaro, F., Timofeyva, Y., Kline, W. O., Gonzalez, M., Yancopoulos, G. D., and Glass, D. J. (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Molecular cell 14, 395-403
78. Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D., and Levine, B. (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939
79. Meriin, A. B., Gabai, V. L., Yaglom, J., Shifrin, V. I., and Sherman, M. Y. (1998) Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis. The Journal of biological chemistry 273, 6373-6379
80. Sanchez, P., De Carcer, G., Sandoval, I. V., Moscat, J., and Diaz-Meco, M. T. (1998) Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62. Molecular and cellular biology 18, 3069-3080
81. Kirkin, V., McEwan, D. G., Novak, I., and Dikic, I. (2009) A role for ubiquitin in selective autophagy. Molecular cell 34, 259-269
82. Kerr, J. F. (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 181-182, 471-474
83. Wyllie, A. H. (1997) Apoptosis: an overview. British medical bulletin 53, 451-465
84. Matassov, D., Kagan, T., Leblanc, J., Sikorska, M., and Zakeri, Z. (2004) Measurement of apoptosis by DNA fragmentation. Methods in molecular biology 282, 1-17
85. Hengartner, M. O., and Bryant, J. A. (2000) Apoptotic cell death: from worms to wombats ... but what about the weeds? Symposia of the Society for Experimental Biology 52, 1-12
86. Mevorach, D. (2003) [Apoptosis: death is part of life]. Harefuah 142, 832-833, 878
87. Edinger, A. L., and Thompson, C. B. (2004) Death by design: apoptosis, necrosis and autophagy. Current opinion in cell biology 16, 663-669
88. Jin, Z., and El-Deiry, W. S. (2005) Overview of cell death signaling pathways. Cancer biology & therapy 4, 139-163
89. Sayers, T. J. (2011) Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer immunology, immunotherapy : CII 60, 1173-1180
90. Mannick, J. B., Hausladen, A., Liu, L., Hess, D. T., Zeng, M., Miao, Q. X., Kane, L. S., Gow, A. J., and Stamler, J. S. (1999) Fas-induced caspase denitrosylation. Science 284, 651-654
91. Lutter, M., Perkins, G. A., and Wang, X. (2001) The pro-apoptotic Bcl-2 family member tBid localizes to mitochondrial contact sites. BMC cell biology 2, 22
92. Gonzalvez, F., Pariselli, F., Dupaigne, P., Budihardjo, I., Lutter, M., Antonsson, B., Diolez, P., Manon, S., Martinou, J. C., Goubern, M., Wang, X., Bernard, S., and Petit, P. X. (2005) tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell death and differentiation 12, 614-626
93. Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G., and Vandenabeele, P. (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861-2874
94. Wen, X., Lin, Z. Q., Liu, B., and Wei, Y. Q. (2012) Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer. Cell proliferation 45, 217-224
95. Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E. (1998) Two CD95 (APO-1/Fas) signaling pathways. The EMBO journal 17, 1675-1687
96. Chen, M., and Wang, J. (2002) Initiator caspases in apoptosis signaling pathways. Apoptosis : an international journal on programmed cell death 7, 313-319
97. Riedl, S. J., Li, W., Chao, Y., Schwarzenbacher, R., and Shi, Y. (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434, 926-933
98. Wilkinson, J. C., Wilkinson, A. S., Scott, F. L., Csomos, R. A., Salvesen, G. S., and Duckett, C. S. (2004) Neutralization of Smac/Diablo by inhibitors of apoptosis (IAPs). A caspase-independent mechanism for apoptotic inhibition. The Journal of biological chemistry 279, 51082-51090
99. Engel, T., and Henshall, D. C. (2009) Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? International journal of physiology, pathophysiology and pharmacology 1, 97-115
100. Shamas-Din, A., Brahmbhatt, H., Leber, B., and Andrews, D. W. (2011) BH3-only proteins: Orchestrators of apoptosis. Biochimica et biophysica acta 1813, 508-520
101. Adachi, M., and Imai, K. (2002) The proapoptotic BH3-only protein BAD transduces cell death signals independently of its interaction with Bcl-2. Cell death and differentiation 9, 1240-1247
102. Diaz, J. L., Oltersdorf, T., Horne, W., McConnell, M., Wilson, G., Weeks, S., Garcia, T., and Fritz, L. C. (1997) A common binding site mediates heterodimerization and homodimerization of Bcl-2 family members. The Journal of biological chemistry 272, 11350-11355
103. Jin, Z., Gao, F., Flagg, T., and Deng, X. (2004) Nicotine induces multi-site phosphorylation of Bad in association with suppression of apoptosis. The Journal of biological chemistry 279, 23837-23844
104. Forsyth, C. M., Lemongello, D., LaCount, D. J., Friesen, P. D., and Fisher, A. J. (2004) Crystal structure of an invertebrate caspase. The Journal of biological chemistry 279, 7001-7008
105. Lin, X. Y., Choi, M. S., and Porter, A. G. (2000) Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-gamma. The Journal of biological chemistry 275, 39920-39926
106. Riedl, S. J., and Shi, Y. (2004) Molecular mechanisms of caspase regulation during apoptosis. Nature reviews. Molecular cell biology 5, 897-907
107. Schreiber, V., Dantzer, F., Ame, J. C., and de Murcia, G. (2006) Poly(ADP-ribose): novel functions for an old molecule. Nature reviews. Molecular cell biology 7, 517-528
108. Isabelle, M., Moreel, X., Gagne, J. P., Rouleau, M., Ethier, C., Gagne, P., Hendzel, M. J., and Poirier, G. G. (2010) Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome science 8, 22
109. Szabo, C. (2006) Poly(ADP-ribose) polymerase activation by reactive nitrogen species--relevance for the pathogenesis of inflammation. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society 14, 169-179
110. Hassa, P. O., Haenni, S. S., Elser, M., and Hottiger, M. O. (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiology and molecular biology reviews : MMBR 70, 789-829
111. Yang, L. J., Chen, Y., He, J., Yi, S., Wen, L., Zhao, J., Zhang, B. P., and Cui, G. H. (2012) Betulinic acid inhibits autophagic flux and induces apoptosis in human multiple myeloma cells in vitro. Acta pharmacologica Sinica 33, 1542-1548
112. Viola, G., Bortolozzi, R., Hamel, E., Moro, S., Brun, P., Castagliuolo, I., Ferlin, M. G., and Basso, G. (2012) MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochemical pharmacology 83, 16-26
113. Tron, G. C., Pagliai, F., Del Grosso, E., Genazzani, A. A., and Sorba, G. (2005) Synthesis and cytotoxic evaluation of combretafurazans. Journal of medicinal chemistry 48, 3260-3268
114. Yen, W. L., and Klionsky, D. J. (2008) How to live long and prosper: autophagy, mitochondria, and aging. Physiology 23, 248-262
115. Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., and Bao, J. K. (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell proliferation 45, 487-498
116. Cory, S., Huang, D. C., and Adams, J. M. (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590-8607
117. Coquelle, N., and Glover, J. N. (2012) PARP pairs up to PARsylate. Nature structural & molecular biology 19, 660-661
118. Giannone, P. J., Alcamo, A. A., Schanbacher, B. L., Nankervis, C. A., Besner, G. E., and Bauer, J. A. (2011) Poly(ADP-ribose) polymerase-1: a novel therapeutic target in necrotizing enterocolitis. Pediatric research 70, 67-71
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code