Responsive image
博碩士論文 etd-0019116-111426 詳細資訊
Title page for etd-0019116-111426
論文名稱
Title
nPIV∕ nPIT微渠道壁面速度及溫度量測與熱傳分析
On Wall Velocity and Temperature Measurements in Convective Microchannel Flow via nPIV/ nPIT
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
196
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-13
繳交日期
Date of Submission
2016-01-19
關鍵字
Keywords
溫度跳躍、滑移長度、速度滑移、微渠道、奈米質點影像測速/ 溫度儀、親疏水表面、雷射誘導螢光激發光譜
RLIF, hydrophobic and hydrophilic surface, velocity slip, slip length, temperature jump, microchannel, nPIV/ nPIT
統計
Statistics
本論文已被瀏覽 5659 次,被下載 257
The thesis/dissertation has been browsed 5659 times, has been downloaded 257 times.
中文摘要
本研究利用實驗方法探討距離微渠道(深度:6μm)距離壁面200 nm之速度及渠道深度為45 μm溫度與熱傳分析。目前並沒有相關理論來解析微觀尺度下的流場。因此,透過實驗量測來建立相關資料,可以幫助我們對於微觀尺度下的了解,且可以與傳統流體力學和相關文獻及模擬做比較。最後,建立出相關關係式。在微渠道的流場分析上,大多透過微質點影像測速儀(μPIV),由於其背景雜訊高,以及螢光質點大小(1 μm)的限制。使得壁面的觀測出現很大的障礙。因此,我們使用漸逝波的原理和奈米螢光質點(100 nm),可以量測到離焦平面解析度(Out of plane resolution)為奈米等級(O(100 nm))。並與現有微質點影像測速儀系統(μPIV)產生所謂的奈米質點影像測速儀(nPIV),使用此系統量測於親水與不同疏水表面之速度軌跡、滑移速度、滑移長度、摩擦因子。另外,我們也在微渠道中通入去離子水(DI-water)與Rhodamine B以及Rhodamine110,並利用奈米質點影像溫度儀(nPIT)與成比例之雷射誘導螢光激發光譜(RLIF)探究微尺寸下的溫度場與熱傳現象。
Abstract
The study contains the experiment of the velocity and temperature field in convective micro-channel flow near the wall of 200 nm. Since there is no fundamental understanding of the flow in the micro/nano-scale, this study builds up the information about this area via the experiment and compares the result of the research to the traditional fluid mechanics and related research. In addition, the related equation can be established as well. Most analyses of micro-channel flow use the micro particle image velocimetry (μPIV) which is limited by the signal-to-noise ratio and the size of the nano fluorescent particle (100 nm). The study uses the theory of the evanescent wave and the nano scale particle to measure near-wall velocity field with an out-of-plane resolution on the order of O (100nm). The experiment combines the total internal reflection fluorescence microscope (TIRFM) and the existing system of μPIV to generate the nano particle image velocimetry (nPIV). The velocity profiles, near-wall shear rates, local friction factors and slip length at different surfaces (Non-OTS, BTS, OTS, and DTS coated surface) can be measured by nPIV. Besides, the phenomena of kapitza length and the temperature slip can be studied through the injection of the DI-water, Rhodamine B and Rhodamine 110 to the micro-channel, the measurement of the temperature field and the convective heat transfer coefficient, and the usage of the nano particle image thermometry (nPIT) and ratiometric laser induced fluorescence (RLIF).
目次 Table of Contents
論文審定書................................................................................................i
誌謝...........................................................................................................ii
摘要..................................................................................................iii
ABSTRAST……………………………………..……………………….iv
LIST OF TABLES..................................................................................viii
LIST OF FIGURES………………………………………………….…..xi
NOMENCLATURE................................................................................xiv
CHAPTER 1 INTRODUCTION…….………………..………………….1
1.1 Literature review........................................................................2
1.1.1 nPIV..................................................................................2
1.1.2 nPIT and RLIF..................................................................5
1.1.3 Hydrophobicity and slip length...........................................7
1.1.4 Single phase heat transfer in microchannel........................11
1.2 The objective of this study......................................................16
1.3 Thesis scope.............................................................................18
CHAPTER 2 THE NON-INTRUSIVE OPTICAL VELOCITY AND TEMPERARUEE MEASUREMENTS (nPIV / nPIT)…………………21
2.1 The principles of nPIV and nPIT measurement system............21
2.2 The procedures of nPIV and nPIT measurement system..........27
2.2.1 The step of nPIV and nPIT measurement system..............27
2.2.2 The procedure of nPIV with DynamicStudio....................28
2.2.3 The procedure of RLIF with Matlab/ Image J....................33
CHAPTER 3 EXPERINMENTAL EQUIPMENT AND PREPARATION.......................................................................................47
3.1 Equipment of microchannel fabrication...................................47
3.2 The related experimental equipment.....................................50
3.3 Process of microchannel fabrication.......................................52
3.4 Preparation of the working fluid.............................................56
3.5 Process of manufacturing hydrophobic glass............................57
3.6 Heat transfer system................................................................58
3.7 nPIV and nPIT system..............................................................58
CHAPTER 4 THEORECTICAL ANALYSIS.........................................77
4.1 The theoretical analysis of velocity field....................................77
4.1.1 Brownian motion.................................................................77
4.1.2 Entrance length / Reynolds..................................................78
4.1.3 Velocity ratio.......................................................................78
4.1.4 Slip length............................................................................79
4.1.5 Local friction factor and wall shear rate..............................80
4.2 The theoretical analysis of temperature field.............................81
4.2.1 Heat transfer analysis...........................................................81
4.2.2 The average heat transfer coefficient and Nusselt numbe..85
4.2.3 Temperature jump and Kapitza length................................86
CHAPTER 5 UNCERTAINTY ANALYSIS.........................................92
CHAPTER 6 RESULTS AND DISCUSSION.....................................99
6.1 Velocity field.............................................................................99
6.2 Influence of hydrophilic and hydrophobic slip length.............103
6.3 Friction factor...........................................................................105
6.4 RLIF/ Temperature field...........................................................107
6.5 Temperature jump....................................................................109
6.6 The analysis of heat transfer in microchannel
with low Reynolds number.............................................................110
CHAPTER 7 CONCLUSION..............................................................134
REFERENCES.......................................................................................135
APPENDIX A (UNCERTAINLY ANALYSIS)....................................156
APPENDIX B (Matlab RLIF Code).......................................................168
APPENDIX C Calculating.....................................................................175
參考文獻 References
[1] SS Hsieh, 2005, “Heat transfer of Microsystem”, Microscale heat transfer enhancement, National Sun-Yen Sat University.
[2] RJ. Adrian, 1991, “Particle-imaging techniques for experimental fluid mechanics”, Annu. Rev. Fluid Mecb. 23:261-304.
[3] RJ. Adrian, 2005, “20 years of particle image velocimetry“, Exp. Fluids, 39:159-69.
[4] M Raffel, C willert, S Wereley, J Kompenhans, 2007,”Particle Image Velocimetry: A Practical Guide”, New York, Springer.
[5] M Gadel-Hak, 1999,”The fluid mechanics of micro-devices: the Freeman scholar lecture”, F. Fluids Eng., 121:5-33.
[6] CM Ho, YC Tai, 1998,”Micro-electro-mechanical systems and fluid flows”, Annu. Rev. Fluid Mecb, 30:579-612.
[7] JA Taylor, ES Yeung, 1993, “Image of hydrodynamic and electro kinetic flow profiles for capillaries”, Anal. Chem., 65:258-68.
[8] JP Brody, P Yager, RE Goldstein, RH Austin, 1996, “Biotechnology at low Reynolds numbers”, Biopbys. F., 71:340-41.
[9] JG Santiago, ST Wereley, CD Meinhart, DJ Beebe, RJ Adrian, 1998, “A micro particle image velocimetry system”, Exp. Fluids, 25:316-19.
[10] CD Meinhart, ST Wereley, JG Santiago, 1999, “PIV measurements of a microchannel flow”, Exp. Fluids, 27:414-19.
[11] D Sinton, 2004, “Microscale flow visualization”, Microfluid. Nanofluid., 1:2-21
[12] ST Wereley, CD Meinhart, 2005, “Micron-resolution particle image velocimetry”, In Micro- and Nano- scale Diagnostic Tecb.
[13] ST Wereley, CD Meinhart, 2007, “Micro-PIV. In Particle Image Velocimetry: A Practical Guide”, New York, Springer.
[14] CD Meinhart, ST Wereley, 2009, “Micro particle velocimetry. In Micro/Nano Technology systems for Bio-Medical Applications: Microfluidics”, Optics and Surface Chemistry, New York: Oxford Univ. Press. In press.
[15] NT Nguyen, ST Wereley, 2006, “Fundamentals and Applications of Microfluidics”, Boston: Artech House. 2ed.
[16] C Zettner, M Yoda, 2003, “Particle velocity field measurements in a near-wall flow using evanescent wave illumination”, Exp. Fluids, 34:115-21.
[17] MG Olsen, RJ Adrian, 2000, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry”, Exp. Fluids, 29(suppl.):S166-74.
[18] CD Meinhart, ST Wereley, JG Santiago, 2000,”A PIV algorithm for estimating time-averaged velocity fields”, F. Fluids Eng., 122:285-89.
[19] DC Tretheway and CD. Meinhart, 2002, “Apparent fluid slip at hydrophobic microchannel walls“, Phys. Fluids, 14, L9.
[20] DC Tretheway and CD Meinhart, 2004, “A generating mechanism for apparent fluid slip in hydrophobic microchannels“, Phys. Fluids, 16, 1509.
[21] CH Choi, KJA Westin, and KS Breuer, 2003, “Apparent slip flows in hydrophilic and hydrophobic microchannels”, Phys. Fluids, 15, 2897.
[22] NL Thompson, BC Langerholm, 1997, “Total internal reflection fluorescence: applications in cellular biophysics”, Curr. Opin. Biotech. 8:58-64.
[23] JS Burmeister, LA Olivier, WM Reichert, GA Trunkey, 1998, “Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials”, Biomaterials, 19:307-325.
[24] D Toomre, DJ Manstein, 2001, “Lighting up the cell surface with evanescent wave microscopy”, Trends Cell Biol, 11:298-303.
[25] J Yamada, 1999, “Evanescent wave Doppler velocimetry for a wall’s near-wall flow using evanescent wave illumination”, Exp. Fluids, 34(1):115-121.
[26] R Pit, H Hervet, L Leger, 2000, “Direct experimental evidence of silo in hexadecane: solid interfaces”, Phys. Rev Lett., 85(5):980-983.
[27] S. Jin, P. Huang. J. Park, J.Y. Yoo, K.S. Breuer, 2004, “Near-surface velocimetry using evanescent wave illumination”, Experiments in Fluids, 37:825-833.
[28] R Sadr, M Yoda, Z Zheng, AT Conlisk, 2004, “An experimental study of electroosmotic flow in rectangular microchannels”, J Fluid Mech., 506:357-367.
[29] R Sadr, H Li, M Yoda, 2005 “Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination”, Exp. Fluids, 38:90-98.
[30] R Sadr, C Honegger, H Li, PJ Mucha, M Yoda, ”Diffusion-induced bias in near-wall velocimetry”, 2007, J Fluid Mech., 57:443-456.
[31] K Anoop, R Sadr, 2012, “nPIV velocity measurement of nanofluids in the near-wall region of a microchannel”, Nanoscale Research Letters, 7:284-291.
[32] A Banerjee, KD Kihm, 2005, “Experiment verification of near-wall hindered diffusion for the Brownian motion of nanoparticles using evanescent wave microscopy”, Phys. Rev E, 72:042101/1-4.
[33] P Huang, JS Gusto, K Breuer, 2009, “The effects of hindered mobility and depletion of particles in near-wall shear flows and the implications for nano velocimetry”, J Fluid Mech., 637:241-265.
[34] R Sadr, K Anoop, R Khadar, 2012, “Effects of surface forces and non-uniform out-of-plane illumination on the accuracy of nPIV velocimetry”, Meas. Sci. Technol., doi:10.1088/0957-0233/23/5/055303.
[35] S Gaskey, P Vacus, R David, and J Villermaus, 1990, “A Method for the Study of Turbulent Mixing Using Fluorescence Spectroscopy”, Exp. Fluids, 9:137-147.
[36] PE Dimotakis, RC Miake-Lye, and DA Papantoniou, 1983, “Structure and Dynamics of Round Turbulent Jets”, Phys. Fluids A, 6:3185-92.
[37] MM Koochesfahani, and PE Dimotakis, 1985, “Laser Induced Fluorescence Measurements of Mixed Fluid Concentration in a Liquid Plane Shear Layer”, AIAA J, 23:1700-07.
[38] BM Cetegen, and N Mohamad, 1993, “Experiments on Liquid Mixing a Reaction in a Vortex”, J. Fluid Mech., 249:391-414.
[39] J Sakakibara, K Hishida, and M Maeda, 1993, “Measurements of Thermally Stratified Pipe Flow using Image-Processing techniques”, Exp. Fluids, 16:82-96.
[40] MCJ Coolen, RN Kieft, CCM Rindt, and AAV Steenhoven, 1999, ”Application of 2D LIF Temperature Measurements in Water using a Nd-Yag Laser”, Exp. Fluids, 27:420-6.
[41] I Houcine, H Vivier, E Plasri, R David, and J Villermaux, 1996, “Planar Laser Induced Fluorescence Technique for Measurements of Concertation Fields in Continuous Stirred Reactors,” Exp. Fluids, 22:95-102.
[42] F Guillard, R Fritzon, J Revstedt, C Tragardh, M Alden, and L Fuchs, 1998, “Mixing in a confined Turbulent Impinging Jet Using Planar Laser-Induced Fluorescence”. Exp. Fluids, 25:143-150
[43] J Sakakibara, and RJ Adrian, 1999, “Whole-Field Measurement of Temperature in Water Using Two-Color Laser-induced Fluorescence”, Exp. Fluids, 26:7-15.
[44] J Sakakibara, K Hishida, M Maeda, 1997,”Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence)”, Int. J. Heat Mass Transfer, 40:3163-3176.
[45] SS Chu, CP Grigoropoulpos, 2000, “Determination of kinetic energy distribution in a laser-induced fluorescence spectroscopy”, J. Heat Transfer, 122:771-775.
[46] T Nakajima, M Utsunomiya, Y Ikeda, R Matsumoto, 1990, “Simultaneous measurement of velocity and temperature of water using LDV and fluorescence technique”, in: The 5th Int. Symp. On Application of Laser Techniques To Fluid Mechanics, Lisbon, pp. 2.6.1-2.6.6.
[47] K Sato, N Kasai, 1997,”Combined velocity and scalar field measurement with the simultaneous use of scanning PIV and LIF”, in: The 10th Int. Symposium on Transport Phenomena in Thermal Science and Process Engineering (ISTP10).
[48] MCJ Coolen, RN Kieft, CCM Rindt, AA van Steenhoven, “Application of 2-D LIF temperature measurements in water using a Nd-Yag laser”, Exp. Fluids, 27:420-426.
[49] DL Andrews, 1986, “Lasers in Chemistry”, Springer-Verlag, Berlin.
[50] J Coppeta, C Rogers, 1998, “Dual emission laser induced fluorescence for direct planar scalar behavior measurements”, Exp. Fluid, 25:1-15.
[51] J Sakakibara, RJ Adrian, 1997, “Measurement of whole-field temperature using two-color LIF”, J. Visual. Soc. Jpn., 17: 333-336.
[52] HJ Kim, KD Kihm, J S. Allen, 2002,”Examination of ratiometric laser induced fluorescence thermometry for microscale spatial measurement resolution”, Int J. Heat and Mass Transfer, 46: 3967-3974
[53] VK Natrajan, KT Christensen, 2009,”Two-color laser-induced fluorescent thermometry for microfluidic systems”, Meas. Sci. Technol. 20(11pp).
[54] M Kim, M Yoda, 2012,”Extending Fluorescence Thermometry to Measuring Wall Surface Temperatures Using Evanescent-Wave Illumination”, Journal of Heat Transfer, 134(1): 011601.
[55] JA Sutton, BT Fisher, and JW Fleming, 2008, “A Laser-Induced Fluorescence Measurement for Aqueous Fluid Flows With Improved Temperature Sensitivity”, Exp. Fluids, 45:869–881.
[56] MB Shafii, CL Lum, and MM Koochesfahani, 2009, “In-Situ LIF Temperature Measurements in Aqueous Ammonium Chloride Solution During Uni-Directional Solidification”, Exp. Fluids, 48: 651–662.
[57] J Sakakibara, and RJ Adrian, 2004, “Measurement of Temperature Field of a Rayleigh-Be´rnard Convection Using Two-Color Laser-Induced Fluorescence”, Exp. Fluids, 37:331–340.
[58] PA Thompson, SM Troian, 1997, “A general boundary condition for liquid flow at solid surfaces”, Nature, 389:360-2.
[59] C Cottin-Bizonne, S Jurine, J Baudy, J Crassous, F Restagno, and E Charlaix, 2002, “Nano rheology: An investigation of the boundary condition at hydrophobic and hydrophilic interfaces”, Phys. J. E, 9:47.
[60] Y Zhu and S Granick, 2001, “Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces”, Phys. Rev. Lett., 87:096105.
[61] Y Zhu and S Granick, 2002, “Limits of the Hydrodynamic No-Slip Boundary Condition”, Phys. Rev. Lett., 88:106102.
[62] VSJ Craig, C Neto, and DRM Williams, 2001, “Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid”, Phys. Rev. Lett., 87:054504.
[63] E Bonaccurs, M Kappl, and HJ Butt, 2002, “Hydrodynamic Force Measurements: Boundary Slip of Water on Hydrophilic Surfaces and Electro kinetic Effects”, Phys. Rev. Lett., 88:076103.
[64] E Bonaccurso, HJ Butt, VSJ Craig, 2003, “Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system”, Phys. Rev. Lett., 90:144501.
[65] K Watanabe, Y Udagawa, and H Udagaea, 1999, “Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall”, J. Fluid Mech., 381:225-38.
[66] JT Cheng and N Giordano, 2002, “Fluid flow through nanometer-scale channels”, Phys. Rev. E, 65:031206.
[67] R Pit, H Hervet, and L Léger, 2000, “Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces”, Phys. Rev. Lett., 85:980–983.
[68] J Baudry, E Charlaix, A Tonck, and D Mazuyer, 2001, “Experimental Evidence for a Large Slip Effect at a No wetting Fluid−Solid Interface”, Langmuir, 17 (17):5232–5236.
[69] C Cheikh and G Koper, 2003,” Stick-Slip Transition at the Nanometer Scale”, Phys. Rev. Lett., 91: 156102.
[70] Jae-Hie J Cho, Bruce M. Law, and François Rieutord, 2004, “Dipole-Dependent Slip of Newtonian Liquids at Smooth Solid Hydrophobic Surfaces”, Phys. Rev. Lett., 92:166102.
[71] CL Henrya, C Netoa, DR Evansa, S Biggsb, VSJ Craiga, 2004, “The effect of surfactant adsorption on liquid boundary slippage”, Physical A, 339:60–65.
[72] C Cottin-Bizonne, B Cross, A Steinberger, and E Charlaix, 2005, “Boundary Slip on Smooth Hydrophobic Surfaces: Intrinsic Effects and Possible Artifacts”, Phys. Rev. Lett., 94:056102.
[73] E Lauga, MP Brenner, HA Stone, 2005, “Microfluidics: The no-slip boundary condition”, Chapter 19 in: Handbook of Experimental Fluid Dynamics, C. Tropea, A. Yarin, J. F. Foss (Eds.), Springer.
[74] E Schnell, 1956, “Slippage of Water over Non-wettable Surfaces”, Journal of Applied Physics, 27:1149-52.
[75] K Waranabe, Yanuar, and H Mizunuma, 1998, “Slip of Newtonian fluids at slid boundary”, JSME Intl J., 41:525-29.
[76] D Lumma, A Best, A Gansen1, F Feuillebois, JO Rädler1, and OI Vinogradova, 2003, “Flow profile near a wall measured by double-focus fluorescence cross-correlation”, Phys. Rev. E, 67:056313.
[77] C Neto, VSJ Craig, DRM. Williams, 2003, “Evidence of shear-dependent boundary slip in Newtonian liquids”, The European Physical Journal E, 12:S71-74.
[78] P Joseph and P Tabeling, 2005, “Direct measurement of the apparent slip length”, Phys. Rev. E, 71: 035303(R).
[79] C Cottin-Bizonne1, Jean-Louis Barrat1, L Bocquet1, and E Charlaix1, 2003, “Low-friction flows of liquid at Nano patterned interfaces”, Nature Materials , 2:237 – 240.
[80] Jean-Louis Barrat, L Bocquet, 1999, “Large Slip Effect at a No wetting Fluid-Solid Interface”, Phys. Rev. Lett., 82:4671–4674.
[81] M Cieplak, J Koplik, JR Banavar, 2000, “Boundary conditions at a fluid - solid interface”, Phys. Rev. Lett., 86:803-6.
[82] TM Galea and P Attard, 2004, “Molecular Dynamics Study of the Effect of Atomic Roughness on the Slip Length at the Fluid−Solid Boundary during Shear Flow”, Langmuir, 20 (8):3477–3482.
[83] G Nagayamaa, P Cheng, 2003, “Effects of interface wettability on microscale flow by molecular dynamics simulation”, Intl J. Heat Mass Transfer, 47:501–513.
[84] P Huang, JS Guasto, and KS Breuer, 2005, “Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry”, J. Fluid Mech., 566:447-64.
[85] CH Choi, U Ulmanella, J Kim, CM Ho, and CJ Kim, 2006, “Effective slip and friction reduction in Nano grated Superhydrophobic microchannels,” Phys. Fluids, 18:087105.
[86] CH Choi and CJ Kim, 2006, “Large slip of aqueous liquid flow over a Nano engineered Super-hydrophobic surface” Phys. Rev. Lett., 96: 066001.
[87] J Davies, D Maynes, BW Webb, and B Woolford, 2006, “Laminar flow in a microchannel with Superhydrophobic walls exhibiting transverse ribs”, Phys. Fluids, 18:087110.
[88] P Huang and KS Breuer, 2007, “Direct measurement of slip length in electrolyte solutions”, Phys. Fluids, 19:028104.
[89] D Byun, J Kim, HS Ko, HC Park, 2008, “Direct measurement of slip flows in Superhydrophobic microchannels with transverse grooves”, Phys. Fluids, 20:113601.
[90] J Ou, JP Rothstein, 2005, “Direct velocity measurements of the flow past drag-reducing ultra-hydrophobic surfaces”, Phys. Fluids, 17:103606.
[91] A Maali, T Cohen-Bouhacina1 and H Kellay, 2008 “Measurement of the slip length of water flow on graphite surface”, Appl. Phys. Lett., 92:053101.
[92] J Hyväluoma and J Harting, 2008, “Slip Flow over Structured Surfaces with Entrapped Microbubbles”, Phys. Rev. Lett., 100:246001.
[93] P Tsai, AM Peters, C Pirat, M Wessling, RGH Lammertink and D Lohse, 2009 “Quantifying effective slip length over micro patterned hydrophobic surfaces”, Phys. Fluids, 21:112002.
[94] JP Rothstein, 2010, “Slip on Superhydrophobic Surfaces”, Annual Review of Fluid Mechanics Vol., 42: 89-109.
[95] N Asproulis and D Drikakis, 2010, "Boundary slip dependency on surface stiffness" Phys. Rev. E, 81:061503.
[96] AV Belyaev, OI Vinogradova, 2010, “Effective slip in pressure-driven flow past super-hydrophobic stripes”, J. Fluid Mech., 652:489-499.
[97] AA Pahlavan and JB Freund, 2011,"Effect of solid properties on slip at a fluid-solid interface", Phys. Rev. E, 83:021602.
[98] AV Belyaev and OI Vinogradova, 2011, "Electro-osmosis on Anisotropic Superhydrophobic Surfaces", Phys. Rev. Lett., 107:098301.
[99] A Maali1, B Bhushan2, 2012,"Measurement of slip length on super-hydrophobic surfaces", Phil. Trans. R. Soc., 370(1967): 2304-2320.
[100] ES Asmolov, S Schmieschek, J Harting, and OI Vinogradova, 2013, "Flow past Superhydrophobic surfaces with cosine variation in local slip length", Phys. Rev. E, 87:023005.
[101] Ou J, Rothstein JP, 2005, “Direct velocity measurement of the flow past drag-reducing ultra-hydrophobic surfaces”, Phys. Fluids, 17:103606.
[102] S G. Kandlikar, 2012, “History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannel: a critical review”, J. Heat Transfer, 134(34001):1-15.
[103] DB Tuckerman, and RF Pease, 1981, “High performance heat sinking for VLSI”, IEEE Electronic Device Letters, EDL-2:126-9.
[104] XF Peng, and BX Wang, 1993, “Forced convection and flow boiling heat transfer for liquid flowing through microchannel”, Int. J. Heat Mass Transfer, 36(14):3421-27.
[105] BX Wang, Peng BX, 1994, “Experiment investigation on liquid forced convection heat transfer through microchannel”, Int. J. Heat Mass Transfer, 37(Suppl. 1):73-82.
[106] XF Peng, GP Peterson, and BX Wang, 1994, “Frictional flow characteristics of water flowing through rectangular microchannels”, Exp. Heat Transfer, 7(4), 249-64.
[107] XF Peng, GP Peterson, and BX Wang, 1994, “Heat transfer characteristics of water flowing through microchannels”, Exp. Heat Transfer, 7(4), 265-83.
[108] GM Mala, L Dongqing and JD Dale, 1997, “Heat transfer and fluid flow in microchannels“, Int. J. Heat Mass Transfer, 40(13):3079-3088.
[109] GM Mala, and L Dongqing, 1999, “Flow characteristics of water in microtubes“, Int. J. Heat Mass Transfer, 20(2):142-8.
[110] B Xu, KT Ooi, NT Wong, and WK Choi, 2000, “Experimental investigation of flow friction for liquid flow in microchannels”, Int. Commun. Heat Mass Transfer, 27(Copyright 2001. IEE):1165-76.
[111] B Palm, 2001, “Heat transfer in microchannels”, Microscale Thermophys. Eng., 5(3):155-75.
[112] CB Sobhan, and SV Garimella, 2001, “A comparative analysis of studies on heat transfer and fluid flow in microchannels“, Microscale Thermophy. Eng., 5(4):293-311.
[113] J Judy, D Maynes, and BW Webb, 2002, “Characterization of frictional pressure drop for liquid flow through microchannels”, Int. J. Heat Mass Transfer, 45(17):3477-89.
[114] WL Qu, and I Mudawar, 2002, “Experimental and numerical study of pressure drop and heat transfer in single-phase microchannel heat sink”, Int. J. Heat Mass Transfer, 45(12):2549-65.
[115] HY Wu, and P Cheng, 2003, “An experimental study of convective heat transfer in silicon microchannels with different surface conditions”, Int. J. Heat Mass Transfer, 46(14):2547-56.
[116] ZY Guo, and ZX Li, 2003, “Size effect on single-phase channel flow and heat transfer at Microscale”, Int. J. Heat Mass Transfer, 24(3):284-298.
[117] D Lelea, S Niahio, and K Takano, 2004, “The experimental research on microtube heat transfer and fluid flow of distilled water”, Int. J. Heat Mass Transfer, 47(12-13):2817-2830.
[118] NT Obot, 2002, “Toward a better understanding of friction and heat/mass transfer in microchannels-a literature review”, Microscale Thermophys. Eng., 6(3):155-73.
[119] GL Morini, 2004, “Single-phase convective heat transfer in microchannels: a review of experimental results”, Int. J. Therm. Sci., 43(7):631-51.
[120] ME Steinke, and SG Kandlikar, 2004, “Single-phase liquid friction factors in microchannels”, Int. J. Therm. Sci., 45(11):1073-83.
[121] PS Lee, V Garimella and L Dong, 2005, “Investigation of heat transfer in rectangular microchannels”, Int. J. Heat Mass Transfer, 48(9):1688-1704.
[122] SS Hsieh, HH Tsai, CY Lin, CF Huang, and CM Chien, 2004, “Gas flow in a long microchannel”, Int. J. Heat Mass Transfer, 47:3877-87.
[123] GP Celata, 2004, “Single-phase heat transfer and fluid flow in micro pipes”, Heat Transfer Engineering, 25:13-22.
[124] GHM Mala, and D Li, 1999, “Flow characteristics in microtubes”, Int. J. Heat Fluid Flow, 20:142-8.
[125] BX Wang and XF Peng, “Experiment investigation a liquid forced convection heat transfer through microchannel”, Int. J. Heat Mass Transfer, 37: 73-82.
[126] W Qu, GM Mala, and D Li, 2000, “Heat transfer for water flow in trapezoidal silicon microchannels”, Int. J. Heat Mass Transfer, 43:3925-36.
[127] GP Celata, M Cumo, M Guglielmi, and G Zummo, 2002, “Experimental investigation of hydraulic and single phase heat transfer in 0.13 mm capillary tube”, Microscale Thermal Physical Engineering, 6:85-97.
[128] GL Morini, 2004, “Single-phase convective heat transfer in microchannels- a review of experimental results”, Int. J. Thermal Sciences, 43:631-51.
[129] H Herwig, and O Hausner, 2003, “Critical view on new results in micro-fluid mechanics: an example”, Int. J. Heat Mass Transfer, 46:935-37.
[130] CP Tso, and SP Mahulikar, 2000, “Experimental verification of the role of brinkman number in microchannels using local parameters”, Int. J. Heat Mass Transfer, 43:1837-49.
[131] G Hetsroni, A Mosyak, E Pogrebnyak, and LP Yarin, 2005, “Heat transfer in micro-channels: Comparison of experiments with theory and numerical results”, Int. J. Heat Mass Transfer, 48:5580-601.
[132] SM Ghiaasiaan, SI Abdel-Khalik, 2001, “Two-phase flow in microchannels”, Adv. Heat Transfer, 34:145-253.
[133] SG Kandlikar, 2001, “Fundamental issues related to flow boiling in mini-channels and microchannels”, Keynote lecture at the ExHFT-5 conference held in Salonika, Greece, 24-8.
[134] SB Choi, RR Barren, RQ Warrington, 1991, “Fluid flow and heat transfer in micro-tubes,” ASME DSC, 40:89-93.
[135] A Weisberg, HH Bau, and J Zemel, 1992, “Analysis of microchannels for integrated cooling”, Int. J. Heat Mass Transfer, 35:2465-74.
[136] MB bowers, and I Mudawar, 1994, “High flux boiling in low flow rate, low pressure drop mini-channel and microchannel heat sinks”, Int. J. Heat Mass Transfer, 37:321-32.
[137] XF Peng, and GP Peterson, 1995, “The effect of thermofluid and geometrical parameters”, Int. J. Heat Mass Transfer, 38:755-58.
[138] Y Mishan, A Mosyak, E Pogrebnyak, and G Hetsroni, 2007, “Effect of developing flow and thermal regime on momentum and heat transfer in micro-scale heat sink”, Int. J. Heat and Mass transfer, 50:3100-114.3
[139] VK Natrajan, and KT Christensen, 2010, “Non-intrusive measurements of convective heat transfer in smooth- and rough-wall microchannels: laminar flow”, Exp. Fluids, 49:1021-37.
[140] SS Hsieh, CY Lin, CF Huang, and HH Tsai, 2004, “Liquid Flow in a Microchannel”, J. Micromech. and Microeng., 14:436-445.
[141] SS Hsieh, HC Lin, and CY Lin, 2006, “Electroosmotics Flow Velocity Measurements in a Square Microchannels”, Colloid and Polymer Science, 284:1275-86.
[142] SS Hsieh, and TK Yang, 2008, “Electroosmotic flow in Rectangular Microchannels with Joule Heating Effects”, J. Micromech. and Microeng., 18:025025(11).
[143] D Ross, M Gairan, and LE Locascio, 2001, “Temperature Measurement in Microfluidic Systems Using a Temperature-dependent Fluorescent Dye”, Analytical Chemistry, 73:4117-23.
[144] LM Fu, JH Wang, WB Luo, and CH Lin, 2009,”Experimental and Numerical Investigation into the Joule Heating Effect for Electro kinetically Driven Microfluidic Chips Utilizing Total Internal Reflection Fluorescence Microscopy”, Microfluidics and Nanofluidics, 6:499-507.
[145] HJ Kim, and KD Kihm, 2001,”Application of a Two-color Laser-Induced Fluorescence(LIF) Technique for Temperature Mapping“, Proceeding of 2001 ASME International Mechanical Engineering Congress and Exposition, HTD:24411(7)
[146] H Wang and Y Wang, 2009, “Measurement of Water Flow Rate in Microchannels Based on the Microfluidic Particle Image Velocimetry“, Measurement, 42:3145-57.
[147] YC Chen, 1995, “Flow Analysis on Surface with Different Hydrophilicity”, National Cheng kung University, Department of Engineering Science paper.
[148] Stephen R. Wasserman, Yu Tai Tao, George M. Whitesides, 1989,” Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates”, Langmuir, 5 (4), pp 1074–1087.
[149] Ebadian MA and Dong ZF, 1998, “Forced convection internal flow in ducts”, Handbook of Heat Transfer, New York: McGraw Hill.
[150] SS Hsieh, and CY Lin, 2009, “Convective heat transfer in liquid microchannels with hydrophobic and hydrophilic surfaces”, Int J. Heat and Mass Transfer, 52:260-70.
[151] R Khare, P Keblinski, and Arun Yethiraj, 2006, “Molecular dynamics simulations of heat and momentum transfer at a solid-fluid interface: Relationship between thermal and velocity slip”, Int J. Heat and Mass Transfer, 49:3401-7.
[152] JJ Zhao, M Huang, Q Min, D M. Christopher, and YY Duan, 2011,”Near-wall liquid layering, velocity slip, and solid-liquid interfacial thermal resistance for thin-film evaporation in microchannels”, Nanosc. Microsc. Therm., 15:2, 105-22.
[153] ZB Ge, DG Cahill, and PV Braun, 2006, “Thermal conductance of hydrophilic and hydrophobic interfaces”, Physical Review Letters, 96:186101.
[154] JL Barrat and F Chiaruttini, 2003, “Kapitza resistance at the liquid-solid interface”, Molecular Physics, 101(11):1650-10.
[155] S Murad and I K. Puri, 2009, “Thermal transport through a fluid-solid interface”, Chemical Physics Letters, 476:267-70.
[156] P Keblinski, SR Phillpot, SUS Choi, and JA Eastman, 2002, “Mechanisms of heat flow in suspensions of nano-sized particles(nanofluids)”, Int. J. Heat Mass Transfer, 45:855-63.
[157] CY Soong, WK Li, CH Liu, and PY Tzeng, 2010, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids”, Optics Express, 18(3):2168-82.
[158] JR Taylor, 1997,”An introduction to error analysis”, University Science Books, Sausalito.
[159] S. G. Kandlikar, S. Garimella, D. Li, S. Colin and M. R. King, 2006, “Heat Transfer and Fluid Flow in Minichannel and Microchannels, Elsevier Pte Ltd, Singapore.
[160] RM Oslon, 1980,” Essentials of engineering fluid mechanics”, 4th Ed., Harper & Row, New York.
[161] XF Peng and GP Peterson, 1996, “Convective heat transfer and flow friction for water flow in microchannel structures”, Int. J. Heat Mass Transfer, 39(12):2599-608.
[162] JY Jung, HS Oh, and HY Kwak, 2009, “Forced convective heat transfer of nanofluids in microchannels”, Int J Heat Mass Transfer, 52:466-72.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code