Responsive image
博碩士論文 etd-0020114-165249 詳細資訊
Title page for etd-0020114-165249
論文名稱
Title
創新設計的平面式陣列模組化的微型燃料電池組
A novel design for planar array module-type micro fuel cell stack
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
160
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-08
繳交日期
Date of Submission
2014-01-20
關鍵字
Keywords
微電鑄、微型燃料電池、平面陣列模組、雙極板、流場板、電池組
micro electroforming, micro fuel cell, Bipolar plates, planar array module, flow field plate, cell stack
統計
Statistics
本論文已被瀏覽 5700 次,被下載 556
The thesis/dissertation has been browsed 5700 times, has been downloaded 556 times.
中文摘要
本研究針對PEMFC在平面式串聯的堆疊電池組上,提出並測試一種新穎的平面配置模組化(以4顆為一個單位)設計,以微電鑄的方式在單一流道板上設計製作出兩種不同的電極,本研究中以4、8、12、16顆電池串聯的電池組進行測試。該模組塊是以商業化的角度來設計,製作容易且能快速組裝,具有很大發展潛力。
以銅基材的金屬板加上LIGA-like微製程技術,在銅片上面製作出兩種不同的模組塊流道板。以此兩種模組塊流道板再加上質子交換膜(MEA),組成四種不同電池數量(4、8、12、16顆)的電池組來進行VI/PI的性能測試。
模組化設計以1個模組塊(4顆電池)、2個模組塊(8顆電池)、3個模組塊(12顆電池)和4個模組塊(16顆電池)的性能測試結果來看,在VI/PI性能曲線上有明顯的改善,證明此模組化的設計相較於一般電池組在組裝上更有效率且能減少組裝時的性能減損;並且能根據不同幾何形狀的電池配置需求來進行結構設計。
Abstract
The newly-designed planar micro fuel cell stack is based on a special pin electrode design incorporating 4 cells, 8 cells, 12 cells and 16 cells. These cells are connected in series on a common supporting plate. In addition, compared to its traditional counterpart, this planar PEM fuel cell stack has improved volume and gravimetric power density. Focusing on the PEMFC planar series cell stack, this study proposes a novel planar modularized design (four cells as a unit).
The microelectromechanical process is adopted to produce two different electrodes on a single flow field plate. Moreover, this study conducts experiments on 4, 8, 12 and 16 cells in series. These cells are designed as modules to be commercialized; therefore, they are easy to manufacture and rapid to assemble, thus demonstrating significant development potential. The LIGA-like microfabrication technique allows for the production of two different modularized flow field plates on metal boards based on copper. To conduct VI/PI performance tests, these two plates can be integrated with MEA to manufacture cell stacks with different amounts of cells (4, 8, 12 and 16).We conduct performance experiments on various sizes of modules: 1 module (4 cells), 2 modules (8 cells), 3 modules (12 cells), and 4 modules (16 cells). The results show that the VI/PI performance curves are significantly improved, verifying that this modularized design is more efficient and can reduce performance loss caused during the assembly process. Furthermore, structural design can be adjusted according to the requirement of cells of various geometric forms.
目次 Table of Contents
論文審定書 i
誌 謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
NOMENCLATURE x
CHAPTER 1 1
INTRODUCTION 1
1.1 Background 1
1.2 Literature survey 6
1.3 Objective 16
1.4 Outline of the dissertation 18
CHAPTER 2 21
PRINCIPLE AND COMPONENTS 21
2.1 Principle of PEMFC 21
2.2 Main components 24
CHAPTER 3 42
DESIGN BACKGROUND 42
3.1 Flow field design [81] 42
3.2 Stack design [89] 52
3.3 Cell/Stack clamping [89] 57
3.4 Water management 59
3.5 Thermal management 63
CHAPTER 4 67
DESIGN, FABRICATION AND EXPERIMENTAL 67
4.1 Design of flow field plate modules 67
4.2 Design of planar μPEMMFC stacks 70
4.3 Experimental Procedure 70
CHAPTER 5 84
DATA REDUCTION AND UNCERTAINTIES 84
CHAPTER 6 87
RESULTS AND DISCUSSION 87
6.1 Single cell performance test 87
6.2 Single module (4-cell) performance test 87
6.3 Performance measurement of multi modules (8-, 12-, and 16-cell) 93
6.4 Transient (short/long period) startup/shutdown with demonstration 95
6.5 Conclusion 97
CHAPTER 7 111
CONCLUSION AND RECOMMENDATIONS 111
7.1 Conclusion 111
7.2 Recommendations for future work 113
REFERENCES 115
APPENDIX 141
PUBLICATION LIST 148
參考文獻 References
1. T. S. Zhao, K. D. Kreuer and Trung Van Nguyen , “Advances in Fuel Cells,” Chemical & Petroleum Engineering, Lawrence, USA, 2007.
2. Mench, and M. Matthew, “Fuel Cell Engines,“ Hoboken, N.J. : John Wiley & Sons, 2008.
3. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf, U.S. Department of Energy 2003 Multi-Year Research, Development and Demonstration Plan for Fuel Cells, 2003.
4. D. Sperling, and J. S. Cannon, “The Hydrogen Energy Transition: Moving Toward the Post Petroleum Age in Transportation,” Academic, 2004.
5. A. Smirnna, D. Kang, N. Sammes, “Fuel Cell Technologies: State and Perspectives,” 202 (2005) 59-60.
6. E. Sakave, “Micomachining/Nanotechnology in Direct Methanol Fuel Cell,” in: Proceedings of the Tech. Digest MEMS Conference, Miami, USA, January 30-Feburary 3, (2005) 600-605.
7. C. Stone, “Fuel Cell Technologies Powering Portable Eectronic Devices,” Fuel Cells Bulletin, 10 (2007) 12-15.
8. M. Miller and A. Bazylaka, ” A Review of Polymer Electrolyte Membrane Fuel Cell Stack testing,” J. Power Sources, 196 (2011) 601-613.
9. U.S. Department of Energy 2012 Multi-Year Research, Development and Demonstration Plan for Fuel Cells, (2012).
10. A. F. Ghenciu and C. Opin, “Review of Fuel Processing Catalysts for Hydrogen Production in PEM Fuel Cell Systems,” Solid State Mater. Sci. 6 (2002) 389-399.
11. S. Litster and G. McLean, “PEM Fuel Cell Electrodes,” J. Power Sources 130 (2004) 61-76.
12. V. Mehta and J.S. Cooper, “Review and Analysis of PEM Fuel Cell Design and Manufacturing,” J. Power Sources 114 (2003) 32-53.
13. B. Smitha, S. Sridhar and A. Khan, “Solid Polymer Electrolyte Membranes for Fuel Cell Applications—A Review,” J. Membr, Sci. 259 (2005) 10-26.
14. B. Wang, “Recent Development of non-Platinum Catalysts for Oxygen Reduction Reaction,” J. Power Sources 152 (2005) 1-15.
15. A. Hermann, T. Chaudhuri and P. Spagnol, “Bipolar Plates for PEM Fuel Cells: A Review,” Int. J. Hydrogen Energy 30 (2005)1297-1302.
16. X. Li and I. Sabir, “Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs,” Int. J. Hydrogen Energy 30 (2005) 359–371.
17. H. Tawfik, Y. Hung and D. Mahajan, “Metal Bipolar Plates for PEM Fuel Cell—A Review,” J. Power Sources 163 (2007) 755–767.
18. R. Borup, et al., “Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation,” Chem. Rev. 107 (2007) 3904-3951.
19. A. Collier, H. Wang, X. Zi Yuan, J. Zhang, D.P. Wilkinson, “Degradation of Polymer Electrolyte Membranes,” Int. J. Hydrogen Energy 31 (2006) 1838-1854.
20. F. De Bruijn, V. Dam, G. Janssen, “Review: Durability and Degradation Issues of PEM Fuel Cell Components,” Fuel Cells 8 (2008) 3-22.
21. J. Wu, et al., “A review of PEM fuel cell durability: Degradation Mechanisms and Mitigation Strategies,” J. Power Sources 184 (2008) 104-119.
22. S. Zhang, et al., “A Review of Accelerated Stress Tests of MEA Durability in PEM Fuel Cells,” Int. J. Hydrogen Energy 34 (2009) 388-404.
23. X. Cheng, et al., “A Review of PEM Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation,” J. Power Sources 165 (2007) 739-756.
24. A. Bazylak, “Liquid Water Visualization in PEM Fuel Cells: A Review,” Int. J. Hydrogen Energy 34 (2009) 3845-3857.
25. M. Eikerling, “Water Management in Cathode Catalyst Layers of PEM Fuel Cells: A Structure-Based Model,” J. Electrochem. Soc. 153 (2006) E58-E70.
26. H. Li, et al., “A review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell,” J. Power Sources 178 (2008) 103-117.
27. J. St-Pierre, D. Wilkinson, S. Knights, M. Bos, “Relationships Between Water Management, Contamination and Lifetime Degradation in PEFC” J. New Mater. Electrochem. Syst. 3 (2000) 99-106.
28. N. Yousfi-Steiner, P. Moc¸ otéguy, D. Candusso, D. Hissel, A. Hernandez, A. Aslanides, “A Review on PEM Voltage Degradation Associated with Water Management: Impacts, Influent Factors and Characterization,” J. Power Sources 183 (2008) 260-274.
29. S.K. Das, A.S. Bansode, “Heat and Mass Transport in Proton Exchange Membrane Fuel Cells—A Review,” Heat Transfer Eng. 30 (2009) 691–719.
30. S.G. Kandlikar, Z. Lu, Appl, “Thermal Management Issues in a PEMFC Stack – A Brief Review of Current Status,” Therm. Eng. 29 (2009) 1276-1280.
31. J. Pharoah, O. Burheim, “On the Temperature Distribution in Polymer Electrolyte Fuel Cells,” J. Power Sources 195 (2010) 5235-5245.
32. P. Scott, R. K. Calay, Y. K. Chen, “Experimental Evaluation into Novel, Low Cost, Modular PEMFC Stack,” Energy Procedia 29 (2012) 567-575.
33. D. L. Heras N, E. Roberts, R. Langdon and D. Hodgson, “A Review of Metal Seperator Plate Materials Suitable for Automotive PEM Fuel Cells,” Energy and Environmental science (2009), 2 , 206-214.
34. C. Y. Chen et al., “Planar Array Stack Design Aided by Rapid Prototyping in Development of Air-Breathing PEMFC,” J. Power Sources 179 (2008) 147-154.
35. S. S. Hsieh, H. C. Wu and B. S. Her, “Design, Fabrication and Characterization of Micro-Electro Mechanical System Based Micro Direct Methanol Fuel Cell Stacks,” Sensors and Actuators A 187 (2012) 57- 66.
36. Z. Yuana et al., “Development of a 4-Cell Air-Breathing Micro Direct Methanol Fuel Cell Stack ,” J. Power Sources 202 (2012) 134-142.
37. B. R. Friess and M. Hoorfar, “Development of a Novel Radial Cathode Flow Field for PEMFC,” Int. J. Hydrogen Energy 37 (2012) 7719-7729.
38. T. V. Reshetenko et al., “A Segmented Cell Approach for Studying the Effects of Serpentine Flow Field Parameters on PEMFC Current Distribution,” Electrochimica Acta 88 (2013) 571-579.
39. Y. Lu and R. G. Reddy, “Performance of Micro-PEM Fuel Cells with Different Flow Fields,” J. Power Sources, 195 (2010) 503-508.
40. M. Hyun, S. K. Kim, D. Jung and B. Lee, D. Peck, T. Kim, Y. Shul, “Prediction of Anode Performances of Direct Methanol Fuel Cells with Different Flow-Field Design using Cmputational Simulation,” J. Power Sources, 157 (2006) 875-885.
41. S. Shimpalee and J. W. V. Zee, “Numerical Studies on Rib & Channel Dimension of Flow-Field on PEMFC Performance,” Int. J. Hydrogen Energy, 32 (2007) 842-856.
42. Y. G. Yoon, W. Y. Lee, G. G. Park, T. H. Yang and C. S. Kim, “Effects of Channel Configurations of Flow Field Plates on the Performance of a PEMFC,” Electrochimica Acta, 50 (2004) 709-712.
43. X. D. Wang, Y. Y. Duan, W. M. Yan and X. F. Peng, “Local Transport Phenomena and Cell Performance of PEM Fuel Cells with Various Serpentine Flow Field Designs,” J. Power Sources, 175 (2008) 397-407.
44. X. D. Wang, Y. Y. Duan, W. M. Yan, D. J. Lee, A. Sue, and P. H. Chi, “Channel Aspect Ratio Effect for Serpentine Proton Exchange Membrane Fuel Cell: Role of sub-Rib Convection,” J. Power Sources, 193 (2009) 684-690.
45. A. Smirnova, D. Kang and N. Sammes, “Fuel Cell Technologies State and Perspectives: Development of DMFC for Portable Application,” Springer, Printed in the Netherlands (2005) 59-60.
46. Y. H. Chan and T. S. Zhao, R. Chen, “A Small Mono-Polar Direct Methanol Fuel Cell Stack with Passive Operation,” J. Power Sources, 178 (2008) 118-124.
47. Y. D. Kuan, S. M. Lee and M. F. Sung, “The Cathode Airflow Effect on the Direct Methanol Fuel Cell From Single Cell to a Planar Module,” J. Fuel Cell Science and Technology, ASME, 6 (2009) 011004-1-011004-9.
48. A. Casalegno, R. Marchesi and F. Rinaldi, “Systematic Experimental Analysis of a Direct Methanol Fuel Cell, “J. Fuel Cell Science and Technology, ASME, 4 (2007) 418-424.
49. J. Ge, H. Liu, “Experimental Studies of a Direct Methanol Fuel Cell,” J. Power Sources, 142 (2005) 56-69.
50. F. Barbir, “PEM Fuel Cells: Fuel Cell Operating Conditions,” Elsevier Inc, (2005) 118-123.
51. P. Argyropoulos, K. Scott, A. K. Shukla and C. Jackson, “Empirical Model Equations for the Direct Methanol Fuel Cell,” Fuel Cells, 2 (2003) 78-82.
52. N. Nakagawa, Y. Xiu, “Performance of a Direct Methanol Fuel Cell Operated at Atmospheric Pressure,” J. Power Sources, 118 (2003) 248-255.
53. Q. X. Wu, T. S. Zhao, R. Chen and W. W. Yang, “Effects of Anode Microporous Layers Made of Carbon Powder and Nanotubes on Water Transport in Direct Methanol Fuel Cells,” J. Power Sources, 191 (2009) 304-311.
54. X. G. Yang, F. Y. Zhang, A. L. Lubawy and C. Y. Wang, “Visualization of Liquid Water Transport in a PEFC,” Electrochemical and Solid-State Letters, 7 (2004) A408-A411.
55. K. Tüber, D. Pocza and C. Hebling, “Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell,” J. Power Sources, 124 (2003) 403-414.
56. M. M. Mench, Q. L. Dong and C. Y. Wang, “In Situ Water Distribution Measurements in a Polymer Electrolyte Fuel Cell,” J. Power Sources, 124 (2003) 90-98.
57. K. Sugiura, M. Nakata, T. Yodo, Y. Nishiguchi, M. Yamauchi and Y. Itoh, “Evaluation of a Cathode Gas Channel with a Water Absorption Layer/Waste Channel in a PEFC by using Visualization Technique,” J. Power Sources, 145 (2005) 526-533.
58. F. B. Weng, A. Su, C. Y. Hsu and C. Y. Lee, “Study of Water-Flooding Behaviour in Cathode Channel of a Transparent Proton-Exchange Membrane Fuel Cell,” J. Power Sources, 157 (2006) 674-680.
59. R. Satija, D. L. Jacobson, M. Arif and S. A. Werner, “In Situ Neutron Imaging Technique for Evaluation of Water Management Systems in Operating PEM Fuel Cells,” J. Power Sources, 129 (2004) 238-245.
60. D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara and G. G. Scherer, “In Situ Diagnostic of Two-Phase Flow Phenomena in Polymer Electrolyte Fuel Cells by Neutron Imaging. Part A. Experimental, Data Treatment, and Quantification,” Electrochimica Acta, 50 (2005) 2603-2614.
61. M. A. Hickner, N. P. Siegel, K. S. Chen, D. N. McBrayer, D. S. Hussey, D. L. Jacobson and M. Arif, “Real-time Imaging of Liquid Water in an Operating Proton Exchange Membrane Fuel Cell,” J. the Electrochemical Society, 153 (2006) A902-A908.
62. N. Pekula, K. Heller, P. A. Chuang, A. Turhan, M. M. Mench, J. S. Brenizer and K. Unlu, “Study of Water Distribution and Transport in a Polymer Electrolyte Fuel Cell Using Neutron Imaging,” Nuclear Instruments and Methods in Physics Research A, 542 (2005) 134-141.
63. A. Hakenjos, H. Muenter, U. Wittstadt and C. Hebling, “A PEM Fuel Cell for Combined Measurement of Current and Temperature Distribution, and Flow Field Flooding,” J. Power Sources, 131 (2004) 213-216.
64. K. W. Feindel, S. H. Bergens and R. H. Wasylishen, “The Use of H NMR Microscopy to Study Proton-Exchange Membrane Fuel Cells,” ChemPhysChem, 7 (2006) 67-75.
65. S. Tsushima, K. Teranishi, K. Nishida and S. Hirai, “Water Content Distribution in a Polymer Electrolyte Membrane for Advanced Fuel Cell System with Liquid Water Supply,” Magnetic Resonance Imaging, 23 (2005) 255-258.
66. I. Manke, Ch. Hartnig, M. Grunerbel, W. Lehnert, K. Kardjilov, A. Haibel, A. Hilger, J. Banhart and H. Riesemeier, “Investigation of Water Evolution and Transport in Fuel Cells with High Resolution Synchrotron X-Ray Radiography,” Applied Physics Letters, 90 (2007) 174105-174107.
67. S. Litster, D. Sinton and N. Djilali, “Ex Situ Visualization of Liquid Water Transport in PEM Fuel Cell Gas Diffusion Layers,” J. Power Sources, 154 (2006) 95-105.
68. A. Bazylak, D. Sinton, Z.S. Liu and N. Djilali, “Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers,” J. Power Sources, 163 (2007) 784-792.
69. Department of Energy, Technical Plan – Fuel Cells, Department of Energy, 2007.
70. L. Zhong, et al., “A Micro-Direct Methanol Fuel Cell Stack with Optimized Design and Microfabrication,” Sensors and Actuators A, 143 (2008) 70-76.
71. A. Heinzel, R. Nolte, K. Ledjeff-Hey and M. Zedda, “Membrane Fuel Cells-Concepts and System Design,” Electrochimica Acta, 43 (1998) 3817-3820.
72. S. J. Lee, A. Chang-Chien, S. W. Cha, R. O'Hayre, Y. I. Park, Y. Saito and F. B. Prinz, “Design and Fabrication of a Micro Fuel Cell Array with Flip-Flop Interconnection,” J. Power Sources, 112 (2002) 410-418.
73. S. S. Hsieh, C. L. Feng, C. F. Huang, “Development and Performance Analysis of a H2/Air Micro PEM Fuel Cell Stack,” J. Power Sources, 163 (2006) 440-449.
74. X. Z. Yuan and H. Wang, “PEM Fuel Cell Electrocatalysts and Catalyst Layers: PEM Fuel Cell Fundamentals,” Springer-Verlag, London, (2006) 5-5.
75. F. Barbir, “Fuel Cell Technology Reaching Towards Commercialization: PEM Fuel Cells,” Springer-Verlag, London, (2006) 27-28.
76. X. Li, “Pinciples of Fuel Cells,” Taylor & Francis, New York, (2006) 513-521.
77. Available from: http://en.wikipedia.org/wiki/PEM_fuel_cell [accessed 20.08.2013].
78. E. S. Lee, “Water Transport in Two-Phase Fuel Cell Microchannels,” PhD Dissertation, Stanford University, (2007) 1-2.
79. F. Barbir,” Fuel Cell Technology Reaching Towards Commercialization: PEM Fuel Cells,” Springer-Verlag, London, (2006) 31-34.
80. F. Barbir, “PEM Fuel Cells Theory and Practice: Main Cell Components, Materials Properties and Processes,” Elsevier Academic, London, (2005) 73-113.
81. D. J. L. Brett and N. P. Brandon, “Review of Materials and Characterization Methods for Polymer Electrolyte Fuel Cell Flow-Field Plates,” Journal of Fuel Cell Science and Technology, 4 (2007) 29-44.
82. K. Dhathathreyan, P. Sridhar, G. Sasikumar, K. Ghosh, G. Velayutham, N. Rajalakshmi, et al., “Development of Polymer Electrolyte Membrane Fuel Cell Stack,” Int. J. Hydrogen Energy 24 (1999) 1107–1115.
83. P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational Aspects of a Large PEFC Stack Under Practical Conditions,” J. Power Sources 128 (2004) 208–217.
84. R. Eckl, W. Zehtner, C. Leu, U. Wagner, “Experimental Analysis of Water Management in a Self-Humidifying Polymer Electrolyte Fuel Cell Stack,” J. Power Sources 138 (2004) 137–144.
85. F. Urbani, O. Barbera, G. Giacoppo, G. Squadrito, E. Passalacqua, “Effect of Operative Conditions on a PEFC Stack Performance,” Int. J. Hydrogen Energy 33 (2008) 3137–3141.
86. F. Weng, B. Jou, A. Su, S.H. Chan, P. Chi, “Design, Fabrication and Performance Analysis of a 200 W PEM Fuel Cell Short Stack,” J. Power Sources 171 (2007) 179–185.
87. R. O’Hayre, S. W. Cha, W. Colella and F. B. Orizn, “Fuel Cell Fundamentals: Fuel Cell Mass Transport,” John Wiley & Sons, New York, (2006) 166-166.
88. S. S. Hsieh, C. F. Huang and C. L. Feng, “A Novel Design and Micro-fabrication for Copper (Cu) Electroforming Bipolar Plates,” Micron, 39 (2008) 263-268.
89. F. Barbir, “PEM Fuel Cells Theory and Practice: Stack Design,” Elsevier Academic, London, (2005) 147-201.
90. R. O’Hayre, S. W. Cha, W. Colella and F. B. Orizn, “Fuel Cell Fundamentals: Overview of Fuel Cell System,” John Wiley & Sons, New York, (2006) 252-255.
91. M. G. Izenson and R. W. Hill, “Water and Thermal Balance in PEM and Direct Methanol Fuel Cells,” Transactions of the ASME, 1 (2004) 10-17.
92. V. Gurau, T. A. Zawodzinski and J. A. Mann, “Two Phase Transport in PEM Fuel Cell Cathodes,” J. Fuel Cell Science and Technology, ASME, 5 (2008) 1-12.
93. K. Ito, “Recent Trends in Fuel Cell Science and Technology: Water Problem in PEMFC,” India, New Delhi, (2007) 129-136.
94. E. S. Lee, “Water Transport in Two-Phase Fuel Cell Microchannels,” PhD Dissertation, Stanford University, (2007) 7-9.
95. R. O’Hayre, S. W. Cha, W. Colella and F. B. Orizn, “Fuel Cell Fundamentals” John Wiley & Sons, New York. (2006) 256-256.
96. S. Kim, I. Hong, “Membrane Performance Comparison in a Proton Exchange Membrane Fuel Cell (PEMFC) Stack,” J. Industrial and Engineering Chemistry 16 (2010) 901-905.
97. S. S. Hsieh, C. F. Huang, J. K. Kuo, H. H. Tasi, and S. H. Yang, “SU-8 Flow Field Plates for a Micro PEMFC,” J. Solid State Electrochemistry, 9 (2005) 121-131.
98. M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Scum-free Patterning of SU-8 Resist for Electroforming Applications,” J. Micromechanics and Microengineering, 15 (2005) 130–135.
99. S. S. Hsieh, S. H. Yang, J. K. Kuo, C. F. Huang, and H. H. Tsai, “Study of Operational Parameters on the Performance of Micro PEMFCs with Different Flow Fields,” Energy Conversion and Management, 47 (2006) 1868-1878.
100. S. S. Hsieh, S. H. Yang, and C. L. Feng, “Characterization of the Operational Parameters of a H2/Air Micro PEMFC with Different Flow Fields by Impedance Spectroscopy,” J. Power Sources, 162 (2006) 262-270.
101. Available from: http://axiang.cc/archives/7325. [accessed 28.08.2013]
102. E. Yuan, Y. Ehong, W. Fu, Z. Li, and X. Liu, “Investigation of a Small-volume Direct Methanol Fuel Cell Stack for Portable,” Application, Energy. 51 (2013) 462-467.
103. P. Scott , R. K. Calay, and Y. K. Chen, “Experimented Evaluation into Novel, Low Cost , Modular PEMFC Stack,” Energy Procedia. 29 (2012) 567-575.
104. J. H. Jang, H. - C. Chiu, W. M. Yan and W. L. Sun, “Effects of Operating Conditions on Performances of Individual cell and Stack of Fuel Cell,” J. Power Sources. 180 (2008) 476-483.
105. S. Kim and I. Hong, “Effects of Humidity and Temperature on a Proton Exchange Membrane Fuel Cell (PEMFC) Stack,” J. Industrial and Engineering Chemistry. 14 (2008) 357-364.
106. A. L. Mohana and S. Ramaprabhu, “Design and Fabrication of Carbon Nanotube-Based Micro Fuel Cell and Fuel Cell Stack Couple with Hydrogen Storage Device,” Int. J. Hydrogen Energy. 32 (2007) 4272-4278.
107. S. S. Hsieh, H. C. Wu, B. S. Her, “A Novel Design for a Flow Field Configuration of a Direct Methanol Fuel Cell,” J. Power Sources, 195 (2010) 3224-3230.
108. A. Smirnova, D. Kang, N. Sammes, “Fuel Cell Technologies State and Perspectives: Development of DMFC for Portable Application,” Springer, Printed in the Netherlands (2005) 59-72.
109. S. Giddey, S. P. S. Badwal, F. T. Ciacchi, D. Fini, B. A. Sexton, F. Glenn, and P. W. Leech, “Investigations on Fabrication and Lifetime Performance of Self-Air Breathing Direct Hydrogen Micro Fuel Cells,” Int. J. Hydrogen Energy, 35 (2010) 2506-2516.
110. H. C. Wu, “An Experimental Study of Micro Direct Methanol Fuel Cell Stacks,” PhD Dissertation, National Sun Yat-Sen University, (2013) 55-58.
111. X. Li, “Advances in Fuel Cells: Thermodynamic Performance of Fuel Cells and Comparison with Heat Engines,” Elsevier Ltd., (2007) 4-21.
112. R. F. Service, “Fuel Cells: Shrinking Fuel Cells Promise Power in Your Pocket,” Science, 296 (2002) 1222-1224.
113. H. Chang, “DMFC for Note PC and Mobile Phone: from Materials to System. In: Proceedings of Eighth Annual Small Fuel Cells-Small Fuel Cells for Portable Applications,” Washington DC, USA: Knowledge Foundation, April (2006) 2-4.
114. S. Gottesfeld, “ DMFC Portable Power Products at MTI Microfuel Cells: Present and Future. In: Proceedings of Seventh Annual Small Fuel Cells - Small Fuel Cells for Portable Applications,” Washington DC, USA: Knowledge Foundation, April (2005) 27-29.
115. S. H. Kim, H. Y. Cha, C. M. Miesse, J. H. Jang, Y. S. Oh, S. W. Cha, “Air-Breathing Miniature Planar Stack Using the Flexible Printed Circuit Board as a Current Collector,” Int. J. Hydrogen Energy, 34 (2009) 459-466.
116. Y. C. Park, P. Chippar, S. K. Kim, S. Lim, D. H. Jung, H. Ju, D. H. Peck, “Effects of Serpentine Flow-Field Designs with Different Channel and Rib Widths on the Performance of a Direct Methanol Fuel Cell,” J. Power Sources, 205 (2012) 32-47.
117. G. Hoogers, “Fuel Cells Technology Handbook,” CRC Press, USA, (2003).
118. A. P. Manso, F. F. Marzo, M. G. Mujika, J. Barranco, A. Lorenzo, “Numerical Analysis of the Influence of the Channel Cross-section Aspect Ratio on the Performance of a PEM Fuel Cell with Serpentine Flow Field Design,” Int. J. Hydrogen Energy, 36 (2011) 6795-6808.
119. C. Suo, X. Liu, J. Duan, G. Ding, Y. Zhang, “Design of MEMS-based Micro Direct Methanol Fuel Cell Stack,” Proceedings of the Eurosensors XXIII conference, Procedia Chemistry, 1 (2009) 1179-1182.
120. C. Y. Chen, J. Y. Shiu and Y. S. Lee, “Development of a Small DMFC Bipolar Plate Stack for Portable Applications,” J. Power Sources, 159 (2006) 1042-1047.
121. S. S. Hsieh, S. H. Yang, J. K. Kuo, C. F. Huang, and H. H. Tsai, “Study of Operational Parameters on the Performance of Micro PEMFCs with Different Flow fields,” Energy Conversion and Management. 47 (2006) 1868-1878.
122. S. S. Hsieh, B. S. Her, and Y. J. Huang, “Effect of Pressure Drop in Different Flow Fields on Water Accumulation and Current Distribution for a Micro PEM Fuel Cell,” Energy Conversion and Management. 52 (2011) 957-982.
123. P. Corbo, F. E. Corcione, F. Migliardini, and O. Veneri, “Energy Management in Fuel Cell Power Trains,” Energy Conversion and Management. 47 (2006) 3255-3271.
124. N. Hashim, S. K. Kamarudin and W. R. W. Daud, “Design, Fabrication and Testing of a PMMA-based Passive Single-cell and a Multicell Stack Micro-DMFC,” Int. J. Hydrogen Energy, 34 (2009) 8263- 8269.
125. X. L. Li and A. Faghri, “Effect of the Cathode Open Ratios on the Water Management of a Passive Vapor-Feed Direct Methanol Fuel Cell Fed with Neat Methanol,” J. Power Sources, 196 (2011) 6318- 6324.
126. Q. X. Wu, T. S. Zhao, R. Chen and W. W. Yang, “Enhancement of Water Retention in the Membrane Electrode Assembly for Direct Methanol Fuel Cells Operating with Neat Methanol,” Int. J. Hydrogen Energy, 35 (2010) 10547-10555.
127. C. Xu, A. Faghri and X. L. Li, “Development of a High Performance Passive Vapor-Feed DMFC Fed with Neat Methanol,” J. The Electrochemical Society, 157 (2010) B1109-B1117.
128. P. Corbo, F. Migliardini, and O. Veneri, “Experimental Analysis and Management Issues of a Hydrogen Fuel Cell System for Stationary and Mobile Application,” Energy Conversion and Management, 48 (2007) 2365-2374.
129. M. V. Williams, H. R. Kunz, and J. M. Fenton, “Operation of Nafion-Based PEM Fuel Cells with No External Humidification: Influence of Operating Conditions and Gas Diffusion Layers,” J. Power Sources. 135 (2004) 122-134.
130. N. Rajalakshmi, S. Pandiyan, and K. S. Dhathathreyan, “Design and Development of Modular Fuel Cell Stack for Various Applications,” Int. J. Hydrogen Energy. 33 (2008) 449-454.
131. F. Barbir, “PEM Fuel Cells: Fuel Cell Basic Chemistry and Thermodynamics,” Elsevier Inc., (2005) 17-17.
132. F. Barbir, “PEM Fuel Cells: Fuel Cell Electrochemistry,” Elsevier Inc., (2005) 33-58.
133. X. Z. Yuan, C. Song, H. Wang, J. Zhang, “Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Electrical Fundamentals,” Springer London Dordrecht Heidelberg New York , (2009) 81-92.
134. Z. Qi, “PEM Fuel Cell Electrocatalysts and Catalyst Layers: Electrochemical Methods for Catalyst Activity Evaluation,” Springer London Dordrecht Heidelberg, New York, (2008) 573-578.
135. R. O’Hayre, S. W. Cha, W. Colella and F. B. Orizn, “Fuel Cell Fundamentals: Fuel Cell Characterization,” John Wiley & Sons, New York, (2006) 209-221.
136. C. Xu, A. Faghri A, X. L. Li, “Improving the Water Management and Cell Performance for the Passive Vapor-Feed DMFC Fed with Neat Methanol,” Int. J. of Hydrogen Energy, 36 (2011) 8468-8477.
137. X. Li and A. Faghri, “Development of a Direct Methanol Fuel Cell Stack Fed with Pure Methanol,” Int. J. Hydrogen Energy, 37 (2012) 14549-14556.
138. S. K. Kamarudin and N. Hashim, “Materials, Morphologies and Structures of MEAs in DMFCs,” Renewable and Sustainable Energy Reviews, 16 (2012) 2494-2515.
139. X. Y. Li, W. W. Yang, Y. L. He, T. S. Zhao and Z. G. Qu, “Effect of Anode Micro-Porous Layer on Species Crossover through the Membrane of the Liquid-Feed Direct Methanol Fuel Cells,” Applied thermal Engineering, 48 (2012) 392-401.
140. S. C. Yao, X. Tang, C. C. Hsieh, Y. Alyousef, M. Vladimer, G. K. Fedder and C. H. Amona, “Micro-Electro-Mechanical systems (MEMS)-based Micro-Scale Direct Methanol Fuel Cell Development,” Energy, 31 (2006) 636-649.
141. J. S. Wainright, D. Wang, R. F. Weng and M. Savinell, “Acid‐Doped Polybenzimidazoles: A New Polymer Electrolyte,” J. the Electrochemical Society, 142 (1995) L121-L123.
142. M. Weng, J. S. Wainright, U. Landau and R. F. Savinell, “Acid‐Doped Polybenzimidazoles: A New Polymer Electrolyte,” J. the Electrochemical Society, 143 (1996) 1260-1263.
143. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko and S. Kaliaguine, “Synthesis and Characterization of Poly(aryl ether ketone) Copolymers Containing (hexafluoroisopropylidene) -Diphenol Moiety as Proton Exchange Membrane Materials,” Polymer, 46 (2005) 3257–3263.
144. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski and J. McGrath, “Direct Polymerization of Sulfonated poly(arylene ether sulfone) Random (statistical) Copolymers: Candidates for New Proton Exchange Membranes,” J. membrane science, 197 (2002) 231-242.
145. H. Bai and W.S. W. Ho, “New Poly(ethylene oxide) Soft Segment-Containing Sulfonated Polyimide Copolymers for High Temperature Proton-Exchange Membrane Fuel Cells,” J. membrane science, 313 (2008) 75-85.
146. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and J. E. McGrath, “Alternative Polymer Systems for Proton Exchange Membranes (PEMs),” Chemical Reviews, 104 (2004) 4587-4612.
147. C. Yang, S. Srinivasan, A. S. Arico`, P. Creti, V. Baglio and V. Antonucci, “Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature,” Electrochemical and Solid-State Letters, 4 (2001) A31-A34.
148. N. Miyake, J. S. Wainright and R. F. Savinell, “Evaluation of a Sol-gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: II. Methanol Uptake and Methanol Permeability,” J. the Electrochemical Society, 148 (2001) A905-A909.
149. V. Tricoly, “Proton and Methanol Transport in Poly (perfluorosulfonate) Membranes Containing Cs+ and H+ Cations,” J. the Electrochemical Society, 145 (1998) 3798-3801.
150. J. Liu, H. Wang, S. Cheng and K. Y. Chan, “Nafion-Polyfurfuryl Alcohol Nanocomposite Membranes for Direct Methanol Fuel Cells,” J. Membrane Science, 246 (2005) 95-101.
151. C. H. Wan and C. H. Lin, “A Composite Anode with Reactive Methanol Filter for Direct Methanol Fuel Cell,” J. Power Sources, 186 (2009) 229-237.
152. C. H. Wan and C. L. Chen, “Mitigating Ethanol Crossover in DEFC: A Composite Anode with a Thin Layer of Pt50–Sn50 Nanoparticles Directly Deposited into Nafion® Membrane Surface,” In. J. Hydrogen Energy, 34 (2009) 9515-9522.
153. C. H. Wan, J. M. Wei, M. T. Lin and C.H. Lin, “A Reactive Methanol Filter with a Layer of Nanometer-sized Pt50-Sn50 Catalyst Particles Directly Deposited onto the Proton Exchange Membrane Surface,” Int. J. Electrochemical Science, 6 (2011) 889- 900.
154. H. Uchida, Y. Mizuno and M. Watanabe, “Suppression of Methanol Crossover and Distribution of Ohmic Resistance in Pt-Dispersed PEMs under DMFC Operation: Experimental Analyses,” J. the Electrochemical Society, 149 (2002) A682-A687.
155. C. H. Wan and M. T. Lin, “Mitigating Methanol Crossover with Self Assembled Pt35-Ru65 Catalyst on Nafion Surface,” J. Power Sources, 222 (2013) 470-476.
156. J. Larmine and A. Dicks, “Fuel Cell System Explained,” second ed., Wiley, Chichester, West Sussex, (2003).
157. X. Ren, T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, “Methanol Transport Through Nation Membranes. Electro‐osmotic Drag Effects on Potential Step Measurements,” J. the Electrochemical Society, 147 (2000) 466-474.
158. H. Yang, T. S. Zhao and Q. Ye, “In Situ Visualization Study of CO2 Gas Bubble Behavior in DMFC Anode Flow Fields,” J. Power Sources, 139 (2005) 79-90.
159. C. Xu, Y. L. He, T. S. Zhao, R. Chen and Q. Ye, “Analysis of Mass Transport of Methanol at the Anode of a Direct Methanol Fuel Cell,” J. the Electrochemical Society, 153 (2006) A1358-A1364.
160. A. Blum, T. Duvdevani, M. Philosoph, N. Rudoy and E. Peled, “Water-Neutral Micro Direct-Methanol Fuel Cell (DMFC) for Portable Applications,” J. Power Sources, 117 (2003) 22-25.
161. X. Ren, W. Henderson and S. Gottesfeld, “Electro‐osmotic Drag of Water in Ionomeric Membranes: New Measurements Employing a Direct Methanol Fuel Cell,” J. the Electrochemical Society, 144 (1997) L267-L270.
162. K. Y. Song, H. K. Lee and H. T. Kim, “MEA Design for Low Water Crossover in Air-Breathing DMFC,” Electrochimica Acta, 53 (2007) 637-643.
163. S. Ge, B. Yi and P. Ming, “Experimental Determination of Electro-Osmotic Drag Coefficient in Nafion Membrane for Fuel Cells,” J. the Electrochemical Society, 153 (2006) A1443-A1450.
164. J. S. Pierre, “Simple Mathematical Model for Water Diffusion in Nafion Membranes,” J. the Electrochemical Society, 154 (2007) B88-B95.
165. G. Lin and T. V. Nguyen, “Effect of Thickness and Hydrophobic Polymer Content of the Gas Diffusion Layer on Electrode Flooding Level in a PEMFC,” J. the Electrochemical Society, 152 (2005) A1942-A1948.
166. T. Schultz and K. Sundmacher, “Mass, Charge and Energy Transport Phenomena in a Polymer Electrolyte Membrane (PEM) used in a Direct Methanol Fuel Cell (DMFC): Modelling and Experimental Validation of Fluxes,” J. Membrane Science, 276 (2006) 272-285.
167. S. U. Jeong, E. A. Cho, H. J. Kim, T. H. Lim, I. H. Oh and S. H. Kim, “A Study on Cathode Structure and Water Transport in Air-Breathing PEM Fuel Cells,” J. Power Sources, 159 (2006) 1089-1094.
168. G. Minor, ”Experimental Study of Water Droplet Flows in a Model PEM Fuel Cell Gas Microchannel,” MASc Thesis, University of Victoria, Canada, (2007).
169. G. Minor, X. Zhu, P. Oshkai, P. C. Sui and N. Djilali, “Mini-Micro Fuel Cells: Water Transport Dynamics in Fuel Cell Micro-Channels,” Springer Science, (2008) 153-170.
170. P. Gravesen, J. Branebjerg and O. S. Jensen, “Microfluidics-A review,” J. Micromechanics and Microengineering, 3 (1993) 168- 182.
171. T. Cubaud and C. M. Ho, “Transport of Bubbles in Square Microchannels,” Physics of Fluids, 16 (2004) 4575-4585.
172. S. Burgmann, M. Blank, J. Wartmann and A. Heinzel, “Investigation of the Effect of CO2 Bubbles and Slugs on the Performance of a DMFC by means of Laser-Optical Flow Measurements,” Energy Procedia, 28 (2012) 88-101.
173. J. Zhang, G. P. Yin, Q. Z. Lai, Z. B. Wang, K. D. Cai and P. Lin, “The Influence of Anode Gas Diffusion Layer on the Performance of Low-Temperature DMFC,” J. Power Sources, 168 (2007) 453- 458.
174. H. Ito, T. Maeda, A. Nakano, C. M. Hwang, M. Ishida, A. Kato and T. Yoshida, “Experimental Study on Porous Current Collectors of PEM Electrolyzers,” Int. J. Hydrogen Energy, 37 (2012) 7418-7428.
175. T. E. Springer, T. A. Zawodinski, M. S. Wilson and S. J. Gottesfeld, “Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy,” J. the Electrochemical Society, 143 (1996) 587-599.
176. S. L. A. da Silva and E. Ticianelli, “Studies of the Limiting Polarization Behavior of Gas Diffusion Electrodes with Different Platinum Distributions and Hydrophobic Properties,” J. Electroanalytical Chemistry, 391 (1995) 101-109.
177. S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho and T. H. Lee, ”Effects of Nafion Impregnation on Performances of PEMFC Electrodes,” Electrochimica Acta, 43 (1998) 3693-3701.
178. M. Ciureanu and R. Roberge, “Electrochemical Impedance Study of PEM Fuel Cells. Experimental Diagnostics and Modeling of Air Cathodes,” J. Physical Chemistry B, 105 (2001) 3531-3539.
179. G. Li and P. G. Pickup, “Measurement of Single Electrode Potentials and Impedances in Hydrogen and Direct Methanol PEM Fuel Cells,” Electrochimica Acta, 49 (2004) 4119-4126.
180. X. Wang, I. Hsing, Y. Leng and P. Yue, “Model Interpretation of Electrochemical Impedance Spectroscopy and Polarization Behavior of H2/CO Mixture Oxidation in Polymer Electrolyte Fuel Cells,” Electrochimica Acta, 46 (2001) 4397-4405.
181. R. O'Hayre, S. W. Cha, W. Colella and F. B. Prinz, “Fuel Cell Fundamentals,” 1st ed., John Wiley & Sons, New York, (2006) 3-6.
182. Z. Xiao, G. Yan, C. Feng, C. Philip, H. Chan and I.-M. Hsing, “A Silicon-based Fuel Cell Micro Power System using a Microfabrication Technique,” J. Micromechanics and Microengineering, 16 (2006) 2014-2020.
183. S. Hikita, K. Yamane and Y. Nakajima, “Measurement of Methanol Crossover in Direct Methanol Fuel Cell,” JSAE Review, 22 (2001) 151-156.
184. S. S. Hsieh, J. K. Kuo, C. F. Hwang, and H. H. Tsai, “A Novel Design and Microfabrication for a Micro PEMFC,” Microsystem Technologies, 10 (2004) 121-126.
185. S. S. Hsieh, H. H. Tasi, C. Y. Lin, C. F. Huang, and C. M. Chien, “Gas Flow in a Long Microchannel,” Int. J. Heat and Mass Transfer, 47 (2004) 3877-3887.
186. S. S. Hsieh and K. M. Chu, “Channel and Rib Geometric Scale Effects of Flowfield Plates on the Performance and Transient Thermal Behavior of a Micro PEM Fuel Cell,” J. Power Sources, 173 (2007) 222-232.
187. S. S. T. Kline and F. A. McClintock, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, 75 (1953) 3-8.
188. R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis,” J. Fluids Engineering Transactions, ASME, 104 (1982) 250-260.
189. R. J. Moffat, “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, 1 (1988) 3-17.
190. C. Y. Lin, “An Experimental Study of Single/Two Phase Flow in Microchannels,” PhD Dissertation, National Sun Yat-Sen University, (2009) 55-56.
191. J. W. Wu, “Effect of Methanol and Water Crossover on the Cell Performance,” MS Thesis, National Sun Yat-Sen University, (2010) 105-111.
192. S. S. Hsieh and W. C. Chen, “Performance Tests and Pressure Drop Measurements in the Anode Flowfield of a μDMFC,” Fuel Cells, 10 (2010) 597-607.
193. I. S. Hussaini and C. Y. Wang,” Visualization and Quantification of Cathode Channel Fooding in PEM Fuel Cells,” J. Power Sources, 187 (2009) 444-451.
194. S. H. Seo and C. S. Lee, “A Study on the Overall Efficiency of Direct Methanol Fuel Cell by Methanol Crossover Current,” Applied Energy, 87 (2010) 2597-2604.
195. D. Kim, J. Lee, T. H. Lim, I. H. Oh and H. Y. Ha, “Operational Characteristics of a 50 W DMFC Stack,” J. Power Sources, 155 (2006) 203-212.
196. J. Cao, Z. Zou, Q. Huang, T. Yuan, Z. Li, B. Xia and H. Yang, “Planar Air-Breathing Micro-Direct Methanol Fuel Cell Stacks Based on Micro-Electronic-Mechanical-System Technology, “ J. Power Sources, 185 (2008) 433-438.
197. C. Yang, J. Wang, X. Xie, S. Wang, Z. Mao and H. Wang, “Electrochemical Behavior of Surface Treated Metal Bipolar Plates used in Passive Direct Methanol Fuel Cell,” Int. J. hydrogen energy, 37 (2012) 867-872.
198. X. W. Liu, B. Zhang, Y. F. Zhang, et al., “MEMS-Based Micro Fuel Cells,” Progress in Chemistry, 21 (2009) 1980-1986.
199. X. Wang, Y. Zhu, C. Shen, Y. Zhou, X. Wu and L. Liu, “A Novel Assembly Method using Multi-Layer Bonding Technique for Micro Direct Methanol Fuel Cells and their Stack,” Sensor and Actuators A, 188 (2012) 246-254.
200. Guide to the Expression of Uncertainty in Measurement, “Evaluation of measurement data,” Joint Committee for Guides in Metrology 100 (2008).
201. Guide to the Expression of Uncertainty in Measurement, “Guide to the expression of uncertainty in easurement,” Joint Committee for Guides in Metrology 104 (2009).
202. Guide to the Expression of Uncertainty in Measurement, “International vocabulary of metrology-Basic and general concepts and associated terms,” Joint Committee for Guides in Metrology 200 (2008).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code