Responsive image
博碩士論文 etd-0020115-174047 詳細資訊
Title page for etd-0020115-174047
論文名稱
Title
介面摩擦效應對銅打線接合製程影響之有限元素模擬分析
The Interface Friction Effects on Copper Wire Bonding Process in IC Package by Finite Element Analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
134
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-12-26
繳交日期
Date of Submission
2015-01-27
關鍵字
Keywords
有限元素法、銅打線接合製程、介金屬化合物、摩擦生熱效應
Intermetallic compound, Copper wire bonding process, Frictional heat generation, Finite element method
統計
Statistics
本論文已被瀏覽 5728 次,被下載 934
The thesis/dissertation has been browsed 5728 times, has been downloaded 934 times.
中文摘要
熱超音波銅打線接合製程技術為主要之封裝製程技術之一,在此製程中銅銲球與銲墊接觸表面之間會有相對滑動而產生摩擦生熱,進而使介面溫度提高,因此會影響材料的介金屬化合物生成,進而影響接合強度,因此在研究銅打線接合製程的研究中,溫度效應是影響打線接合強度的重要因素。然而一般研究在利用數值模擬方式探討此類問題時,大多僅考慮摩擦阻力效應而未考慮摩擦生熱效應之影響。

本研究之目的在透過有限元素法建立熱超音波銅打線接合製程之三維模擬模型,探討摩擦生熱效應於銅打線接合製程之影響,並針對三個部分進行探討與分析。第一部分探討摩擦生熱效應對銅打線接合製程之接觸面應力場、應變場及溫度場的影響;第二部分探討分析超音波頻率與振幅變化於製程時間內對銅銲球與鋁銲墊應力場、應變場以及溫度場的影響;第三部分是藉由介金屬化合物厚度生成公式探討超音波頻率與振幅變化對於介金屬化合物厚度之影響。

由模擬結果得知:將摩擦生熱效應考慮進去時,其鋁銲墊之最大等效塑性應變會比未考慮摩擦生熱效應時低7.003 %,最高溫度會增加20.47 %,而最大等效應力降低了41.53 %。當模擬時間為22 μs時,超音波頻率與振幅變化對溫度場之影響不明顯;但當模擬時間至955 μs時,頻率與振幅變化對溫度場之影響會高達25.74~34.45 %。至於探討超音波頻率與振幅變化對介金屬化合物厚度之影響結果顯示,在模擬製程時間為22 μs時,當振幅為1 μm時,若頻率從60 kHz增加到240 kHz時,其介金屬化合物厚度會增加37.58 %;而當頻率為120 kHz時,若振幅從0.5 μm增加到1.5 μm時,其介金屬化合物厚度會增加26.98 %。
Abstract
Thermosonic copper wire bonding process technology is one of the main IC packing process technologies. During this process, there is heat generation produced by friction resulted from relative sliding between the contact surface of copper ball and pad and the interface temperature is increased. This will affect the formation of intermetallic compound and bonding strength. Therefore, in the study of copper wire bonding process, temperature effect is an important factor on wire bonding strength. However, most of the existed research articles for studying these issues by using numerical simulation method usually considered the frictional resistance only and ignored the effect of heat generation caused by friction.
In this study, the finite element method is used and a three-dimensional simulation model is established for studying thermosonic copper wire bonding process and not only the frictional resistance effects but only the frictional thermal effects are considered. This study makes discussion and analysis on three parts. The first part discusses the effects of frictional heat generation on contact surface stress field, strain field and temperature field of copper wire bonding surface. The second part discusses the effects of variation of ultrasonic frequency and amplitude on stress field, strain field and temperature field of copper ball and aluminum pad during the process operating time. The third part analyzes the effect of variation of ultrasonic frequency and amplitude on thickness of intermetallic compounds due to intermetallic compound thickness generation formulation.
The simulated results indicated that the maxima effective plastic strain of aluminum pad with considering frictional heat generation is 7.003 % lower than the values for which not considering frictional heat generation, the maxima temperature rises 20.47 %, and the maxima effective stress drops 41.53 %. The variation of ultrasonic frequency and amplitude on the temperature field is unobvious while the simulation time is 22 μs. But if the simulation time reaches 955 μs , the temperature will be raised 25.74 % to 34.45 %. Also, when simulation time is 22 μs, ultrasonic amplitude is 1 μm and the frequency varies from 60 kHz to 240 kHz, the thickness of intermetallic increases 37.58 %. If the frequency is 120 kHz and the amplitude varies from 0.5 μm to 1.5 μm, the intermetallic thickness increases 26.98 %.
目次 Table of Contents
論文審定書 i
誌 謝 ii
摘 要 iii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 打線接合技術之簡介 2
1.3 文獻回顧 3
1.3.1 銅打線接合製程之優點與缺點 3
1.3.2 銅打線接合製程之改善 7
1.3.3 銅打線接合製程之模擬分析 9
1.4 研究目標 11
1.5 論文架構 11
第二章 基礎理論介紹 17
2.1 有限元素法基礎理論 17
2.2 套裝軟體ANSYS 12.1/ LS-DYNA簡介 18
2.3 直接與順序熱固耦合原理簡介 21
第三章 研究方法 28
3.1 假設條件 28
3.2 模型之建構與設定 29
3.2.1 元素與材料模型的選用 29
3.2.2 模型幾何結構與尺寸設定 30
3.2.3 材料參數與編輯熱固耦合關鍵字文件之設定 30
3.2.4 網格劃分 32
3.2.5 邊界條件、負載方式與接觸面設定 33
3.2.6 熱功當量與計算接觸面能量設定與簡介 34
3.2.7 網格收斂性分析 35
第四章 結果與討論 47
4.1 熱超音波銅打線接合製程模擬 48
4.1.1 模擬結果與分析 49
4.1.2 有無摩擦生熱效應與高溫-常溫材料參數效應之比較 55
4.2 超音波頻率與振幅對熱超音波銅打線接合製程之影響 60
4.2.1 超音波頻率對熱超音波銅打線接合製程之影響 60
4.2.2 超音波振幅對熱超音波銅打線接合製程之影響 62
4.3 超音波頻率與振幅效應對介金屬化合物厚度之影響 63
第五章 結論與未來展望 107
5.1 結論 107
5.2 未來展望 109
參考文獻 110
參考文獻 References
[1] 鍾文仁,陳佑任,IC封裝製程與CAE 應用,全華科技圖書股份有限公司,台北市,台灣,2003。
[2] TechnoAlpha, http://www.technoalpha.co.jp/products/semiconductor/
oe3700.html , 2014/3/24.
[3] Essex, http://privatewww.essex.ac.uk/~bolat/Wirebonding.html , 2014/4/24.
[4] Megtas, http://www.megtas.co.kr/designer/skin/sub_10/01.asp , 2014/4/24.
[5] A. Rezvani, A. Shah, M. Mayer, Y. Zhou and J. Moon,“Role of impact ultrasound on bond strength and Al pad splash in Cu wire bonding,” Microelectronics Reliability, vol. 53, pp. 1002-1008, 2013.
[6] Klabs, http://www.klabs.org/richcontent/fpga_content/DesignNotes/rtax-s_ax/
bond_wires/index.htm , 2014/3/24.
[7] H. Xu, C. Wang and C. Hang,“Growth Behavior of Intermetallic Compound on Bonding Joint of Cu Wire on Al Alloy Pad During Thermal Aging,”ACTA METALLURGICA SINICA-CHINESE EDITION-, vol. 43, p. 125, 2007.
[8] Handbook, Metals. Properties and selection: nonferrous alloys and pure metals, American Society for Metals, Metals Park, OH, 1979.
[9] Matweb, http://www.matweb.com/index.aspx , 2014/3/24.
[10] P. Liu, L. Tong, J. Wang, L. Shi and H. Tang, “Challenges and developments of copper wire bonding technology,” Microelectronics Reliability, vol. 52, pp. 1092-1098, 2012.
[11] S. Murali, N. Srikanth, and C. J. Vath III, “An analysis of intermetallics formation of gold and copper ball bonding on thermal aging,” Materials research bulletin, vol. 38, pp. 637-646, 2003.
[12] P. Ratchev, S. Stoukatch and B. Swinnen, “Mechanical reliability of Au and Cu wire bonds to Al, Ni/Au and Ni/Pd/Au capped Cu bond pads,” Microelectronics Reliability, vol. 46, pp. 1315-1325, 2006.
[13] A. Shah, A. Rezvani, M. Mayer, Y. Zhou, J. Persic and J. T. Moon, “Reduction of ultrasonic pad stress and aluminum splash in copper ball bonding,” Microelectronics Reliability, vol. 51, pp. 67-74, 1// 2011.
[14] N. Srikanth, J. Premkumar, M. Sivakumar, Y. Wong and C. J. Vath III, “Effect of wire purity on copper wire bonding,” Electronics Packaging Technology Conference, 2007. EPTC 2007. 9th, 2007, pp. 755-759.
[15] 高華德,熱效應於銅銲線接合製程之有限元素法模擬,碩士論文,機械與機電工程研究所,國立中山大學,高雄市,台灣,2010。
[16] B. Chylak, J. Ling, H. Clauberg and T. Thieme, “Next generation nickel-based bond pads enable copper wire bonding,” ECS Transactions, vol. 18, pp. 777-785, 2009.
[17] S. Murali, N. Srikanth and C. J. Vath III, “Effect of wire size on the formation of intermetallics and Kirkendall voids on thermal aging of thermosonic wire bonds,” Materials letters, vol. 58, pp. 3096-3101, 2004.
[18] H. Xu, C. Liu, V. Silberschmidt, S. Pramana, T. White, Z. Chen, et al., “Behavior of aluminum oxide, intermetallics and voids in Cu–Al wire bonds,” Acta Materialia, vol. 59, pp. 5661-5673, 2011.
[19] H. Xu, C. Liu, V. V. Silberschmidt and Z. Chen, “TEM microstructural analysis of as-bonded copper ball bonds on aluminum metallization,” Electronics Packaging Technology Conference, 2008. EPTC 2008. 10th, 2008, pp. 789-794.
[20] H. Xu, C. Liu, V. Silberschmidt, Z. Chen and V. Acoff, “Effect of ultrasonic energy on nanoscale interfacial structure in copper wire bonding on aluminium pads,” Journal of Physics D: Applied Physics, vol. 44, p. 145301, 2011.
[21] H. C. Hsu, L. M. Chu, W. Y. Chang, Y.-F. Chen, J.-H. Chien, S.-L. Fu, et al., “Further characterization of Pd-coated copper wire on wirebonding process: from a nanoscale perspective,” Journal of Materials Science: Materials in Electronics, vol. 24, pp. 3594-3602, 2013
[22] H. J. Kim, J. Y. Lee, K.W. Paik, K.W. Koh, J. Won, S. Choe, et al., “Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability,” Components and Packaging Technologies, IEEE Transactions on, vol. 26, pp. 367-374, 2003.
[23] M. Drozdov, G. Gur, Z. Atzmon and W. D. Kaplan, “Detailed investigation of ultrasonic Al–Cu wire-bonds: I. Intermetallic formation in the as-bonded state,” Journal of materials science, vol. 43, pp. 6029-6037, 2008.
[24] M. Drozdov, G. Gur, Z. Atzmon and W. D. Kaplan, “Detailed investigation of ultrasonic Al-Cu wire-bonds: II. Microstructural evolution during annealing,” Journal of Materials Science, vol. 43, pp. 6038-6048, 2008.
[25] C. J. Hang, C. Q. Wang, M. Mayer, Y. H. Tian, Y. Zhou and H. H. Wang, “Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging,” Microelectronics Reliability, vol. 48, pp. 416-424, 3// 2008.
[26] H. Xu, C. Liu, V. V. Silberschmidt, S. Pramana, T. J. White and Z. Chen, “A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads,” Scripta Materialia, vol. 61, pp. 165-168, 2009.
[27] C. Hang, C. Wang, Y. Tian, M. Mayer and Y. Zhou, “Microstructural study of copper free air balls in thermosonic wire bonding,” Microelectronic engineering, vol. 85, pp. 1815-1819, 2008.
[28] R. Dohle, M. Petzold, R. Klengel, H. Schulze and F. Rudolf, “Room temperature wedge–wedge ultrasonic bonding using aluminum coated copper wire,” Microelectronics Reliability, vol. 51, pp. 97-106, 2011.
[29] Y.-W. Lin, R.-Y. Wang, W.-B. Ke, I. Wang, Y.-T. Chiu, K.-C. Lu, et al., “The Pd distribution and Cu flow pattern of the Pd-plated Cu wire bond and their effect on the nanoindentation,” Materials Science and Engineering: A, vol. 543, pp. 152-157, 2012.
[30] B. Q. Wang, K. Davison and J. Osenbach, “Copper wire bond strength reliability assessment,” Electronics Packaging Technology Conference (EPTC), 2012 IEEE 14th, 2012, pp. 251-255.
[31] J. Cao, J. Fan, Z. Liu and Y. Zhang, “Effect of Pd thickness on bonding reliability of Pd coated copper wire,” Electronics Packaging (ICEP), 2014 International Conference on, 2014, pp. 623-629.
[32] A. Shah, M. Mayer, Y. Zhou, S. Hong and J. Moon, “Reduction of underpad stress in thermosonic copper ball bonding,” Electronic Components and Technology Conference, 2008. ECTC 2008. 58th, 2008, pp. 2123-2130.
[33] B. K. Appelt, A. Tseng, Y.-S. Lai and C.-H. Chen, “Copper wire bonding-a maturing technology,” Electronics Packaging Technology Conference (EPTC), 2010 12th, 2010, pp. 479-483.
[34] H. Clauberg, P. Backus and B. Chylak, “Nickel–palladium bond pads for copper wire bonding,” Microelectronics Reliability, vol. 51, pp. 75-80, 2011.
[35] S. Chen, F. Ke, M. Zhou, and Y. Bai, "Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al," Acta materialia, vol. 55, pp. 3169-3175, 2007
[36] T. Uno, “Bond reliability under humid environment for coated copper wire and bare copper wire,” Microelectronics Reliability, vol. 51, pp. 148-156, 2011.
[37] H. Xu, C. Liu, V. V. Silberschmidt, Z. Chen, J. Wei and M. Sivakumar, “Effect of bonding duration and substrate temperature in copper ball bonding on aluminium pads: A TEM study of interfacial evolution,” Microelectronics Reliability, vol. 51, pp. 113-118, 1// 2011.
[38] H. Xu, C. Liu, V. Silberschmidt, M. Sivakumar and Z. Chen, “Effect of ultrasonic energy on interfacial structure and bond strength in copper wire bonding,” in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010, pp. 336-341.
[39] C.-L. Yeh, Y.-S. Lai and C.-L. Kao, “Transient simulation of wire pull test on Cu/low-K wafers,” Advanced Packaging, IEEE Transactions on, vol. 29, pp. 631-638, 2006.
[40] J. Chen, D. Degryse, P. Ratchev and I. De Wolf, “Mechanical issues of Cu-to-Cu wire bonding,” Components and Packaging Technologies, IEEE Transactions on, vol. 27, pp. 539-545, 2004.
[41] C.L.Yeh and Y.S. Lai, “Comprehensive dynamic analysis of wirebonding on Cu/low-K wafers,” Advanced Packaging, IEEE Transactions on, vol. 29, pp. 264-270, 2006.
[42] P. C. Chin, C. Y. Hu, H. C. Hsu, S. L. Fu, C. L. Yeh and Y. S. Lai, “Characteristic of heat affected zone in thin gold wire and dynamic transient analysis of wire bonding for microstructure of Cu/Low-K wafer,” Microsystems, Packaging, Assembly and Circuits Technology, 2007. IMPACT 2007. International, 2007, pp. 297-300.
[43] H. C. Hsu, J. H. Chien, C. Y. Wang, L. M. Chu, S. P. Ju, S. L. Fu , et al., “An investigation on nanoscale bondability between Cu-Al intermetallic compound,” Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International, 2013, pp. 158-161.
[44] Y. Liu, S. Irving and T. Luk, “Thermosonic wire bonding process simulation and bond pad over active stress analysis,” IEEE transactions on electronics packaging manufacturing, vol. 31, pp. 61-71, 2008.
[45] Z.H.Chen, Y.Liu and S.Liu, “Comparison of the copper and gold wire bonding processes for LED packaging,” Journal of Semiconductors, vol. 32, p. 024011, 2011.
[46] 施心智,具定向晶格效應於銅銲線製程之有限元素法模擬與分析,碩士論文,機械與機電工程研究所,國立中山大學,高雄市,台灣,2009。
[47] J. He, Y. Guo and Z. Lin, “Numerical and experimental analysis of thermosonic bond strength considering interfacial contact phenomena,” Journal of Physics D: Applied Physics, vol. 41, p. 165304, 2008.
[48] 莊昀達,材料覆被對 IC 封裝銅打線製程之影響,碩士論文,機械與機電工程研究所,國立中山大學,高雄市,台灣,2012。
[49] 李俊潔,錢志回,王中鼎,陳軍冶,薛明峻,楊秉豐,李長祺,洪志斌,“超音波頻率變化對三維IC封裝之Couples-Polishing Activation接合製程微銅塊摩擦效應之影響”,2013年中華民國力學學會年會暨第37屆全國力學會議與第1屆國際力學會議,清華大學,新竹市,台灣,2013年11月8-9日。
[50] T. R. Chandrupatla, A. D. Belegundu, T. Ramesh and C. Ray, Introduction to
finite elements in engineering, 4th ed: Prentice-Hall, Englewood Cliffs, New Jersey, 2012.
[51] 郝好山,胡仁喜與康士廷,ANSYS 12.0 LS-DYNA 非線性有限元分析從入門到精通,機械工業出版社,北京,中國,2010。
[52] ANSYS 12.1 Help, 2012.
[53] LS-DYNA Keyword User’s Manual, Version 971, Vol.1-2, http://www.dynasupport.com/news/ls-dyna-971-manual-pdf, 2014/04/29.
[54] E-Works, http://pera.e-works.net.cn/document/200711/article2666.htm , 2014/3/24.
[55] J. Gao, R. Kelly, Z. Yang and X. Chen, “An investigation of capillary vibration during wire bonding process,” Electronic Packaging Technology & High Density Packaging, 2008. ICEPT-HDP 2008. International Conference on, 2008, pp. 1-6.
[56] Aries,http://aries.ucsd.edu/LIB/PROPS/PANOS/cu.html , 2014/3/24.
[57] F. Kuo, C. Chang, Y. Liu, K. Wen and L. Fan, “Temperature-dependent yield effects on composite beams used in CMOS MEMS,” Journal of Micromechanics and Microengineering, vol. 23, p. 035023, 2013.
[58] G. F. Hewitt , Heat exchanger design handbook, Begell House, 1998
[59] Kayelaby, http://www.kayelaby.npl.co.uk/general_physics/ , 2014/4/22
[60] Processmodeling, http://processmodeling.org/model_ht/properties%20of%20metallic%20solids%201.gif, 2014/3/25
[61] J. O. Hallquist, LS-DYNA theory manual, Livermore Software Technology Corporation, vol. 3, 2006.
[62] J. Xu, Heat Transfer with Explicit SPH Method in LS-DYNA.
[63] J. E. Shigley, Shigley's mechanical engineering design: Tata McGraw-Hill Education, 2011.
[64] A. Rusinko, “Analytical description of ultrasonic hardening and softening,” Ultrasonics, vol. 51, pp. 709-714, 2011.
[65] L. Levine, “The ultrasonic wedge bonding mechanism: Two theories converge,” Proceedings of the International Symposium on Microelectronics. Reston, VA, USA: ISHM Press, 1995, pp. 128-131.
[66] D. Frear, Solder mechanics: a state of the art assessment vol. 1: Tms, 1991.
[67] Y. D. Jeon, A. Ostmann, H. Reichl and K. W. Paik, “Comparison of interfacial reactions and reliabilifies of Sn3.5Ag, Sn4.0Ag0.5Cu, and Sn0.7Cu solder bumps on electroless Ni-P UBMs,” Electronic Components and Technology Conference, 2003. Proceedings. 53rd, 2003, pp. 1203-1208
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code