Responsive image
博碩士論文 etd-0020117-093332 詳細資訊
Title page for etd-0020117-093332
論文名稱
Title
砷化銦/砷化鎵量子點載子鬆弛研究
The carrier relaxation of InAs/GaAs Quantum Dots
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2017-01-24
關鍵字
Keywords
時間解析探測-激發(TRPP)光譜技術、能帶填充效應、類歐傑散射、聲子瓶頸效應、量子侷限效應
Like-Auger process band-filling effect, Time-resolved pump-probe technique, quantum confinement effect, Phonon bottleneck, Band-filling effect
統計
Statistics
本論文已被瀏覽 5671 次,被下載 0
The thesis/dissertation has been browsed 5671 times, has been downloaded 0 times.
中文摘要
本篇論文將探討量子點元件及塊材之間的載子動態差異,我們藉由超快時間解析激發-探測光譜的技術(Time-resolved pump-probe technique)來探討室溫下砷化鎵、砷化銦、砷化銦/砷化鎵的載子動力學,並探討其激發載子能量釋放方式及量子現象。可以發現多層量子點因著量子侷限效應、聲子瓶頸效應及類歐傑散射讓載子鬆弛之行為有別於一般塊材。隨著量子點元件層數不同導致應力變大發現激發-探測光譜,會有正負的轉變。最後利用三階速率方程式對激發-探測光譜進行數據擬合,發現載子數變化與反射率成平方關係。
Abstract
The aim of this study was to examine the energy released due to excitation and recombination of a GaAs bulk, InAs, and InAs/GaAs quantum dots at room temperature by the time-resolved pump-probe technique (TRPP). We found that multi-layer quantum dots behaved differently from bulk materials due to qantum cnfinement efect, ponon bottleneck, and like-auger process. When the sample with one Quantum Dot layer was changed with a sample with three Quantum Dot layers, the pump - probe spectrum or the peak number experienced a drastic change, so drastic that it changed from a negative value to a positive value. This phenomenon is called band-filling effect. Finally, using the third-order rate equation to fit the data of pump - probe spectra, it was found that the square of the carrier density is proportional to the reflectivity.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
第一章緒論 1
1.1量子點簡介及發展 1
1.2文獻回顧 3
1.3研究動機 5
第二章 實驗架構及分析方法 6
2.1激發-探測原理 6
2-2實驗架設 7
2-3 相位偽影(coherent artifact) 9
第三章 載子動力學 10
3-1 激發電子能量釋放過程25 10
3-2量子點之物理機制 11
3-2.1載子進入量子點機制 11
3-2.2電子與電洞的結合機制 12
3.3三級速率方程式 13
3.4激發載子濃度與光束大小計算 15
第四章 樣品分析與討論 17
4-1 樣品介紹 17
4-1.1光激發螢光光譜 18
4-1.2時間解析激發-探測數據分析 23
4-1.3量子點不同激發光強度 27
4-1.4量子點不同激發能量 32
4-2衰減時間分析 35
4-2.1砷化鎵塊材衰減時間 35
4-2.2砷化銦衰減時間 37
4-2.2砷化鎵/砷化銦多層量子點衰減時間 39
4-3速率方程式之擬合 42
4-4時間解析螢光光譜 46
第五章 結論 48
參考目錄 49
圖附件 53
參考文獻 References
[1] Chennupati Jagadish and Stephen Pearton, “Zinc Oxide Bulk, Thin Films and Nanostructures”, Elsevier Science, p.32 (2006)
[2] Katsuaki Tanabe, Denis Guimard and Damien Bordel, “1.3 μm room-temperature GaAs-based quantum-dot laser”, IEEE Journal of Selected Topics in Quantum Electronic 3, 196 (1997).
[3] Gyoungwon Park, Oleg B. Shchekin and Sebastion Csutak, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser”, Applied Physics Letters 75, 21 (1999).
[4] T. Tran, A. Muller, and C. K. Shiha, “Self-Assembled Quantum Dots”, Applied Physics Letters 91, 133104 (2007).
[5] T. Lundstrom, W. Schoenfeld, H. Lee and P. M. Petroff, “Exciton storage in semiconductor self-assembled quantum dots”, Science 286, 5448, 2312-2314 (1999).
[6] Miro Kroutvar, Yann Ducommun and Dominik Heiss, “Optically programmable electron spin memory using semiconductor quantum dots”, Nature 432, 81-84 (2004).
[7]程成,程瀟羽, “納米光子學及器件”, 科學出版社. 10-234 (2013)
[8] J.-Y. Marzin, J.-M. Gerard and A. Izrael, “Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs”, Physical Review Letters 73, 5 (1994).
[9] D. Leonard, M. Krishnamurthy and Aidong Shen, “Photoluminescence Study of InAs Quantum Dots and Quantum Dashes Grown on GaAs(211)B”, Japanese Journal of Applied Physics 37, 1527-1531 (1997).
[10] B. Daudin, F. Widmann and G. Feuillet, “Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN”, Physical Review B 56, 12 (1997).
[11] Jennifer L. Stein, Elizabeth A. Mader, and Brandi M, “Highly efficient band‐edge emission from InP quantum dots”, J. Phys. Chem. Lett 7, 1315−1320 (2016).
[12] A. I. Ekimov, F. Hache, M. C. Schanne-Klein, “Absorption and intensity-dependent photolumins- cence measurements on CdSe quantum dots: assignment of the first electronic transitions”, Journal of the Optical Society of America B10, 1 (1993).
[13] Annika Elsena, Sven Festersena, Benjamin Rungea, “In situ X-ray studies of adlayer-induced crystal nucleation at the liquid–liquid interface”, Proceedings of the National Academy of Sciences 110, 17 6663-6668 (1937).
[14] Y. Nakata, K. Mukai, M. Sugawara, “Molecular beam epitaxial growth of InAs self-assembled quantum dots with light-emission at 1.3 μm”, Journal of Crystal Growth 208, 93-99 (2000).
[15] T. Inoshita and H. Sakaki, “Electron relaxation in a quantum dot: Significance of multiphonon processes”, Phys. Rev. B. 46, 11 (1992)
[16] J. Urayama and T. B. Norris, “Observation of Phonon Bottleneck in Quantum Dot Electronic Relaxation”, Phys. Rev. Lett. 86, 21 (2000)
[17] Q. Lia, Z.Y. Xua and W.K. Geb, “Carrier capture into InAs/GaAs quantum dots detected by a simple degenerate pump–probe technique”, Solid State Communications 115, 105-108 (2000)
[18] Thomas F. Boggess, L. ZhangD. G. Deppe and C. Cao, “Spectral engineering of carrier dynamics in In(Ga)As self-assembled quantum dots”, Appl. Phys. Lett 78,3(2001)
[19] T. Müller, F. F. Schrey, G. Strasser, and K. Unterrainer, “Ultrafast intraband spectroscopy of electron capture and relaxation in InAs/GaAs quantum dots”, Appl. Phys. Lett 83,17 (2003)
[20] Zhangcheng Xu, Yating ZhangJørn M and Wei Lu, “Carrier dynamics in submonolayer InGaAs∕GaAsInGaAs∕GaAs quantum dots”, Appl. Phys. Lett 89, 013113 (2006)
[21] T. Piwonski, I. O’Driscoll and J. Houlihan, “Carrier capture dynamics of InAs/GaAs quantum dots”, Appl. Phys. Lett 90, 122108 (2007)
[22] E. A. Zibik1, T. Grange, B. A. Carpenter, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range”, Nature materials 8, 803 - 807 (2009)
[23] Kripa Nidhan Chauhan, “Carrier Dynamics in InGaAs/GaAs QuantumDots Excited by Femtosecond Laser Pulses”, University of Utah State University (2012)
[24] Graham H. Jensen, “Temperature-Dependent Femtosecond Pump-Probe Spectrosc-opy of Thin-Film Vanadium Dioxide”, University of Rochester (2014)
[25] F. L. Pedrotti, S.J., L. M. Pedrotti, L. M. Pedrotti, “Introduction to Optics”, Third
Edition, Pearson Prentice Hall, p.672 (2007)
[26] A. Somintac, E. Estacio and A. Salvador, “Observation of blue-shifted photolumin- nescence in stacked InAs/GaAs quantum dots”, Journal of Crystal Growth 251 196-200 (2003)
[27] Brian R. Bennett, Richard A. Soref and Senior Member. Soref, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP”, IEEE Journal of Quantum Electronics 26,1 (1990)
[28] Henning Riechert. “Physical Properties of III-V Semiconductor Compounds” Wile- y, p.34-36 (1992).
[29] Sooraj Ravindran, Arnab Datta and Kamal Alameh, “GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change”, The Optical Society 14. 15610-15627 (2012)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.206.169
論文開放下載的時間是 校外不公開

Your IP address is 3.145.206.169
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code