Responsive image
博碩士論文 etd-0020117-212107 詳細資訊
Title page for etd-0020117-212107
論文名稱
Title
嵌入式工具用於低碳鋼與鋁合金之摩擦攪拌點銲接合特性的研究
Joint Characteristics of Friction Stir Spot Welding of Steel to Al Alloy Using Embedded-rod Tool
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-14
繳交日期
Date of Submission
2017-02-14
關鍵字
Keywords
鋁合金、金屬間化合物、嵌入式工具、低碳鋼、摩擦攪拌點熔化銲接、摩擦攪拌銲接、摩擦攪拌點銲
friction stir spot fusion welding(FSSFW), friction stir spot welding(FSSW), Al alloy, embedded-rod(ER) tool, low carbon steel, intermetallic compound(IMC), Friction stir welding(FSW)
統計
Statistics
本論文已被瀏覽 5850 次,被下載 57
The thesis/dissertation has been browsed 5850 times, has been downloaded 57 times.
中文摘要
摘 要
本研究旨在探討摩擦攪拌點銲(FSSW)低碳鋼板與鋁合金板的接合特性。為了挑戰厚度2 mm以上鋼板的搭接銲接,首先使用嵌入式(ER)工具對不同厚度配對之低碳鋼板進行FSSW,實驗條件為軸向負荷8 kN、主軸轉速1200 rpm以及擠壓時間100 s。結果顯示在擠壓時間12 s時,位於攪拌表面中心下方2 mm位置的溫度迅速上升至約900oC,其遠高於使用普通工具的510 oC。使用ER工具下之工件熱機影響區深度約為6 mm,此值約為使用普通工具情況之2倍。當上板的厚度小於3 mm時,銲後接點的破壞負荷約為35 kN,其值約為使用普通工具情況之1.7倍。由於ER工具與工件之接觸面具有較高之滑動摩擦係數及黏附作用,使界面溫度及熱機影響區深度增加而有利於材料之擴散接合。因此,使用ER工具可銲接上板厚度達到4 mm,且其破壞負荷仍比使用普通工具銲接上板厚度2 mm的情況高。
另一方面,對於低碳鋼/鋁合金之難銲材料,使用ER工具使工具迴轉中心下方的鋁合金發生熔化來裂解氧化膜,使低碳鋼鋁合金接合,此稱之為摩擦攪拌點熔化銲接(FSSFW)。銲接工件為厚度2 mm的低碳鋼板與厚度5 mm或10 mm的6061-T6鋁合金板。實驗條件為軸向負荷12 kN、主軸轉速1200 rpm、以及不同的擠壓時間。結果顯示在鋁合金板厚為5 mm下,低碳鋼板與鋁合金的界面溫度於擠壓時間為8 s時迅速上升到鋁合金的熔點(652oC),於15 s時達到最高溫740oC。接點破壞負荷在擠壓時間為55 s時可達15 kN。當鋁合金板為10 mm,界面溫度於擠壓時間為20 s時上升到652oC,於45 s時上升至740oC。接點之破壞負荷在擠壓時間為55 s時可達22 kN。使用XRD檢測得知,低碳鋼/鋁合金的接合界面形成Fe2Al5和的Fe4Al13兩種鐵與鋁的金屬間化合物(IMC)層。另使用SEM量測IMC層厚度得知,IMC厚度隨著擠壓時間的增加而增加;但是當IMC厚度大於25 μm時,IMC厚度的增長速率變慢。接點破壞負荷會隨著IMC厚度的增加而增加,但是當IMC厚度大於17 μm時,破壞負荷迅速減少,這是由於IMC層內的裂痕變大之故。
為了瞭解IMC層的成長機制,本研究以數值解析計算工件之塑性流動速度及溫度分佈。當下板的鋁合金厚度為5 mm和10 mm,其分別在擠壓時間為10 s和20 s時其界面溫度達到熔點,然後因理論無法預測鋼板穿破,使得溫度持續增加。相較於10 mm鋁合金板,5 mm鋁合金板在擠壓時間35 s時,其界面溫度約高100oC。由於溫度對原子擴散速率有巨大影響,使得5 mm鋁合金板有較厚的IMC層。
Abstract
Abstract
This study aims to investigate the lapped joint characteristics of friction stir spot welding (FSSW) of the steel to the Al alloy using the embedded-rod (ER) tool. First, to challenge the lapped joint and welding of over 2 mm thick carbon steel, FSSW was conducted on a low carbon steel plate pair with different thicknesses using the ER tool under a downward force of 8 kN, a rotating speed of 1200 rpm and a dwell time of 100 s. Result showed that the temperature at 2 mm below the center of the stir surface rapidly increased to about 900°C using the ER tool, which was higher than that of 510°C using the plain tool. The depth of TMAZ using the ER tool was about 6 mm, which was 2 times that using the plain tool. When the thickness of the upper plate was less than 3 mm, the failure load using the ER tool was about 35 kN, which was about 1.7 times higher than that using the plain tool. As the coefficient of sliding friction and adhesion role between the ER tool and contact surface of workpiece are high, the interface temperature and TMAZ increased, which was favorable to the diffusion reaction of materials. Thus, with ER, the upper plate with the thickness as much as 4 mm can be welded, while its failure load using the ER tool was still greater than a 2 mm upper plate welded using the plain tool.
On the other hand, as of the materials which are difficult to be welded, such as steel/Al alloy, the ER tool was used to melt the Al alloy below the rotating center so as to cause pyrolysis of oxidation film and bond low carbon steel and Al alloy. This process was called friction stir spot fusion welding (FSSFW). Then, a low carbon steel sheet with the thickness of 2 mm was lapped on a 6061-T6 Al alloy sheet with the thickness of 5 mm or 10 mm using the ER tool under a downward force of 12 kN and a rotating speed of 1200 rpm at different dwell times. Result showed that when the 6061-T6 Al alloy was 5mm thick and the interface temperature of the low carbon steel and Al alloy rapidly rose to the melting point (652oC) of the 6061-T6 Al alloy in about 8 s and then achieved about 740oC in about 15 s. After welding, the failure load achieved 15 kN at the dwell time of 55 s. In contrast, when the 6061-T6Al alloy was 10 mm thick, and the interface temperature rapidly rose to 652oC in about 20 s and then achieved about 740 oC in about 45 s. After welding, the failure load achieved 22 kN at the dwell time of 55 s. The Al alloy sheet was melted at the central area of the faying surface, so that two IMC layers were formed at this surface and identified as Fe2Al5 and Fe4Al13, as detected by XRD and SEM images. Result showed that the IMC thickness increased along with the dwell time, but its increment rate became slower for IMC thickness larger than 25 μm. The failure load increased along with the IMC thickness, but the failure load decreased quickly for IMC thickness larger than 17 μm, because the thicker the IMC, the larger the crack was.
To understand the growth mechanism of the IMC layer, the numerical simulation was used to analyze the speed of plastic flow and the temperature distribution within the workpiece. The interface temperature achieved the melting point of the Al alloy at 10s and 20s for the lower Al alloy sheets with thickness of 5mm or 10mm, respectively, and then the temperature increased continuously, because the theory could not predict the steel sheet was broken through. The interface temperature of 5mm Al alloy sheet was about 100oC higher than that of 10mm at dwell time of 35s, so that the 5mm Al alloy sheet had a thicker IMC layer due to temperature has a most profound effect on the diffusion rate.
目次 Table of Contents
論文審定書 i
謝 誌 ii
摘 要 iii
Abstract v
目 錄 vii
圖 目 錄 x
表 目 錄 xiv
符號說明 xv
第1章 緒論 1
1.1 研究背景與動機 1
1.2 文獻探討 3
1.2.1 摩擦攪拌銲接簡介 3
1.2.2 摩擦攪拌點銲接簡介 8
1.2.3 銲道的微觀組織 15
1.2.4 銲接工具之發展 19
1.2.5 熱量產生及其效應 26
1.2.6 鋼鐵材料的摩擦攪拌銲接 34
1.2.7 異種材料的摩擦攪拌銲接 35
1.3 研究目的 38
1.4 本論文研究之架構 39
第2章 嵌入式工具用於低碳鋼與低碳鋼之摩擦攪拌點銲接合特性 41
2.1 前言 41
2.2 實驗儀器與程序 43
2.3 結果與討論 53
2.3.1 接合界面溫度及軸向負荷變化 53
2.3.2 接合剖面巨觀和硬度分佈 55
2.3.3 接合破壞負荷及拉伸破斷面 59
2.3.4 討論 62
2.4 結論 65
第3章 低碳鋼對鋁合金的摩擦攪拌熔化點銲接之接合特性 66
3.1 前言 66
3.2 實驗儀器與程序 68
3.3 結果與討論 73
3.3.1 銲接界面溫度及軸向負荷變化 73
3.3.2 銲接點外觀及其結構 75
3.3.3 銲接破壞負荷及界面化合物 80
3.3.4 銲接破斷機制 83
3.4 結論 89
第4章 低碳鋼對鋁合金在摩擦攪拌熔化銲接期間之溫度分布及塑性流動之理論分析與實驗 90
4.1 前言 90
4.2 理論模型 92
4.2.1 假設及控制方程式 92
4.2.2 工件表面速度與溫度之計算 95
4.3 實驗步驟 97
4.4 結果與討論 99
4.4.1 鋁合金對鋼搭接溫度之理論分析與實驗驗證 99
4.4.2 討論 110
4.5 結論 113
第5章 總結與未來展望 115
參考文獻 References
[1] Mishra, R.S. and Ma, Z.Y., "Friction stir welding and processing.". Materials Science and Engineering R50(2005):1-78.
[2] Rhodes, C.G., Mahoney, M.W., Bingel, W.H., Spurling, R.A. and Bampton, C.C., "Effects of friction stir welding on microstructure of 7075 aluminum". Scripta Materialia 36(1997):69-75.
[3] Dawes, C.J. and Thomas, W.M., "Friction stir process welds aluminum alloys: the process produces low-distortion, high quality, low-cost welds on aluminum". Welding Journal 75(1996):41-45.
[4] Dawes, C.J., "An introduction to friction stir welding and its development". Welding and Metal Fabrication 63(1995):12-16.
[5] Mishra, R.S., De, P.S. and Kumar, N., "Friction stir welding and processing science and engineering". 2014, New York: Springer.
[6] Liu, H., Fujii, H., Maeda, M. and Nog, K., "Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy". Journal of Materials Science Letters 22(2003):1061-1063.
[7] Sato, Y.S., Kokawa, H., Ikeda, K., Enomoto, M., Jogan, S. and Hashimoto, T., "Microstructure in the friction-stir weld of an aluminum alloy". Metallurgical and Materials Transactions A 32(2001):941-948.
[8] Krishnan, K.N., "On the formation of onion rings in the friction stir welds.". Materials Science and Engineering: A 327(2002):246.
[9] Baillas, G. and Donne, C.D., "Characterisazion of friction stir welded joints of the aluminium alloy AA 2024-T3 by laser extensometry". Materialprufung 42(2000):236-239.
[10] Đurđanović, M.B., Mijajlović, M.M., Milčić, D.S. and Stamenković, D.S., "Heat Generation During Friction Stir Welding Process". Tribology in industry 31(2009):8-14.
[11] Arbegast, J.W., "Friction stir welding after a decade of development". Welding Journal 85(2006):28-35.
[12] Merzoug, M., Mazari, M., Berrahal, L. and Imad, A., "Parameteric studies of the process of friction spot stir welding of Aluminum 6060-T5 alloys". Materials and Design 31(2010):3023-3028.
[13] Sato, Y.S., Park, S.H.C., Michiuchi, M. and Kokawa, H., "Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys". Scripta Materialia 50(2004):1233-1236.
[14] Miyagawa, K., Tsubaki, M., Yasui, T. and Fukumoto, M., "Spot welding between aluminium alloy and low-carbon steel by friction stirring". Welding International 23(2009):559-564.
[15] Sakano, R., Murakami, K. and Yamashita, K., "Development of spot FSW robot system for automobile body members". in Proceedings of the 3rd International Symposium of Friction Stir Welding and Metal Fabrication, Kobe, Japan (2004).
[16] Sprovieri, J., "Friction Stir Spot Welding", in Assembly Magazine. 2016-04-07, Design, CMS, Hosting & Web Development : ePublishing. p. 1-6.
[17] Sakano, R., Murakami, K., Yamashita, K., Hyoe, T., Fuzimoto, M., Inuzuka, M., Nagao, Y. and Kashiki, H., "Development of spot FSW robot system for automobile body members.". In: Proceedings of the 3rd International Symposium of Friction Stir Welding, Kobe, Japan. TWI (2001).
[18] Iwashita, T., "Method and apparatus for joining". U.S., 6601751 B2(2003).
[19] Nguyen, N.T., Kim, D.Y. and Kim, H.Y., "Assessment of the failure load for an AA6061-T6 friction stir spot welding joint". Proceedings of the Institution of Mechanical Engineers B: Journal of Engineering Manufacture 225(2011):1746–1756.
[20] Tozaki, Y., Uematsu, Y. and Tokaji, K., "A newly developed tool without probe for friction stir spot welding and its performance". Journal of Materials Processing Technology 210(2010):844–851.
[21] Cox, C.D., Gibson, B.T., Strauss, A.M. and Cook, G.E., "Effect of Pin Length and Rotation Rate on the Tensile Strength of a Friction Stir Spot-Welded Al Alloy: A Contribution to Automated Production". Materials and Manufacturing Processes 27(2012):472–478.
[22] Tozaki, Y., Uematsu, Y. and Tokaji, K., "A newly developed tool without probe for friction stir lap welding and its performance. ". Journal of Materials Processing Technology 210(2010):844-851.
[23] Schilling, C. and Santos, J.D., "Method and device for joining at least two adjoining work pieces by friction welding". U.S., 6722556 B2(2004).
[24] Schultz, J.P. and Creehan, K., "Self-reacting friction stir welding tool with the ability to add filler material". U.S. , 8397974 B2(2012).
[25] Rosendo, T., Parra, B. and Tier, M.A.D., "Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy". Materials & Design 32(2011):1094–1100.
[26] Sun, Y.F., Fujii, H., Takaki, N. and Okitsu, Y., "Novel spot friction stir welding of 6061 and 5052 Al alloys". Science and Technology of Welding and Joining 16(2011):605–612.
[27] Okamoto, K., Hunt, F. and Hirano, S., "Development of Friction Stir Welding Technique and Machine for Aluminum Sheet Metal Assembly- Friction Stir Welding of Aluminum for Automotive Applications". SAE Technical Paper 2005-01-1254 SAE 2005 World Congress and Exhibition(2005).
[28] Mishra, R.S. and Mahoney, M.W., "Friction Stir Welding and Processing". 2007, Ohio: ASM International.
[29] Wang, D.A. and Lee, S.C., "Microstructures and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets". Journal of Materials Processing Technology 186(2007):291–297.
[30] Mao, Y.Q., Ke, L.M., Liu, F.C., Liu, Q., Huang, C.P. and Xing, L., "Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate". Materials and Design 62(2014):334-343.
[31] Kou, S., "Welding metallurgy". 2003, US: John Wiley & Sons.
[32] Zhang, Z.H., Yang, X.Q., Zhang, J.L., Zhou, G., Xu, X. and Zou, B., "Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy". Materials & Design 32(2011):4461–4470.
[33] Wang, D., Chao, C., Lin, P. and Uan, J., "Mechanical characterization of friction stir spot microwelds". Journal of Materials Processing Technology 210(2010):1942–1948.
[34] Sun, Y.F., Fujii, H., Takaki, N. and Okitsu, Y., "Microstructure and mechanical properties of mild steel joints prepared by a flat friction stir spot welding technique". Materials & Design 37(2012):384–392.
[35] Badarinarayan, H., Yang, Q. and Zhu, S., "Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy". International Journal of Machine Tools and Manufacture 49(2009):142–148.
[36] Badarinarayan, H., Shi, Y., Li, X. and Okamoto, K., "Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets". International Journal of Machine Tools and Manufacture 49(2009):814–823.
[37] Yan, J., Sutton, M.A. and Reynolds, A.P., "Process structure property relationships for nugget and heat affected zone regions of AA2524-T351 friction stir welds". Science and Technology of Welding and Joining 10(2005):356-359.
[38] Sutton, M.A., Reynolds, A.P., Yang, B. and Taylor, R., "Mode I fracture and microstructure for 2024-T3 friction stir welds". Materials Science Engineering A 354(2003):6-16.
[39] Sutton, M.A., Reynolds, A.P., Yan, J., Yang, B. and Yuan, N., "Microstructure and mixed mode I/ fracture of AA2524-T351 base material and friction stir welds". Engineering fracture mechanics 73(2006):391-407.
[40] Charit, I. and Mishra, R.S., "Low temperature superplasticity in a friction stir processed ultrafine-grained Al-Zn-Mg-Sc alloy". Acta Materialia 53(2005):4211-4223.
[41] Colligan, K., "Tapered friction stir welding tool". U.S., 6669075(2003).
[42] Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templesmith, P. and Drawes, C.J., "Friction stir butt welding". International Patent Application PCT/GB92/02203 G.B. Patent Application 9125978-8(1991).
[43] Thomas, W.M., Lockyer, S.A., Kalee, S.W. and Staines, D.G., "Friction stir welding: an update on recent developments". Proceedings of the Conference on Stressed Components in Aluminum Alloys, Birmingham, UK. (2003).
[44] Colegrove, P.A., Shercliff, H.R. and Threadgill, P.L. "Modeling and development of the Trivex friction stir welding tool". in Proceedings of the Fourth International Conference on Friction stir Welding. 2003. Park city, UT.
[45] Elangovan, K. and Balasubramanian, V., "Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminum alloy". Materials Science and Engineering A 459(2007):7-18.
[46] Thomas, W.M., Lockyer, S.A., Kalee, S.W. and Staines, D.G. "Friction stir welding: an update on recent developments". in Proceedings of the Conference on Stressed Components in Aluminium Alloys. 2003. Birmingham, U.K.
[47] Colegrove, P.A. and Shercliff, H.R., "Development of Trivex friction stir welding tool Part 1 – two-dimensional flow modelling and experimental validation". Science and Technology of Welding and Joining 9(2004):345-351.
[48] Sun, N., Yin, Y.H., Gerlich, A.P. and North, T.H., "Tool design and stir zone grain size in AZ31 friction stir spot welds". Science and Technology of Welding and Joining 14(2009):747-752.
[49] Rowe, C.E.D. and Thomas, W.M., "Advances in tooling materials for friction stir welding". Technical report, TWI Cambridge. U.K. (2005).
[50] Aota, K. and Ikeuchi, K., "Development of friction stir spot welding using rotating tool without probe and its application to low-carbon steel plates. ". Welding Inter 23(2009):572–580.
[51] Aota, K. and Ikeuchi, K., "Friction stir welding of aluminium lap joint by tool without probe". Welding International 24(2010):197-205.
[52] Bakavos, D., Chen, Y., Babout, L. and Prangnell, P., "Material interactions in a novel pinless tool approach to friction stir spot welding thin Aluminum Sheet". Metallurgical and Materials Transactions A 42A(2011).
[53] Woo, W., Choo, H., Brown, D.W., Feng, Z. and Liaw, P.K., "Angular distortion and through-thickness residual stress distribution in the friction-stir processed 6061-T6 aluminum alloy". Materials Science and Engineering 437A(2006):64-69.
[54] Chiou, Y.C., Liu, C.T. and Lee, R.T., "A pinless embedded tool used in FSLW and FSW of aluminum alloy". Journal of Materials Processing Technology 213(2013):1818-1824.
[55] 卓光明, "使用一新穎銲接工具對摩擦攪拌銲接厚板的鋁合金之研究", 機械與機電工程學系. 2013, 國立中山大學.
[56] Schneider, J.A., Nunes, A.C., Chen, P.S. and Steele, G., "TEM Study of the FSW Nugget in AA2195-T81". Journal of Materials Science 40(2005):4341–4345.
[57] Trimble, D., Monaghan, J. and O’Donnell, G.E., "Force generation during friction stir welding of AA2024-T3". CIRP Annals - Manufacturing Technology 61(2012):9–12.
[58] Frigaard, Q., Grong, Q. and Midling, O.T., "A process model for friction stir welding of age hardening aluminum alloys". Metallurgical and Materials Transactions A 32(2001):1189–1200.
[59] Dehghani, M., Mousava, S.A.A.A. and Amadeh, A., "Effects of welding parameters and tool geometry on properties of 3003-H18 aluminum alloy to mild steel friction stir weld". Transactions of Nonferrous Metals Society of China 23(2013):1957–1965.
[60] Dehghani, M., Amadeh, A. and Mousavi, S.A.A.A., "Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel". Materials & Design 49(2013):433–441.
[61] Das, H., Jana, S.S., Pal, T.K. and De, A., "Numerical and experimental investigation on friction stir lap welding of aluminium to steel". Science and Technology of Welding and Joining 19(2014):69–75.
[62] Chen, Z.W., Yazdanian, S. and Littlefair, G., "Effects of tool positioning on joint interface microstructure and fracture strength of friction stir lap Al-to-steel welds". Journal of Materials Science & Technology 48(2013):2624–2634.
[63] Chao, Y.J., Liu, S. and Chien, C.H., "Friction stir welding of Al 6061-T6 thick plates: part I – experimental analyses of thermal and mechanical phenomena". Journal of the Chinese Institute of Engineers 31(2008):757-767.
[64] 劉澄芳, 林偉邦, 黃明哲, "能量守恆法預測鋁合金6061-T6摩擦攪拌銲接製程之預熱時間". 黃埔學報 53(2007):75-88.
[65] Xu, S., Deng, X., Reynolds, A.P. and Seidel, T.U., "Finite element simulation of material flow in friction stir welding". Science and Technology of Welding and Joining 6(2001):191–193.
[66] Reynolds, A.P., Deng, X., Seidel, T. and Xu, S. "Recent advancements in FSW process physics". in Joining of Advanced and Specialty Materials. 2000. MO, USA
[67] Colegrove, P.A., "Three Dimensional Flow and Thermal Modelling of the Friction Stir Welding Process". Proceedings of the 2nd International Symposium on Friction Stir Welding, Gothenburg, Sweden. (2000).
[68] Schmidt, H.B. and Hattel, J.H., "Thermal modelling of friction stir welding". Scripta Materialia 58(2008):332–337.
[69] Nandan, R., Roy, G.G. and Debroy, T., "Numerical Simulation of Three Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding". Metallurgical and Materials Transactions A 37(2006):1247-1259.
[70] Schmidt, H., Hattel, J. and Wert, J., "An analytical model for heat generation in friction stir welding". Modelling and Simulation in Materials Science and Engineering 12(2004):143-157.
[71] 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, "工程材料科學". 1991: 全華圖書股份有限公司.
[72] Kapoor, R. and Nemat-Nasser, S., "Determination of temperature rise during high strain rate deformation". Mechaincs of Materials 27(1998):1-12.
[73] Hodowany, J., Ravichandran, G., Rosakis, A.J. and Rosakis, P., "Partition of Plastic Work into heat and stored in metals". Experimental Mechanics 40(2000):113-123.
[74] Russel, M.J. and Shereliff, H.R. "Analytical modeling of microstructure development in friction stir welding". in 1st International Symposium on Friction Stir Welding. 1999. CA, USA.
[75] Colligan, K.J. and Mishra, R.S., "A conceptual model for the process variables related to heat generation in friction stir welding of aluminum". Scripta Materialia 58(2008):327–331.
[76] Awang, M. and Mucino, V.H., "Energy Generation during Friction Stir Spot Welding of Al 6061-T6 plates". Materials and Manufacturing Processes 25(2010):167-174.
[77] Peel, M.J., Steuwer, A., Withers, P.J., Dickerson, T., Shi, Q. and Shercliff, H., "Dissimilar Friction Stir Welds in AA5083-AA6082. Part I: Process Parameter Effects on Thermal History and Weld Properties". Metallurgical and Materials Transactions A 37A(2006):2183-2193.
[78] Feng, Z., Santella, M.L., David, S.A., Steel, R.J., Packer, S.M., Pan, T., Kuo, M. and Bhatnagar, R.S., "Friction stir spot welding of advanced high-strength steels-a feasibility study". SAE International 2005-01-1248(2005).
[79] Hovanski, Y., Santella, M.L. and Grant, G.J., "Friction stir spot welding of hot-stamped boron steel". Scripta Materialia 57(2007):873-876.
[80] Choi, D.H., Lee, C.Y., Ahn, B.W., Choi, J.H., Yeon, Y.M., Song, K., Park, H.S., Kim, Y.J., Yoo, C.D. and Jung, S.B., "Frictional wear evaluation of WC-Co alloy tool infriction stir spot welding of low carbon steel plates". International Journal of Refractory Metals and Hard Materials 27(2009):931-936.
[81] Ghosh, M., Kumar, K. and Mishra, R.S., "Friction stir lap welded advanced high strength steels: Microstructure and mechanical properties". Materials Science and Engineering A 528(2011):8111-8119.
[82] Chen, C.M. and Kovacevic, R., "Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding". International Journal of Machine Tools and Manufacture 44(2004): 1205-1214.
[83] Kimapong, K. and Watanabe, T., "Effect of Welding Process Parameters on Mechanical Property of FSW Lap Joint between Aluminum Alloy and Steel". Materials Transactions 46(2005):2211-2217.
[84] Miyagawa, K., Tsubaki, M., Yasui, T. and Fukumoto, M., "Spot welding between aluminium alloy and low-carbon steel by friction stirring". Welding International 23(2009):559–564.
[85] Aota, K., Takahashi, M. and Ikeuchi, K., "Friction stir spot welding of aluminium to steel by rotating tool without probe". Welding International 24(2010):96-104.
[86] Bozzi, S., Helbert-tter, A.L., Baudin, T., Criqui, B. and Kerbiguet, J.G., "Intermetallic compounds in Al 6016/IF-steel friction stir spot welds". Materials Science and Engineering: A 17(2010):4505–4509.
[87] Nishimoto, K., Okumoto, Y., Harano, T., Atagi, K., Fujii, H. and Katayama, S., "Laser pressure welding of aluminium and galvannealed steel.". Welding International 23(2009):734–743.
[88] Ozaki, H. and Kutsuna, M., "Dissimilar Metal Joining of Zinc Coated Steel and Aluminum Alloy by Laser Roll Welding". Welding Processes 2(2012):2.
[89] Potesser, M., Schoeberl, T., Antrekowitsch, H. and Bruckner, J., "The characterization of the intermetallic Fe-Al layer of steel-aluminum welding". EPD Congress 2006 Edited by S.M. Howard, R.L. Stephens, C.J. Newman, J.-Y.J. Hwang, A.M. Gokhale, T.T. Chen, TMS (The Minerals, Metals & Materials Society) (2006):167-176.
[90] Taban, E., Gould, J.E. and Lippold, J.C., "Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: properties and microstructural characterization". Materials & Design 31(2010):2305–2311.
[91] Elrefaey, A., Takahashi, M. and Ikeuchi, K., "Friction stir welded lap joint of aluminum to zinc-coated steel". 溶接學会論文集 23(2005):186-193.
[92] Uematsu, Y., Tokaji, K., Tozaki, Y., Nakashima, Y. and Shimizu, T., "Fatigue behaviour of dissimilar friction stir spot welds between A6061-T6 and low carbon steel sheets welded by a scroll grooved tool without probe". Fatigue & Fracture of Engineering Materials & Structures 34(2011):581-591.
[93] Sun, Y.F., Shen, J.M., Morisada, Y. and Fujii, H., "Spot friction stir welding of low carbon steel plates preheated by high frequency induction". Materials & Design 54(2014):450–457.
[94] Pradeep, A., "A Review on Friction Stir Welding of Steel". International Journal of Engineering Research and Development 3(2012).
[95] Lee, R.T., Liu, C.T., Chiou, Y.C. and Chen, H.L., "Effect of nickel coating on the shear strength of FSW lap joint between Ni–Cu alloy and steel". Journal of Materials Processing Technology 213(2013):69–74.
[96] Bhushan, B., "Introduction to tribology". 2002, New York: Wiley Interscience.
[97] Pirso, J., Letunovits, S. and Viljus, M., "Friction and wear behaviour of cemented carbides.". Wear 257(2004):257–265.
[98] 邱源成, 李榮宗, 謝銘哲, "摩擦攪拌熔接工作台及其夾具". R.O.C., I415702(2013).
[99] 菊地喜久南原著, 饒煥欽, 寇立人譯, "鋼材之性能與利用". 民86, 台南市: 復漢出版社.
[100] 張印本, 楊良太, 嚴世明, "ASTM:金屬材料規格與對照". 民86, 台北市: 全華圖書股份有限公司.
[101] Gandy, D., "Carbon steel handbook". 2007, California USA: Electric power reaearch institute.
[102] Kyusojin, A., Nishimoto, K., Otobe, Y., Kanai, S. and Ogasawara, Y., "Study on Mechanism of Friction Welding in Carbon Steels". Bulletin of the JSME 23(1980):1388-1395.
[103] Li, Y., Bushby, A.J. and Dunstan, D.J., "The Hall-Petch effect as a manifestation of the general size effect". Proceedings of the Royal Society A 472(2016):1-33.
[104] 溶接学会編, "溶接.接合便覧". 平成15, 東京都: 丸善株式会社.
[105] Kumar, R., Singh, K. and Pandey, S., "Process forces and heat input as function of process parameters in AA5083 friction stir welds ". Transactions of Nonferrous Metals Society of China 22(2012):288-298
[106] Zahedul, M., Khandkar, H. and Khan, J., "Thermal Modeling of Overlap Friction Stir Welding for Al-Alloys". Journal of Materials Processing and Manufacturing Science 10(2001):91-105.
[107] Gerlich, A., Su, P. and North, T.H., "Peak temperatures and microstructures in aluminium and magnesium alloy friction stir spot welds". Science and Technology of Welding and Joining 10(2005):647-652.
[108] Hwang, Y.M., Kang, Z.W., Chiou, Y.C. and Hsu, H.H., "Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys". International Journal of Machine Tools and Manufacture 48(2008):778-787.
[109] Campanelli, S.L., Casalino, G., Casavola, C. and Moramarco, V., "Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy". Materials 6(2013):5923-5941.
[110] Morris, J.W. "The Influence of Grain Size on the Mechanical Properties of Steel". 2001; Available from: http://escholarship.org/uc/item/88g8n6f8.
[111] Liyanage, T., Kilbourne, J., Gerlich, A.P. and North, T.H., "Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds.". Science and Technology of Welding and Joining 14(2009):500–508.
[112] Fereiduni, E., Movahedi, M. and Kokabi, A.H., "Aluminum/steel joints made by an alternative friction stir spot welding process.". Journal of Materials Processing Technology 224(2015):1–10.
[113] Zhang, G.F., Su, W., Zhang, J.X. and Wei, Z.X., "Friction stir brazing: a novel process for fabricating Al/steel layered composite and for dissimilar joining of Al to steel.". Metallurgical and Materials Transactions A 42(2011):2850–2861.
[114] Hsieh, M.J., Chiou, Y.C. and Lee, R.T., "Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool". Journal of Materials Processing Technology 224(2015):149–155.
[115] Hatch, J.E., "Aluminum : properties and physical metallurgy". 1984, Metals Park, Ohio: American society for metals.
[116] Eastwood, A.E. "Gases in Non-ferrous Metals and Alloys". in American Society for Metals. 1953. Cleveland, OH, USA.
[117] Hatch, J.E., "Aluminum: Properties and Physical Metallurgy". ASM Metals Park, Ohio (1984).
[118] Hibbitt, K.S., "ABAQUS/Standard User's Manual: Version 6.2". Vol. 2. 2001: Hibbitt, Karlsson & Sorensen Inc.
[119] Avallone, E. and Baumeister, T., "Mark's Standard Handbook for Mechanical Engineers, 9th ed.". 1987, New York: McGraw-Hill.
[120] Nandan, R., Roy, G.G., Lienert, T.J. and Debroy, T., "Three-dimensional heat and material flow during friction stir of mild steel". Acta Materialia 55(2007):883-895.
[121] Geiger, M., Micari, F., Merklein, M., Fratini, L., Contorno, D., Giera, A. and Staud, D., "Friction stir knead welding of steel aluminum butt joints". International Journal of Machine Tools and Manufacture 48(2008):515-521.
[122] Sahin, M., "Joining of stainless-steel and aluminum materials by friction welding". The International Journal of Advanced Manufacturing Technology 41(2009):487–497.
[123] Howlader, M.M.R., Kaga, T. and Suga, T., "Investigation of bonding strength and sealing behavior of aluminum/stainless steel bonded at room temperature". Vacuum 84(2010):1334–1340.
[124] Chen, Y.C., Gholinia, A. and Prangnell, P.B., "Interface structure and bonding in abrasion circle friction stir spot welding: A novel approach for rapid welding aluminum alloy to steel automotive sheet". Materials Chemistry and Physics 134(2012):459–463.
[125] Cao, R., Yu, G., Chen, J.H. and Wang, P.C., "Cold metal transfer joining aluminum alloys -to-galvanized mild steel". Journal of Materials Processing Technology 213(2013):1753–1763.
[126] Chen, S., Huang, J., Ma, K., Zhao, X. and Vivek, A., "Microstructures and mechanical properties of laser penetration welding joint with/without Ni-foil in an overlap steel-on-aluminum configuration". Metallurgical and Materials Transactions A 45(2014):3064–3073.
[127] Chao, Y. and Qi, X., "Thermal and thermo- mechanical modeling of friction stir welding of aluminum alloy 6061-T6". Journal of Materials Processing and Manufacturing Science 7(1998):215–233.
[128] Zienkiewicz, O.C. and Cormeau, I.C., "Visco-plasticity solution by finite-element process". Archives of Mechanics 24(1972):872.
[129] Sellars, C.M. and Tegart, W.J.M., "On the mechanism of hot deformation". Acta Metallurgica 14(1966):1136.
[130] Kumar, A., Zhang, W. and DebRoy, T., "Improving reliability of modelling heat fluid flow in complex gas metal arc fillet welds". Journal of Physics D: Applied Physics 38(2005):119-126.
[131] Kong, H.S. and Ashby, M.F., "Friction-heating maps and their applications". MRS Bulletin 16(1991):41-48.
[132] Khan, J.A., Xu, L. and Chao, Y.J., "Prediction of nugget development during resistance spot welding using coupled thermal-electrical-mechanical model". Science and Technology of Welding and Joining 4(1999):201-207.
[133] Deng, Z., Lovell, M.R. and Tagavi, K.A., "Influence of material properties and forming velocity on the interfacial slip characteristics of cross wedge rolling". Journal of Manufacturing Science and Engineering 123(2001):647-653.
[134] De, A. and DebRoy, T., "Probing unknown welding parameters from convective heat transfer calculation and multivariable optimization". Journal of Physics D: Applied Physics 37(2004):140-150.
[135] De, A. and DebRoy, T., "Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of un-certain parameters". Welding Journal 84(2005):101-112.
[136] Schmidt, H. and Hattel, J., "A local model for the thermomechanical conditions in friction stir welding". Modeling and Simulation in Materials Science and Engineering 13(2005):77-93.
[137] Song, M. and Kovacevic, R., "Thermal modeling of friction stir welding in a moving coordinate system and its validation". International Journal of Machine Tools & Manufacture 43(2003):605-615.
[138] Song, M. and Kovacevic, R., "Numerical and experimental study of the heat transfer process in friction stir welding". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 217(2003):73-85.
[139] Colegrove, P.A. and Shercliff, H.R., "3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile". Journal of Materials Processing Technology 169(2005):320-327.
[140] Nandan, R., Roy, G.G., Lienert, T.J. and Debroy, T., "Numerical simulation of three dimensional heat transfer and plastic flow during friction stir welding of stainless steel". Science and Technology of Welding and Joining 11(2006):526-537.
[141] 黃一勛, "內嵌式工具應用於異種金屬摩擦攪拌銲接之擠壓過程中的熱傳導與材料流動之理論解析", 機械與機電工程學系. 2016, 國立中山大學.
[142] 李宥均, "內嵌入式銲接工具應用於摩擦攪拌銲接過程熱傳導與材料流動之理論與實驗研究", 機械與機電工程學系. 2014, 國立中山大學.
[143] Sheppard, T. and Jackson, A., "Constitutive equations for use in prediction of flow stress during extrusion of aluminium alloys". Materials Science and Technology 13(1997):203-209.
[144] Hsieh, M.J., Lee, R.T. and Chiou, Y.C., "Friction Stir Spot Fusion Welding of Low-Carbon Steel to Aluminum Alloy". Journal of Materials Processing Technology 240(2017):118-125.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code