Responsive image
博碩士論文 etd-0021114-104643 詳細資訊
Title page for etd-0021114-104643
論文名稱
Title
堆肥添加對植物復育整治柴油污染土壤效果之研究
A Study of Phytoremediation of Diesel Contaminated Soils by Adding Compost
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-13
繳交日期
Date of Submission
2014-01-21
關鍵字
Keywords
盆栽實驗、總石油碳氫化合物、生質能源作物、柴油、植物復育
Pot experiment, TPH, Biofuel Crops, Diesel Fuel, Phytoremediation
統計
Statistics
本論文已被瀏覽 5697 次,被下載 1479
The thesis/dissertation has been browsed 5697 times, has been downloaded 1479 times.
中文摘要
本研究以生質能源作物配合堆肥之添加,探討以植物復育技術處理遭受柴油污染之土壤。研究分為兩個部分,第一部分為木本植物,以生質能源作物痲瘋樹栽種於盆栽中;第二部分為草本植物,則以篦麻栽種於盆栽中。並添加10%或20%之堆肥,於人工配置柴油污染(5,000及10,000 mg/kg)土壤,以模擬現地環境之污染情境,進行4個月的植物復育實驗,以探討添加柴油對痲瘋樹和篦麻生長之影響及污染物去除效率,並在固定柴油污染物濃度下,添加堆肥與污染物去除效率之關係。此外,並最後討論在土壤滅菌條件下,植物對污染物降解之效率。綜合上述之結果,評估生質能源作物進行柴油污染去除之效益。
由本研究之實驗結果得知,經過4個月處理後之低濃度與高濃度的柴油污染土壤內,發現種植痲瘋樹之植物復育處理系統內,油污染去除效率皆可達70%以上之功效。在試驗的中期,在添加堆肥實驗組中亦發現堆肥肥料可加速痲瘋樹提高其對柴油污染物之移除速率;且與對照組之滅菌土壤相比較,顯示痲瘋樹極為適合作為植物復育對柴油污染之植物種。預期未來於現地應用時,可大量栽種痲瘋樹,並以添加堆肥肥料;以提高效益,達到去除污染物及生產綠色能源之雙重功效。
Abstract
In this study, for biofuel crop species added with the compost fertilizers are used to investigate. The efficiencies of phytoremediation for soils contaminated by petroleum. The experiments of this study are divided into two parts. In the first part, we planted a biofuel crop species (Jatropha curcus) in the flower plot. And the second part, we planted another biofuel crop species (Ricinus communis) also in the flower plot. The energy crop species were planted manually in the pots and controlled umder three levels of diesel fuel pollution concentrations (0, 5,000, and 10,000 mg kg-1), while 10% and 20% compost concentrations were added into the soils simulate real pollutions situation. After forth months in phytoremediation experiment period, we explored the relationship between concentrations of diesel added and the growth of the crop species and the removal efficiencies of petroleum in soils. Finally, we discuss the removal efficiencies of petroleum for differents ports, in which the soils have been sterilized.
The results of the experiments in this study, Show that the species of Jatropha curcus can remove petroleum contaminat with 70%. In the medium period of this study, the experimental results of adding compost show that the Jatropha curcus system could remove diesel pollution efficiently. Comparing with the experimental results from sterilized soil, it revealed that the Jatropha curcus was applicable in phytoremediation. In the future, it is suggested that Jatropha curcus can be applied for in suit phytoremediation. Adding compost to thesystem can promote higher efficiencies. It could eliminate contamination and produce green energy in double efficiencies by using Jatropha curcus for phytoremediation.
目次 Table of Contents
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 4
2.1石油碳氫化合物污染起源 4
2.1.1石油碳氫化合物污染來由 5
2.1.2土壤及地下水污染案例 6
2.2石油碳氫化合物分類及特性介紹 12
2.2.1石油碳氫化合物內含物 15
2.2.2石油碳氫化合物危害 20
2.2.3石油碳氫化合物傳輸機制 23
2.3土壤污染整治復育技術 24
2.3.1物理/化學處理技術 26
2.3.2熱處理技術 28
2.3.3生物處理技術 30
2.3.3.1生物漱洗法(Bio-Slurping) 30
2.3.3.2土耕法(Land Farming) 30
2.3.3.3生物堆(Biopiles) 31
2.3.3.4生物通氣法(Bioventing, BV) 31
2.3.3.5監測式自然衰減法(Monitored Natural Attenuation, MNA) 31
2.3.3.6生物泥漿法(Biosludge) 31
2.3.3.7現地透水性反應牆(In Situ Permeable Reactive Barrier, PRB) 32
2.3.4植物復育技術(Phytoremediation) 32
2.3.4.1植物復育機制 34
2.3.4.2植物復育影響因素 36
2.3.4.3植物復育成本 37
2.3.4.4植物復育優缺點 37
2.3.4.5植物復育各國案例 37
2.4再生能源(生質能源) 40
2.4.1太陽能 40
2.4.2地熱 40
2.4.3海洋能 41
2.4.4風力 41
2.4.5水力能 41
2.4.6生質能 41
2.5堆肥 46
2.5.1堆肥方式 46
2.5.2堆肥影響因子 47
第三章 材料與方法 49
3.1實驗架構 49
3.2實驗流程 49
3.3盆栽試驗 50
3.3.1植物種類 50
3.3.2柴油污染土壤與滅菌土壤盆栽備置 50
3.3.3堆肥成品 51
3.3.4實驗程序 54
3.4土壤採樣與樣品保存 55
3.5土壤分析方法 55
3.5.1土壤粒徑 55
3.5.2土壤含水率 56
3.5.3土壤中酸鹼值 56
3.5.4土壤有機碳 56
3.5.5土壤氨氮 57
3.5.6土壤凱氏氮 57
3.5.7總石油碳氫化合物 57
3.6植體生長分析 59
3.7實驗儀器與器材 60
3.8實驗藥品 61
第四章 結果與討論 62
4.1土壤基本性質 62
4.1.1土壤粒徑分佈基本資料 62
4.1.2土壤有機成分分析 64
4.2生質能源作物生長變化 66
4.2.1堆肥添加對痲瘋樹生長之影響 66
4.2.2柴油污染對痲瘋樹生長之影響 67
4.2.3柴油污染對篦麻生長之影響 69
4.3柴油污染物之降解復育試驗結果 70
4.3.1木本植物之痲瘋樹植生復育結果 70
4.3.1.1痲瘋樹去除成效之比較 74
4.3.1.2堆肥添加與降解效率之關係 75
4.3.1.3整治時間與降解效率之關係 78
4.3.2草本植物之篦麻植生復育結果 79
4.4植物復育去除污染物效果比較 81
第五章結論與建議 85
5.1結論 85
5.2建議 86
參考文獻 87
參考文獻 References
Abu, G.O., and Dike, P.O. (2008). A study of natural attenuation processes involved in a microcosm model of a crude oil-impacted wetland sediment in the Niger Delta. Bioresource Technology, 99(11), 4761–4767.
Agamuthu, P., Abioye, O.P., Aziz, A.A. (2010). Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. Journal of Hazardous Materials, 179, 891–894.
Al-Baldawi, I. A. W., Abdullah, S. R. S., Suja, F., Anuar, N., Mushrifah, I. (2013). Comparative performance of free surface and sub-surface flow systems in the phytoremediation of hydrocarbons using Scirpus grossus. Journal of Environmental Management, 130, 324-330.
Bara, S.K., Verma, M.R., Surampalli, Y., Misra, K., Tyagi, R.D. and Menunier, J.F., (2006). Blasis, Bioremediation of hazardous wastes-a review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10, 59-72.
Bauddh, K., and Singh, R.P. (2012b). Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicology and Environmental Safety, 85, 13–22.
Bear, J. and Cheng, A.H.-D. (2010). Modeling Groundwater Flow and Contaminant Transport, Springer.
Berchmans, H.J., and Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 99(6), 1716-1721.
Brunetti, G., Plaza, C., Clapp, C.E., Senesi, N. (2007). Compositional and functional features of humic acids from organic amendments and amended soils in Minnesota, USA Soil Biology and Biochemistry, Volume 39(6), 1355-1365.
EEA (European Environment Agency), (2011). Overview of Contaminants Affecting Soil and Groundwater in Europe.
Euliss, K., Ho, C.H., Schwab, A.P., Rock, S., Banks, M.K. (2008). Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresource Technology, 99, 1961–1971.
Folk, R.L, and Ward, W.C. (1957). Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3 – 26.
Hakkola, M & Saarien, L. (1996). Exposure of tanker drivers to gasoline and some of its components. The Annals of Occupational Hygiene, 40(1), 1–5, 7–10.
Huang, X.D., El-Alawi, Y., Gurska, J., Glick, B.R., Greenberg, B.M. (2005). A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 81(1), 139-147.
International Energy Agency, 2012. “Renewables Information”
Jamil, S., Abhilash, P.C., Singh, N., Sharma, P.N. (2009). Jatropha curcas : A potential crop for phytoremediation of coal fly ash. Journal of Hazardous Materials, 172(1), 269-275.
Jùrgensen, K.S., Puustinen1, J., Suortti, A.M. (2000). Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environmental Pollution, 107(2), 245-254.
Kim, S., and Dale, B.E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, Volume 26(4), 361-375.
Macek, T., Macková, M., Ká, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances, 18, 23–34.
Maqbool, F., Wang, Z., Xuc,Y., Zhao, J., Gao, D., Zhao, Y.G. Bhatti, Z.A., Xing, B (2012). Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. Journal of Hazardous Materials, 237– 238, 262– 269.
Metcalf and Eddy. (1991). “Wastewater Engineering:Treatment, Disposal, Reuse”, 3rd ED., McGraw-Hill, Inc., New York, 1045.
Michalet, S., Rohr, J., Warshan, D., Bardon, C., Roggy, J.C., Domenach, A.M., Czarnes, S., Pommier, T., Combourieu, B., Guillaumaud, N., Bellvert, F., Comte, G., Poly, F. (2013). Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy. Plant Physiology and Biochemistry, 72, 169-177.
Muratova, A.Y., Golubev, S.N., Dubrovskaya, E.V., Pozdnyakova, N.N., Panchenko, P.E.V., Chernyshova, M.P., Turkovskaya, O.V. (2012). Remediating abilities of different plant species grown in diesel-fuel-contaminated leached chernozem. Applied Soil Ecology, 56, 51-57.
Olivares, A.R.O., Carrillo-González, R., González-Chávez, M. C. A., Hernández, R.M.S. (2013). Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. Journal of Environmental Management, 114, 316-323.
Palmroth, M.R.T., Pichtel, J., Puhakka, J.A. (2002). Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresource Technology, 84(3), 221-228.
P.Amon, J., Agrawal, A., L. Shelley, M., C. Opperman, B., P. Enright, M., D. Clemmer, N., Slusser, T., Lach, J., Sobolewski, T., Gruner, E., C. Entingh, A. (2007). “Development of wetland constructed for the treatment of groundwater contaminated by chlorinated ethenes”. Ecological Engineering, 30(1), 51-66.
Pandey, V.C. (2013). Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecological Engineering, 57, 336-341.
Peng, S., Zhou, Q., Cai, Z., Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Journal of Hazardous Materials, 168, 1490–1496.
Pinedo, J., Ibáñez, R., Irabien, Á. (2012). Risk Assessment of Total Petroleum Hydrocarbons (TPHs) Fractions. Chemical Engineering, 28, 61-66.
Pinedo, J., Ibáñez, R., Lijzen, J.P.A., Irabien, Á. (2013). Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances. Journal of Environmental Management, 130, 72-79.
Pramanik, K. (2003).Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renewable Energy, 28(2), 239-248.
Li, G., Zhang, H., Wu, X., Shi, C., Huang, X., Qin, P. (2011). Canopy reflectance in two castor bean varieties (Ricinus communis L.) for growth assessment and yield prediction on coastal saline land of Yancheng District, China. Industrial Crops and Products, 33(12), 395-402.
Ruppert, L., Lin, Z.Q., Dixon, R.P., Johnson, K.A. (2013). Assessment of solid phase microfiber extraction fibers for the monitoring of volatile organoarsinicals emitted from a plant–soil system. Journal of Hazardous Materials, 262, 1230-1236.
Shim, D., Kim, S., Choi, Y.I., Song, W.Y., Park, J., Youk, E.S., Jeong, S.C., Martinoia, E., Noh, E.W., Lee, Y. (2013). Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere, 90, 1478–1486.
Soga, K., Page, J.W.E., and Illangasekare, T.H. (2004). A review of NAPL source zone remediation efficiency and the mass flux approach. Journal of Hazardous Materials, 110, 13–27.
Soleimani, M.S., Afyuni, M., Hajabbasi, M.A., Nourbakhsh, F., Sabzalian, M.R., Christensen, J.H. (2010). Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere, 81, 1084–1090.
Susarla, S., Medina, V.F., McCutcheon, S.C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18, 647–658.
Teerakun, M., Reungsang, A., and Virojanakud, W. (2004). Phytoremediation of carbofuran residues in soil. Environmental & Hazardous Management, 26(Suppl. 1), 171-176.
U.S. EPA, 1999. “Monitored Natural Attenuation of Petroleum Hydrocarbons: U.S EPA remedial technology fact sheet”, EPA/600/F-98/601.
U.S.EPA, 2000. “Abstracts of Remediation Case Studies.” EPA/542-R-00-006 volume 4, 36-37.
U.S.EPA, 2000. “Abstracts of Remediation Case Studies.” EPA/542-R-00-006 volume 4, 38-39.
U.S.EPA, 2000. “Introduction to Phytoremediation.” EPA/600/R-99/107.Washing-ton DC, February.
U.S.EPA, 2001. “Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites.” EPA/504/S-01/500. Ground Water Issue, 14-16.
U.S.EPA, 2007. “Treatment Technologies for Site Cleanup : Annual Status Report(Twelfth Edition).” EPA/542-R-07-012.
U.S.EPA, 2008. “Control of Hazardous Air Pollutants From Mobile Sources.” EPA/Federal Register: March 29,2006/ volume71, number60.
U.S.EPA, 2012. “A Citizen's Guide to Phytoremediation.” EPA/542-F-12-006.
Wang, J., Liu, X., Zhang, X., Liang, X., Zhang, W. (2011). Growth response and phytoremediation ability of Reed for diesel contaminant. Procedia Environmental Sciences, 8, 68-74.
Witters, N., Mendelsohn, R., Passel, S.V., Slycken, S.V., Weyens, N., Schreurs, E., Meers, E., Tack, F., Vangronsveld, B.c.J. (2012). Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass and Bioenergy, 39, 470-477.
Wixtrom, R.N., & Brown, S.L. (1992). Individual and population exposures to gasoline. J Expo Anal Environ Epidemiol, 2(1), 23-78.
Xin, B.P., Wu, C.H., Wu, C.H., Lin, C.W. (2013). Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead. Journal of Hazardous Materials, 224-225, 765-772.
台灣中油股份有限公司,2013,中油業務簡介。
葛宇甯,2012,土壤污染傳輸之簡介,台灣土壤及地下水環境保護協會簡訊,42期,25-29。
陳谷汎、高志明,2002,土壤及地下水物理/化學復育技術,台灣土壤及地下水環境保護協會簡訊,5期,3-5。
鄭雅堂,2007,再生能源發電,物理雙月刊,29卷三期,673-687。
田雲生,2012,綠能介紹與應,台中區農業改良場一0一年專題討論專集,237-241。
古森本,2008,生質能源作物之開發與潛力,農業生計產業季刊(植物種苗生技) ,13期,46-53。
李筱萍,2011,認識痲瘋樹,石油通訊,716期,11-13。
蔡宜峰,2008,有機肥料的研發與應用,有機作物栽培技術研討會專刊,165-178。
經濟部工業局,2005,堆肥技術與設備手冊及案例彙編。
經濟部工業局,2004,土壤及地下水污染整治技術手冊-生物處理技術。
經濟部工業局,2007,石油碳氫化合物土壤及地下水污染預防與整治技術手冊。
經濟部能源局,2013,一0一年年報。
洪聖峰、馬復京、游漢明,2011,大戟科能源植物麻瘋樹屬、油桐屬及烏桕屬之嫁接性質探討,林業研究季刊,33(4),51-72。
行政院環保署土壤及地下水污染整治基金管理會,2013,101年度土壤及地下水污染整治年報。
行政院環保署土壤及地下水污染整治基金管理會,2010,土壤及地下水污染整治十年有成專刊,87-100。
行政院勞工安全委員會,2009,物質安全資料表。
林俊雄,2004,石油提煉,科學發展,382期,24-29。
趙映琇,2002,石油分解微生物利用於土壤油污染之生物復育,碩士論文,雲林科技大學環境與安全工程系。
林家任,2012,以生質能源作物進行植物修復受輕油污染土壤之研究,碩士論文,國立中山大學海洋環境及工程學系。
宋鴻愷,2006,廚餘堆肥化過程降解柴油及燃料油之研究,碩士論文,國立高雄海洋科技大學。
陳冠霖,2013,蓖麻油脂化學品的製造與觸媒熱裂解蓖麻粕之研究,碩士論文,國立成功大學化學工程學系。
吳立全,2012,廚餘桶裝堆肥化最是條件之研究,碩士論文,嘉南藥理科技大學環境工程與科學系。
郭魁士,1989,土壤實驗,中國書局,137-140。
洪長春,2008,生質柴油綠金的新趨勢–痲瘋樹,國家實驗研究院科技政策研究與資訊中心,議題觀點。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code