Responsive image
博碩士論文 etd-0021116-181050 詳細資訊
Title page for etd-0021116-181050
論文名稱
Title
基於氮化鎵高電子移動率電晶體之圖騰柱無橋式單位功因整流器研究
A study on GaN HEMT–based Totem-Pole Bridgeless PFC Converter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-19
繳交日期
Date of Submission
2016-01-21
關鍵字
Keywords
圖騰柱功率因數修正轉換器、電力電子系統模擬軟體(PSIM)、反向恢復電荷、連續導通模式、反向恢復電流、氮化鎵高電子移動率電晶體
CCM, GaN HEMT, Irr, Totem-Pole PFC, PSIM, Qrr
統計
Statistics
本論文已被瀏覽 6012 次,被下載 1038
The thesis/dissertation has been browsed 6012 times, has been downloaded 1038 times.
中文摘要
圖騰柱無橋功率因數修正轉換器操作於連續導通模式時,常見金氧半場效電晶體之基體二極體開關的反向恢復電流(Irr)有著使用上的難度。由反向恢復電流可能造成的切換損失與低落效率因此限制了圖騰柱無橋功率因數修正器調校應用較新元件的能力。在使用由 Transphorm 公司 TO-247封裝600V IGBT之後即能在功率轉換應用中獲得更多的系統效益。本論文將提供此架構的深入研究,其中包括以氮化鎵高電子移動率電晶體取代TO-247封裝中的金氧半場效電晶體並以碳化矽蕭特基二極體取代快速回復二極體等討論與分析。
為驗證分析,以使用電力電子系統模擬軟體(PSIM 10.0.3)來詳加模擬文中經設計的連續導通模式型圖騰柱無橋功率因數修正轉換器。此圖騰柱功率因數修正器的控制設計由電流控制迴路、電壓控制迴路以及脈波寬度調變所組成以控制各個主開關。傳統升壓式無橋功率因數修正控制研究包含藉由開關切換的操作控制以維持高功率因素。文中模擬波型皆是在電力電子系統模擬軟體(PSIM 10.0.3)中模擬運行5秒的結果。其中以電力電子系統模擬軟體(PSIM 10.0.3)運行模擬TO-247封裝氮化鎵高電子移動率電晶體的結果、非理想元件特性波型與效率皆與Transphorm工程師所說明相符。模擬結果與分析計算相互比較評估,圖騰柱功率因數修正器適用於連續導通模式,並能藉由使用氮化鎵高電子移動率電晶體封裝來達到高功率品質之效。模擬電路的輸出電壓為407V而當負載額定約950W時功率因素依然高於97.24%。當開關切換頻率設計高達100k赫茲時,量測計算的效率甚至可高達98.74%。
Abstract
The Totem-Pole bridgeless Power Factor Correction (PFC) converter inherits the MOSFET built in body diode reverse-recovery current (Irr) at Continuous Conduction Mode (CCM). The Irr issues limit the Totem Pole PFC to be adapted in the newest technological devices due to switching losses and low efficiency. The introduction of the first 600V transistor in a TO-247 package by Transphorm, shaped the Totem-Pole PFC in CCM operation attaining greater system benefits in power conversion application. This thesis will provide an insight approach by implementing the GaN HEMT in a TO-247 package replacing the MOSFET and SiC Schottky diode replacing the fast recovery diodes in this topology.
To verification a universal CCM totem pole bridgeless PFC converter is design and simulated using PSIM 10.0.3 software. The control design for the totem pole PFC consists of a current control loop, voltage control loop and Pulse width modulation (PWM) to control main switches to be active at every positive or negative half cycle. The traditional boost bridgeless PFC control encompass by PWM signal to operate switches in order to maintain very high PFC as proposed. The simulation waveforms were obtained after five seconds of simulation in PSIM 10.0.3. It is clearly noticed that PSIM 10.0.3 print the characteristic of non-ideal components waveforms and efficiency for the GaN HEMT in a TO-247 package as explained by Transphorm engineers. Simulation results compared with calculation, it’s notable that the totem-pole PFC is applicable at CCM operation, attaining high power qualities by using GaN HEMT package. The output voltage is 407V and PF higher than 99.44% when the load is approximately 950W. The measured efficiency achieves 98.74% at high line conduction with switching frequency 100kHz.
目次 Table of Contents
Contents Pages
Declaration.................................................................................................................................ii
Acknowledgements...................................................................................................................iii
Abstract (Chinese).........................................................................................................................iv
Abstract (English)...........................................................................................................................v
Table of contents.......................................................................................................................vi
Table of figures..............................................................................................................................ix
Tables of tables..........................................................................................................................xi
List of symbols.........................................................................................................................xii

CHAPTER 1 Introduction
1.1 Background..............................................................................................................1
1.2 Motive......................................................................................................................2
1.3 Thesis Structure...................................................................................................... 3

CHAPTER 2 Bridgeless Boost topologies overview
2.1 Bridgeless Boost topologies PFC overview............................................................4
2.2 Conventional PFC Boost rectifiers………..............................................................5
2.3 Bridgeless PFC Boost Converter............................................................................6
2.4 Semi- Bridgeless PFC Boost Converter..................................................................7
2.5 Dual Boost Bridgeless PFC with bidirectional switch............................................9
2.6 Pseudo Totem-Pole bridgeless PFC Topology......................................................10
2.7 Totem-Pole Bridgeless Boost PFC Topology…………………………................11
2.8 Totem-Pole Bridgeless PFC issues ……………………………….……..............13
2.9 Bridgeless PFC component summary... ………………………………................14

CHAPTER 3 GaN HEMT-based Totem-pole PFC Converter
3.1 GaN HEMT device overview................................................................................ 16
3.2 Transphorm GaN HEMT device benefits .............................................................17
3.3 Totem-Pole PFC topology with GaN HEMT switches..........................................18
3.4 Totem-Pole PFC with GaN HEMT operation mode analysis…...........................19
3.4.1 Positive AC line half cycle operation....................................................................20
3.4.2 Negative AC line half cycle operation...................................................................21
3.5 Input and out power assumption……....................................................................22
3.5.1 Parameters design estimations............................................................................22
3.6 Duty Ratio design...................................................................................................23
3.7 Inductor design......................................................................................................27
3.8 Capacitor design ……………………………………............................................29
3.9 selection of diode………………………………………………………...............30
3.10 Power switch Selection…………………………………......................................31
3.11 Power Factor application.. ………………………………....................................34
3.12 Active Power Factor Correction............................................................................35

CHAPTER 4 Simulations
4.1 GaN HEMT and SiC Diode Schottky Parameter.......................................................36
4.2 Totem-Pole PFC with GaN HEMT and SiC Diode topology….............................37
4.3.1 Totem-Pole PFC with GaN HEMT control model................................................38
4.3.2 Control Model analysis............................................................................................ 39
4.4 Totem-pole PFC with GaN HEMT device waveform ............................................40
4.5 Inductor current characteristics…………………………...........................................41
4.6 Inductor, Capacitor and Diode waveforms…………………………........................42
4.7 Zero Voltage Switching (ZVS)………………………………...................................43
4.8 Totem-Pole PFC with GaN HEMT efficiency…………………..............................45
4.9 Totem-Pole PFC analysis.............................................................................................46

CHAPTER 5 Switching losses analysis
5.1 GaN HEMT circuit losses model...........................................................................47
5.2 Inductor and Switching transient.......................................................................... 48
5.3 Hard switching Figure-Of-Merit (FOM)...............................................................49
5.4 Turn-on energy losses............................................................................................52
5.5 Turn-off energy losses……………………….......................................................54
5.6 Ringing losses ……………………………………...............................................55
5.7 GaN HEMT device total energy loss... ………………………………................56



CHAPTER 6 Energy losses Calculations and Simulation

6.1 GaN HEMT losses analysis…….................................................................................57
6.2 Energy losses Classification……................................................................................58
6.3 Energy losses calculation…….....................................................................................60
6.4 Switching Energy losses solution summary..............................................................61
6.5 Total energy loss for each half cycle ……………….................................................63
6.6 MOSFET (CREE 900V) application…………………………..................................64
6.7 MOSFET (CREE) energy losses calculation…………………………....................66
6.8 MOSFET energy losses solution analysis…………….............................................68
6.9 MOSFET (Infineon) Energy losses…………............................................................70
6.10 Transistors Energy losses comparison…...................................................................70
6.11 Descriptive analysis of Energy losses……..............................................................71

CHAPTER 7 Conclusion
7.1 Summary……........................................................................................................72
7.2 Contribution of thesis............................................................................................ 73
7.3 Novelty of work..................................................................................................... 74
7.4 Future work............................................................................................................ 74
7.5 References………..................................................................................................75
Appendix 1 ………..................................................................................................81
Appendix 2………...................................................................................................82
參考文獻 References
[1] L. Huber, Yungtaek Jang, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,”IEEE Trans. on Power Electron, Vol. 23, No. 3, pp. 1381-1390, May. 2008.
[2] P. Kong; Shuo Wang; Lee, F.C., "Common Mode EMI Noise Suppression for Bridgeless PFC Converters," IEEE Transactions on Power Electronics, vol. 23, npp.291 – 297, January 2008 2008.
[3] Onsemi, “ Power Factor Correction(PFC) Handbook” http://www.onsemi.com/pub_link/Collateral/HBD853- D.PDF
[4] Bo Zhou, “CCM Totem-Pole Bridgeless PFC with Ultra-Fast IGBT” [Online]. Available:https://vtechworks.lib.vt.edu/bitstream/handle/10919/51120/Zhou_B_T_2014.pdf?sequence=1
[5] Sebastian, J.; Jaureguizar, M.; Uceda, J.; “An overview of power factor correction in single-phase off-line power supply systems”, IECON '94, Pages: 1688 - 1693 vol.3
[6] C. Woo-Young, K. Jung-Min, K. Eung-Ho, L. Jong-Jae, and K. Bong-Hwan,"Bridgeless Boost Rectifier With Low Conduction Losses and Reduced Diode Reverse-Recovery Problems, " Industrial Electronics, IEEE Transactions on, vol. 54, pp.769- 780, 2007.
[7] R. Seyezhai and M. Shanthi , “ A Comparative analysis of bridgeless Power Factor Correction (PFC) AC-DC converter Topology for Battery charging application”,MAGNT Research Report (ISSN. 1444-8939), vol.3(8). PP. 210-222
[8] B. Lu, R. Brown, and M. Soldano, “Bridgeless PFC implementation using one cycle control technique” IEEE Applied Power Electronics (APEC) Conf. Proc., pp. 812-817,Mar, 2005.
[9] Lu, B.; Dong, W.; Zhao, Q.; Lee, F.C.; “Performance evaluation of CoolMOS and SiC diode for singlephase power factor correction applications”, APEC '03.Pages:651 - 657 vol.2
[10] Yuancheng Ren; Ming Xu; Jinghai Zhou; Lee, F.C.; , "Analytical loss model of power MOSFET," Power Electronics, IEEE Transactions on , vol.21, no.2, pp. 310- 319,March 2006
[11] Q. Li, M.A.E. Andersen, and O.C. Thomsen, “Conduction Losses and Common Mode EMI analysis on bridgeless power factor correction,” International conference on Power Electronics and Drive Systems, Nov. 2-5, 2009.
[12] Climate Savers Computing Initiative, White Paper [Online]. Available:http://www.climatesaverscomputing.org/docs/20655_Green_Whitepaper_0601307_ry.pdf
[13] Environmental Protection Agency (EPA), Product Specifications: Eligibility Criteria & Partner Commitments [Online]. Available:http://www.energystar.gov/index.cfm?c=product_specs pt_product_specs#off
[14] M. Mahdavi and H. Farzanehfard, “New Bridgeless PFC Converter with Reduced Components,” IEEE International Conference on Electronic Devices, Systems and Applications, pp. 125-130, 2011.
[15] J.S Lai and D. Chen, “Design Consideration for Power Factor Correction Boost Converter Operating at the Boundary of Continuous Conduction Mode and Discontinuous Conduction Mode,” Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 267-273, 1993.
[16] Q. Li, M. A. E. Andersen and O. C. Thomsen, "Conduction losses and common mode EMI analysis on bridgeless power factor correction," in Proc. of - 80 - International Conference on Power Electronics and Drive Systems, Nov. 2009, pp. 1255-1260.
[17] M. M. Jovanovic and Y. Jang, “State-of-the-Art, Single-Phase, Active Power Factor Correction Techniques for High-Power Applications an Overview,” IEEE Trans. Ind.Electron., Vol. 52, No. 3, pp. 701-708, 2005
[18] https://en.wikipedia.org/wiki/Power_factor
[19] J.W. Lim and B.H. Kwon, “A power factor controller for single phase PWM rectifiers,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp.1035–1037, Oct 1999.
[20] H. Wei and I. Batarseh, “Comparison of Basic Converter Topologies for Power Factor Correction,” Proc. of IEEE Power Electronics Specialist Conference, pp. 1162-1172,1998.
[21] J. Le Bunetel and M. Machmoum, “Control of Boost unity Power Factor Correction Systems”, IEEE Transactions on Power Electronics 1999, pp. 266- 271.
[22] Totem pole bridgeless PFC using GaN transistor. GaN System Inc. Application Notes
[23] J. Strydom, “selecting eGaN FET optimal On-Resistance” Effective Power Conversion Coorporation (EPCC), [Online] Available:http://epc-co.com/epc/Portals/0/epc/documents/papers/SelectingeGaNFETOptimalOn-Resistance.pdf
[24] B. Kozacek, J. Kostal and M. Frivaldsky, “Analysis of Figure Of Merit-power transistor’s qualitative parameter,” IEEE Transactions on Power Electronics,no.978-1-4673-6788-2/15, 2015
[25] Infineon Technologies: “IDH08G65C5, datasheet”, SiC Schottky Diode Rev. 2.2,2012-12-10.
[26] Transphorm Technologies: “TPH3206PD, datasheet”, GaN HEMT switch Rev. 2015-04-12.
[27] CREE Technologies: “C3M0065090D, datasheet”, Silicon Carbide Power MOSFET Rev. 2015-05.
[28] J. Honea, Liang Zhou, Zhan Wang, Don Kebort, Jenny Cortez and YiFeng Wu:Transphorm Inc. “Packaging GaN in a TO-247” [Online] Available: http://www.hyline.de/fileadmin/Public/Power/hersteller/transphorm/dokumente/Transphorm TO247 in bp_2015_05 74.pdf
[29] Y. Wu, M. Jacob-Mitos, M. L. Moore, and S. Heikman, “A 97.8% efficient GaN HEMT boost converter with 300-W output power at 1 MHz,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 824–826, Aug. 2008.
[30] L. Zhou, Y.-F. Wu, and U. Mishra, “True bridgeless totem-pole PFC based on GaN HEMTs,” in Proc. PCIM Eur., May 2013, pp. 1017–1022.
[31] X. Huang, Z. Liu, Q. Li, and F. C. Lee, “Evaluation and application of 600V GaN HEMT in cascade structure,” IEEE Trans. Power Electron., vol. 29, no. 5,pp. 2453–2461, May 2014.
[32] X. Huang, Q. Li, Z. Liu, and F. C. Lee, “Analytical loss model of high voltage GaN HEMT in cascode configuration,” IEEE Trans. Power Electron., vol. 29, no. 5, pp.2208–2219, May 2014.
[33] O.Al-Naseem, R. W. Erickson, and P. Carlin, “Prediction of switching loss variations by averaged switch modeling,” in Proc. IEEE 15th Appl. Power Electron. Conf., Feb. 2000, vol. 1, pp. 242–248.
[34] X. Huang, Z. Liu, F. C. Lee, and Q. Li, “Characterization and Enhancement of High-Voltage Cascode GaN Devices”, IEEE Transactions on Electron Devices,vol. 62, no. 2, February 2015
[35] A. Lidow, J. Strydom, M. D. Rooij, and Y. Ma, GaN Transistors for Efficient Power Conversion. EI Segundo, CA, USA: Power Conversion Publications, 2012, ch. 1.
[36] Z. Liu, X. Huang, F. C. Lee, and Q. Li, “Package parasitic inductance extraction and Simulation model development for the high-voltage cascode GaN HEMT,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1977–1985, Apr. 2014.
[37] Z. Liu, X. Huang, W. Zhang, F. C. Lee, and Q. Li, “Evaluation of highvoltage cascode GaN HEMT in different packages,” in Proc. 29th Annu. IEEE Appl. Power Electron. Conf. Expo., Mar. 2014, pp. 168–173.
[38] N. Kaminski, “State of the art and the future of wide band-gap devices,” in Proc. IEEE 13th Eur. Conf. Power Electron. Appl., Sep. 2009, pp. 1–9.
[39] W. Wang; F. Pansier; S.W.H.de Haan; J.A. Ferreira, “Loss comparison of Gallium Nitride and Silicon MOSFET in a high frequency boost converter”, 8th International Conference on Integrated Power Systems (CIPS), Feb. 2014
[40] J. P. Harper, “Understanding Modern Power MOSFET’s” Fairchild Semiconductor Power Seminar 2006, www.fairchildsemi.com
[41] D. Graovac, Marco Purschel, “ MOSFET Power Losses Calculation Using the Datasheet Parameters ”, 2006, Application Note, V1.1 July 2006.
[42] D. C. Reusch, “High Frequency, High Power Density Integrated Point of Load and Bus Converters”April 16th, 2012. [Online] Available: http://scholar.lib.vt.edu/theses/available/etd-04162012-151740/unrestricted/Reusch_4_15_12_Final.pdf
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code