Responsive image
博碩士論文 etd-0021118-013440 詳細資訊
Title page for etd-0021118-013440
論文名稱
Title
污泥水解及調理對都市下水污泥電脫水之影響
Effects of hydrolysis and conditioning on sewage sludge electrodewatering
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-19
繳交日期
Date of Submission
2018-02-22
關鍵字
Keywords
都市下水污泥、超音波水解、二次酸水解、電脫水
Sewage sludge, Secondary acid hydrolysis, Electrodewatering, Ultrasonic hydrolysis
統計
Statistics
本論文已被瀏覽 5614 次,被下載 1
The thesis/dissertation has been browsed 5614 times, has been downloaded 1 times.
中文摘要
本研究嘗試探討不同水解方式(超音波水解、二次鹼水解及二次酸水解)及施加電場對於經厭氧消化後之都市下水污泥脫水效能之影響。首先,結合上述不同水解試驗結果,並使用半模廠規模的電動力輔助凹板式壓濾脫水系統進行單一濾室脫水試驗,求得污泥最佳脫水條件如下 : (1) 使用硝酸將污泥進行30 min二次酸水解(pH=3) ; (2) 施加輸入比能量為333 kJ/kg之超音波; (3) 添加200 mg/L絮凝劑;(4) 進行機械脫水50 min, 再壓濾電脫水20 min (施加電場強度為30 V/cm)。利用上述最佳條件之三濾室脫水試驗,其污泥餅平均含水率為66 %,能耗為107.9 kWh/ton (濕基),換算污泥脫水費用約新台幣252 NTD/ton (濕基)。後續模廠試驗係以半模廠規模之最佳操作參數進行三個濾室污泥電脫水試驗,由於電路系統受限,施加電場強度僅為3.8 V/cm,產出之污泥餅平均含水率為78.3 %,能耗為6.3 kWh/ton (濕基),換算污泥脫水費用約238.5 NTD/ton (濕基)。綜觀上述試驗結果,本研究利用超音波-二次酸水解污泥,並結合電動力輔助凹板式壓濾脫水機之半模廠試驗結果證實,此工法能明顯降低污泥餅含水率,具技術及經濟可行性 ; 但模廠規模之初步試驗結果則不盡理想,有待進一步探討其最佳參數及修改大型濾板設計(包括流道…等),以便日後工程實現。
Abstract
The objective of this study was to investigate the combined effects of different hydrolysis methods (ultrasonic hydrolysis, secondary alkaline hydrolysis and secondary acid hydrolysis) and the application of electric field on the dewatering efficiency of anaerobically digested sewage sludge. First, based on the results of above-indicated hydrolysis methods and dewatering performance of a semi-pilot-scale recessed plate filter press electrodewatering system with one filter chamber, the optimal operating conditions for sludge dewatering were determined as follows: (1) Secondary hydrolysis by nitric acid at pH 3 for 30 min; (2) Ultrasonification under an specific energy input of 333 kJ/kg: (3) Flocculation at a dosage of 200 mg/L; (4) Mechanical dewatering for 50 min, followed by 20-min electrodewatering under electric field strength of 30V/cm. By using such optimal conditions in an extension test of three filter chambers, it yielded a filter cake of 66% in average moisture content. The corresponding energy consumption and cost were determined to be 107.9 kWh/ton (wet basis) and 252 NTD/ton (wet basis). By adopting the above-indicated optimal operating conditions in the pilot-scale sludge electrodewatering test for three filter chambers, it turned out that the applicable electric field strength was only 3.8 V/cm. Under the circumstances, it yielded an average moisture content of 78.3% for the filter cake. The corresponding energy consumption and cost were determined to be 6.3 kWh/ton (wet basis) and 238.5 NTD/ton (wet basis). Based on the results of the semi pilot-scale test, a treatment scheme of applying secondary acid hydrolysis and ultrasonic hydrolysis prior to subjecting to the recessed plate filter press electrodewatering would be technically and economically feasible. In the pilot study, however, the preliminary results are not satisfactory. Thus, further studies are needed before its commercial application.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 xv
表目錄 xviii
照片目錄 xx
第一章 前言 1
1.1研究緣起 1
1.2 研究目的 3
1.3 研究內容與架構 4
1.3.1 瓶杯試驗 4
1.3.2 污泥脫水 5
1.3.3 處理效能及應用性評估 5
1.3.4 商業化機台測試 5
第二章 文獻回顧 7
2.1 污泥來源、組成與水分分布形式 7
2.1.1 污泥來源特性 7
2.1.1.1 初級污泥 (Primary Sludge) 8
2.1.1.2 生物污泥 (Biological Sludge) 9
2.1.1.3 化學污泥 (Chemical Sludge) 9
2.1.2 污泥水分分布 10
2.1.2.1 自由水 (Free/Bulk Water) 10
2.1.2.2 間隙水 (Interstitial/Capillary Water) 10
2.1.2.3 表面水 (Surface/Vicinal Water) 10
2.1.2.4 結合水 (Bound/Intracellular/Hydration Water) 11
2.1.3 胞外聚合物 (Extracellular Polymeric Substances,EPS) 12
2.2 污水及污泥處理技術 14
2.2.1 活性污泥法 14
2.2.2 厭氧消化法 15
2.3 污泥一次水解 15
2.3.1 超音波水解 16
2.3.2 鹼水解 19
2.3.3 酸水解 19
2.4 污泥的調理作用 22
2.4.1 物理調理 22
2.4.2 化學調理 23
2.4.2.1 絮凝劑調理 23
2.4.2.2 混凝劑 26
2.4.2.3 Fenton 試劑 26
2.4.3 雙重調理 27
2.5 污泥脫水特性指標參數 28
2.5.1 毛細汲取時間 (Capillary Suction Time , CST) 28
2.5.2 過濾比阻 (Specific Resistance to Filtration , SRF) 29
2.5.3 總體沉降 (Zone Settling) 30
2.6 污泥脫水技術 31
2.6.1 傳統脫水 31
2.6.1.1 加壓過濾 32
2.6.1.2 帶濾式過濾 32
2.6.1.3 離心過濾 33
2.6.2 改良式污泥脫水 34
2.7 電動力 34
2.7.1 電動力原理 35
2.7.1.1 電滲透流 36
2.7.1.2 電遷移/離子遷移 37
2.7.1.3 電泳 37
2.7.1.4 水電解 37
2.7.2 電滲透脫水 38
2.8 污泥產出及處理概況 39
2.8.1 國內事業污泥產出、儲存及再利用現況 41
2.8.2 國內下水污泥產出、儲存及再利用現況 41
2.8.3 日本處理污泥之現況 43
2.8.4 歐美處理污泥之現況 44
第三章 實驗材料、設備與方法 45
3.1 都市下水污泥來源 45
3.2 實驗材料與設備 47
3.2.1 實驗材料 47
3.2.2 實驗設備 48
3.2.3 電動力輔助凹板式壓濾脫水機台 52
3.3 研究方法 53
3.3.1 污泥瓶杯試驗 54
3.3.1.1 二次鹼水解 54
3.3.1.2 二次酸水解 54
3.3.1.3 超音波輔助二次酸/鹼水解 55
3.3.2 毛細汲取時間 (Capillary Suction Time) 56
3.3.3 過濾比阻 (Specific Resistance to Filtration) 57
3.3.4總體沉降(Zone Settling)試驗 58
3.3.5 其他分析方法 59
3.3.6 脫水試驗參數及組別一覽表 60
第四章 結果與討論 62
4.1污泥基本特性 62
4.1.1污泥二次酸/鹼水解批次試驗 64
4.1.2都市下水污泥二次水解後再添加絮凝劑之瓶杯試驗 68
4.1.2.1 都市下水污泥二次鹼水解後再添加絮凝劑調理 68
4.1.2.2 都市下水污泥二次酸水解後再添加絮凝劑調理 71
4.1.3超音波輔助都市下水污泥二次酸/鹼水解後再添加
絮凝劑之瓶杯試驗 73
4.1.3.1 超音波輔助都市下水污泥二次鹼水解後再添加
絮凝劑調理 73
4.1.3.2 超音波輔助都市下水污泥二次酸水解後再添加
絮凝劑調理 77
4.2都市下水污泥脫水試驗產物分析 80
4.2.1濾液量 80
4.2.2 濾液pH值 83
4.2.3 污泥餅含水率 84
4.2.4 單一濾室最佳試驗組別操作條件驗證及其延伸試驗 87
4.2.5 經濟可行性評估 89
4.2.6 污泥中溶解性正磷酸鹽及sCOD比較 92
4.2.7 污泥餅顯微結構觀察 96
4.3都市下水污泥脫水模廠試驗初步探討 99
4.3.1 都市下水污泥樣品 100
4.3.2 模廠脫水設備 100
4.3.3 脫水試驗參數 100
4.3.4污泥脫水能耗及污泥餅含水率 101
第五章 結論與建議 103
5.1 結論 103
5.2 建議 105
參考文獻 106
碩士在學期間發表之論文 124
參考文獻 References
英文部分
Agerbaek, M., and K. Kristian, “On the Origin of Specific Resistance to Filtration,” Water Science and Technology, Vol. 28, pp.159-168 (1993).
Bestra, L., D. K. Sengupta, B. P. Singh, and S. Bhattacharjee, “A Novel Method Based on Capillary Suction Time (CST) for Assessment of Dispersion Characteristics of Suspensions,” Journal of the American Ceramic Society, Vol. 88, pp.109-113 (2005).
Bougrier, C., H. Carr`ere , and J. P. Delgen`es, “Solubilisation of waste-activated sludge by ultrasonic treatment,” Chemical Engineering Journal, Vol. 106, pp.163-169 (2005).
Chen, Y., G. Su, H. Z. Yang, and G. W. Gu, “Effect of acid and surfactant treatment on activated sludge dewatering and settling,” Water Research, Vol. 35, pp.2615-2620 (2001).
Chen, Y., G. Su, Y. S. Chen, and G. W. Gu, “Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering,” Chemical Engineering Journal, Vol. 99, pp.137-143 (2004).
Chen, Y., J. Su, H. Yuan, Q. Zhou, and G. Gu, “Hydrolysis and acidification of waste activated sludge at different pHs,” Water Research, Vol. 41, pp. 683-689 (2007).
Chang, I. L., C. P. Chu, and D. J. Lee, “Electrokinetic effects on expression characteristics of clay slurries,” Journal of Environmental Science and Health, Vol. 32(5), pp.1591-1604 (1997).
Citeau, M., J. Olivier, A. Mahmoud, J. Vaxelaire, O. Larue, and E. Vorobiev, “Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: Electrical variables analysis,” Water Research, Vol. 46, pp.4405-4416 (2012).
Chowdhury, P. and T. Viraraghavan, “Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes – A review,” Science of the Total Environment, Vol. 407, pp.2474-2492 (2009).
Dignac, M. F., V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro, and P. Scribe, “Chemical description of extracellular polymers: Implication on activated sludge floc structure,” Water Science and Technology, Vol. 38, pp.45-53 (1998).
Feng, X., H. Y. Lei, J. C. Deng, Q. Yu, and H. L. Li, “Physical and chemical characteristics of waste activated sludge treated ultrasonically,” Chemical Engineering and Processing: Process Intensification, Vol. 48, pp.187-194 (2009).
Gher, R. and J. G. Henry, “Removal of extracellular material techniques and pitfalls,” Water Research, Vol. 17, pp.1743-1748 (1983).
Gray, N.F, “Capillary Suction Time (CST), ” Water Technology Research, pp.659-670 (2015).
Gregory, J., “Flocculation by polymers and polyelectrolytes, ” Academic Press, London (1987).
Gregory, J., “Rates of flocculation of latex particles by cationic polymers,” Journal of Colloid and Interface Science, Vol. 42, pp.448-456 (1973).
Hu, K., J. Q. Jiang, Q. L. Zhao, D. J. Lee, K. Wang, and W. Qiu, “Conditioning of wastewater sludge using freezing and thawing: Role of curing,” Water Research, Vol. 45, pp.5969-5976 (2011).
Hreiz, R., M. A. Latifi and N. Roche, “Optimal design and operation of activated sludge processes: State of the art,” Chemical Engineering Journal, Vol. 281, pp.900-920 (2015).
Huisman, M., W. G. M. van Kesteren, “Consolidation theory applied to the capillary suction time (CST) apparatus,” Water Science and Technology, Vol. 37, pp.117-124 (1998).
Harrison, E. Z., S. R. Oakes, M. Hysell, and A. Hay, “Organic chemicals in sewage sludges,” Science of the Total Environment, Vol. 367, pp.481-497 (2006).
Hernando, M. R., M. E. Guillermo, L. Jordi, and L. Joan, “Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments,” Chemical Engineering Journal, Vol. 230, pp.102-110 (2013).
Houghton, J. I. and T. Stephenson, “Effect of influent organic content on digested sludge extracellular polymer content and dewaterability,” Water Research, Vol. 36, pp.3620-3628 (2002).
Ince, N. H., G. Tezcanli, R. K Belen, and I. G. Apikyan, “Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications,” Applied Catalysis B: Environmental, Vol. 29, pp.167-176 (2001).
Kim, D. H., E. Jeong, E. Jeong, and S. E. Oh, “Combined (alkaline + ultrasonic) pretreatment effect on sewage sludge disintegration,” Water Research, Vol. 44, pp.3093-3100 (2010).
Kepp, U., I. Machenbach, N. Weisz, and O. E. Solheim, “Enhanced stabilisation of sewage sludge through thermal hydrolysis - Three years of experience with full scale plant,” Water Science and Technology, Vol. 42, pp.89-96 (2000).
Kuntz, J. R., I. D. and W. Kauzmann, “Hydration of proteins and polypeptides,” Advance in Protein Chemistry, Vol. 28, pp.239-345 (1974).
Khanal, S.K, “Anaerobic Biotechnology for Bioenergy Production: Principles and Applications,” John Wiley & Sons, Inc., Iowa (2008).
Katsiris, N., and K. K. Alexandra, “Bound water content of biological sludges in relation to filtration and dewatering,” Water Research, Vol. 21, pp.1919-1327 (1987).
Kovalick, W. W, “Innovative ground-water remediation technologies: Publications and conference proceedings 1990-1996,” U.S Environmental Protection Agency Technology Innovation Office, Washington (1996).
Li, B. and Y. Y. Yan, “Solid desiccant dehumidification techniques inspired from natural electroosmosis phenomena,” Journal of Bionic Engineering, Vol. 8, pp.90-97 (2011).
Li, B., Q. Y. Lin, and Y. Y. Yan, “Development of solid desiccant dehumidification using electro-osmosis regeneration method for HVAC application,” Building and Environment, Vol. 48, pp.128-134 (2012).
Li, H., Y. Jin, R. B. Mahar, Z. Y. Wang, and Y. F. Nie, “Effects and model of alkaline waste activated sludge treatment,” Bioresource Technology, Vol. 99, pp.5140-5144 (2008).
Li, Z. L., P. L. Lu, D. J. Zhang, G. C. Chen, S. W Zeng, and Q. He, “Population balance modeling of activated sludge flocculation: Investigating the influence of Extracellular Polymeric Substances (EPS) content and zeta potential on flocculation dynamics,” Separation and Purification Technology, Vol. 162, pp.91-100 (2016).
Lv, W., F. L. Schanbacher, and Z. T. Yu, “Putting microbes to work in sequence: Recent advances in temperature-phased anaerobic digestion processes,” Bioresource Technology, Vol. 101, pp.9409-9414 (2010).
Lee, J. E., J. K. Lee, and H. K. Choi, “Filter press for electrodewatering of waterworks sludge,” Drying Technology, Vol. 25, pp.1649-1657 (2007).
Lin, J.G., Y. S. Ma, and C. C. Huang, “Alkaline hydrolysis of the sludge generated from a high-strength nitrogenous-wastewater biological-treatment process,” Bioresource Technology, Vol. 65, pp.35-42 (1998).
Liu, H. J. Yang, Y. Shi, Y. Li, S. He, C. Yang, and H. Yao, “Conditioning of sewage sludge by Fenton’s reagent combined with skeleton builders,” Chemosphere, Vol. 88, pp.235-239 (2012).
Ma, H. J., S. T. Zhang, X. B. Lu, B. Xi, X. L. Guo, H. Wang, and J. X. Duan, “Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment,” Bioresource Technology, Vol. 116, pp.441-447 (2012).
Maria, C. T., G. Bertanza, M. Canato, S. Heimersson, G. Laera, and M. Svanstrom, “Techno-economic and environmental assessment of upgrading alternatives for sludge stabilization in municipal wastewater treatment plants,” Journal of Cleaner Production, Vol. 112, pp.3106-3115 (2016).
Maria, R. H., M. E. Guillermo, L. Jordi, and L. Joan, “Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments,” Chemical Engineering Journal, Vol. 230, pp.102-110 (2013).
Moody, G. M., “Pre-treatment chemicals,” Filtration and Separation, Vol. 32, pp.329-336 (1995).
Mowla, D., H. N. Tran, and D. G. Allen, “A review of the properties of biosludge and its relevance to enhanced dewatering processes,” Biomass and Bioenergy, Vol. 58, pp.365-378 (2013).
Maryla, S. and A. Kafarr, “Electroosmotically enhanced sludge dewatering: pilot-plant study,” Water Science and Technology, Vol. 30, pp.159-168 (1994).
Miller, K. P., L. Wang, B. C. Benicewicz, and A. W. Decho, “Inorganic nanoparticles engineered to attack bacteria,” Chemical Society Reviews, Vol. 44, pp.7787-807 (2015).
Mahmoud, A., A. Fernandez, T. M. Chituchi, P. Arlabosse, “Thermally assisted mechanical dewatering (TAMD) of suspensions of fine particles: Analysis of the influence of the operating conditions using the response surface methodology,” Chemosphere, Vol. 72, pp.1765-1773 (2008).
Mahmoud, A., J. Olivier, and J. Vaxelaire, “Advances in mechanical dewatering of wastewater sludge treatment,” Wastewater Reuse and Management, pp.253-303 (2013).
Mahmoud, A., J. Olivier, J. Vaxelaire, A. F. A. Hoadley, “Electro-dewatering of wastewater sludge: Influence of the operating conditions and their interactions effects,” Water Research, Vol. 45, pp. 2795-2810 (2011).
Mahmoud, A., J. Olivier, J. Vaxelaire, A. F. A. Hoadley, “Electrical field: A historical review of its application and contributions in wastewater sludge dewatering,” Water Research, Vol. 44, pp.2381-2407 (2010).
Metcalf and Eddy, “Wastewater Enginnering,” McGraw-Hill, Inc., New York (2002).
Metcalf and Eddy, “Wastewater Enginnering,” McGraw-Hill, Inc., New York (2003).
Mickael, R. N., V. Jean, J. Olivier, D. F. Emilie, and J. C. Baudez, “Compression dewatering of municipal activated sludge: Effects of salt and pH,” Water Research, Vol. 46, pp.4448-4456 (2012).
Monnier, H., A. M. Wilhelm, and H. Delmas, “The influence of ultrasound on micromixing in a semi-batch reactor,” Chemical Engineering Science, Vol. 54, pp.2953-2961 (1999).
Mobaraki, M., R. Scott Semken, A. Mikkola, and J. Pyrhönen, “Enhanced sludge dewatering based on the application of high-power ultrasonic vibration,” Ultrasonics, Vol. 84, pp.438-445 (2018).
Neyens, E. and J. Baeyens, “A review of thermal sludge pre-treatment processes to improve dewaterability.” Journal of Hazardous Materials, Vol. 98, pp.51-67 (2003).
Neyens, E., J. Baeyens, and C. Creemer, “Alkaline thermal sludge hydrolysis,” Journal of Hazardous Materials, Vol. 97, pp.295-314 (2003).
O’Melia, C. R., “Coagulation and Flocculation,” In Physicochemistry Process for Water Quality, W. J. Weber, Jr., ed., John Wiley & Sons, Inc., New York, pp.62-85 (1972).
Park, N. D., S. S. Helle, and R. W. Thring, “Combined alkaline and ultrasound pre-treatment of thickened pulp mill waste activated sludge for improved anaerobic digestion,” Biomass and Bioenergy, Vol. 46, pp.750-756 (2012).
Rehmat, T., R. Branion, and D. M. Groves, “A laboratory sludge press for characterizing sludge dewatering,” Water Science and Technology, Vol. 35, pp.189-196 (1997).
Sing, K. Ng., P. Andrew, S. Valentina, A. Paul, L. B. John, H. Jean, W. Chris, G. Stephanie, and R. David, “Electro-kinetic technology as a low-cost method for dewatering food by-product,” Drying Technology, Vol. 29, pp.1721-1728 (2011).
Saveyn, H., S. Meersseman, O. Thas, and P. V. D. Meeren, “Influence of polyelectrolyte characteristics on pressure-driven activated sludge dewatering,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 262, pp.40-51 (2005).
Smythe, M. C. and R. J. Wakeman, “The use of acoustic fields as a filtration and dewatering aid,” Ultrasonics, Vol. 38, pp.657-661 (2000).
Suslick, K. S., “Sonochemistry,” Science, Vol. 247, pp.1439-1445 (1990).
Sapkaite, I., E. Barrado, F. F. Polanco, and S. I. P. Elvira, “Optimization of a thermal hydrolysis process for sludge pre-treatment,” Journal of Environmental Management, Vol. 192, pp.25-30 (2017).
Stephanie, G., L. B. John, and J. F. P. J. Colin, “Treatment of sewage sludge using electrokinetic geosynthetics.” Journal of Hazardous Materials, Vol. 139, pp.491-499 (2007).
Subramanian, S. B., S. Yan, R. D. Tyagi, and R. Y. Surampalli, “Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: Isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering,” Water Research, Vol. 44. pp. 2253-2266 (2010).
Tara, S., and J. M. Patterson, “Improvement of the aerobic sludge digestion process efficiency,” Water Environment Federation, Vol. 86, pp.102-112 (1974).
Tian, X. B., A. P. Trzcinski, L. L. Lin, and W. J. Ng, “Enhancing sewage sludge anaerobic “re-digestion” with combinations of ultrasonic, ozone and alkaline treatments,” Journal of Environmental Chemical Engineering, Vol. 4, pp.4801-4807 (2016).
Tuan, P. A, S. Mika, and I. Pirjo, “Sewage sludge electro-dewatering treatment—A review,” Drying Technology, Vol. 30, pp.691-706 (2012).
Tuan, P. A. and M. Sillanää, “Migration of ions and organic matter during electro-dewatering of anaerobic sludge,” Journal of Hazardous Materials, Vol. 173, pp.54-61 (2010).
Thapa, K. B., Y. Qi, S. A. Clayton, and A. F. A. Hoadley, “Lignite aided dewatering of digested sewage sludge,” Water Research, Vol. 43, pp.623-634 (2009).
Tiehm, A., K. Nickel, M. Zellhorn, and U. Neis, “Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization,” Water Research, Vol. 35, pp.2003-2009 (2001).
Thomas, H. A. Jr, “Graphical determination of BOD curve constants,” Water and Sewage Work, Vol. 97, pp.123-124 (1950).
Tirtha, R. B., G. S. V. Raghavav, F. Hashinaga, and M. O. Ngadi, “Electrohydrodynamic drying—A concise overview,” Drying Technology, Vol. 24, pp.905-910 (2006).
Takanori, T., F. Kenji, S. J. Mohammed, and I. Masashi, “Constant-current electroosmotic dewatering of superabsorbent hydrogel,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 440, pp.116-121 (2014).
Tarleton, E. S, “The role of Field-assisted techniques in solid/liquid separation,” Filtration & Separation, Vol. 29, pp.246-252 (1992).
Vallom, J. K. and A. J. McLoughlin, “Lysis as a factor in sludge flocculation,” Water Research, Vol. 18, pp.1523-1528 (1984).
Vesilind, P. A., “The role of water in sludge dewatering,” Water Environment Federation, Vol. 66, pp.4-11 (1994).
Vaxelaire, J. and P. Cezac, “Moisture distribution in activated sludges: A review,” Water Research, Vol. 38, pp.2215-2230 (2004).
Wei, Y. S., R. T. V. Houtan, A. R. Borger, D. H. Eikelboom, and Y. B. Fan, “Minimization of excess sludge production for biological wastewater treatment,” Water Research, Vol. 37, pp.4453-4467 (2003).
Wang, F., “Performance and Mechanism of ultrasonic disintegration for waste activated sludge,” School of environment and engineering, Tianjin University, Tianjin,(2004).
Wang, J. L. and J. Z., “Application of radiation technology to sewage sludge processing: A review,” Journal of Hazardous Materials, Vol. 143, pp.2-7 (2007).
Wakeman, R. J., “Separation technologies for sludge dewatering,” Journal of Hazardous Materials, Vol. 144, pp.614-619 (2007).
Woodard, S. E. and R. F. Wukasch, “A hydrolysis/thickening/filtration process for the treatment of waste activated sludge,” Water Science & Technology, Vol. 30, pp.29-38 (1994).
Xu, G. R., J. L. Zou, and G. B. Li, “Stabilization of heavy metals in sludge ceramsite,” Water Research, Vol. 44, pp.2930-2938 (2010).
Xiao, B. Y., C. Liu, J. X. Liu, and X. S. Guo,“Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge,” Bioresource Technology, Vol. 196, pp.109-115 (2015).
Yu, X. Y., S. T. Zhang, H. Xu, L. Zheng, X. B. Lu, and D. G. Ma, “Influence of filter cloth on the cathode on the electroosmotic dewatering of activated sludge,” Separation Science and Engineering, Vol. 18, pp.562-568 (2010).
Yang, G. C. C., C. F. Yeh, “Enhanced nano-Fe3O4/S2O82− oxidation of trichloroethylene in a clayey soil by electrokinetics,” Separation and Purification Technology, Vol. 79, pp.264-271 (2011).
Yang, G. C. C., M. C. Chen, and C. F. Yeh, “Dewatering of a biological industrial sludge by electrokinetics-assisted filter press,” Separation and Purification Technology, Vol. 79, pp.177-182 (2011).
Yang, G. C. C., Y. H. Chiu, and C. L. Wang, “Integration of electrokinetic process nano-Fe3O4/S2O82- process for remediation of phthalates in river sediment,” Electrochimica Acta, Vol. 181, pp.217-227 (2015).
Yang, G. C. C., Y. I. Chang, “Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil,” Separation and Purification Technology, Vol. 79, pp.278-284 (2011).
Zhu, C, P. Zhang, H. Wang, and J. Ye, “Conditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterability,” Ultrasonics Sonochemistry, Vol. 40, pp.353-360 (2018).
Zhai, L. F, M. Sun, W. Song, and G. Wang, “An integrated approach to optimize the conditioning chemicals for enhanced sludge conditioning in a pilot scale sludge dewatering process,” Bioresource Technology, Vol. 121, pp.161-168 (2012).
Zhang, S. T., Z. J. Yang, X. B. Lu, S. L. Zhi, Y. W. Wang, Q. Li and K. Zhang, “Novel electro-dewatering system for activated sludge biosolids in bench-scale, pilot-scale and industrial-scale applications,” Chemical Engineering Research and Design, Vol. 121, pp.44-56 (2017).
Zhang, W., P. Xiao, Y. Liu, S. Xu, F. Xiao, D. Wang, and C. W. K. Chow, “Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability,” Separation and Purification Technology, Vol. 132, pp.430-437 (2014).
中文部分
內政部營建署,「下水污泥減量與循環永續利用」,臺灣 (2014)。
內政部營建署,「全國都市汙水處理廠污泥等廢棄物處置方式評估及工程規劃」,臺灣 (2010)。
內政部營建署下水道工程處,「全國污水下水道用戶接管普及率及整體污水處理率統計表」,臺灣 (2017)。
內政部營建署下水道工程處,「污水處理廠節能計畫-期末報告書」,臺灣,(2011)。
王世忠、何志軒、胡紹華及陳佳陽,「都會下水污泥環境特性與資源化之途徑的回顧與展望」,大漢學報,21期,231-249頁,花蓮市 (2006)。
王鳳英,「介面活性劑的原理與應用」,高立圖書有限公司,(1996)。
白子易,「下水道系統生化動力模式建立之研究」,國立中央大學環境工程研究所,桃園市 (2001)。
朱敬平,「污泥中間處理技術(污泥濃縮、調理、脫水)」,廢水污泥減量減容技術講習會(高雄場),高雄市 (2004)。
行政院環保署,「100年度有害事業廢棄物戴奧辛及重金屬管制之調查與評估專案研究計畫」,臺灣 (2011)。
行政院環保署,「鋼鐵基本工業、鋁熔煉業集塵灰及事業污泥清理查核專案工作計畫」,臺灣 (2011)。
余岳峰,「下水污泥焚化灰渣燒成輕質骨材特性之研究」,國立中央大學環境工程研究所,桃園市 (2000)。
呂維明及呂維芳,「過濾技術」,高立圖書有限公司,臺北市 (1994)。
李玄安,「凹板式壓濾電脫水系統處理都市下水污泥之性能評估」,國立中山大學環境工程研究所,高雄市 (2015)。
李篤中及朱敬平,「污泥處置(II):污泥之前處理」,台大工程,第八十二期,第49-76頁 (2001)。
李篤中及朱敬平,「污泥處置(III):污泥後處理」,台大工程,第八十三期,第59-81頁 (2001)。
李歡、金宜英、張光明、聶永豐、李雷及楊海英,「污泥超聲波預處理的影響因素分析」,中國給水排水,第22卷,第3期 (2006)。
洪仁陽,「污泥厭氧消化技術及操作維護實務」,財團法人工業技術研究院 (2001)。
翁韻雅,「以高分子凝集劑處理高濁度原水之研究」,國立成功大學環境工程學系,台南市 (2002)。
財團法人中興工程科技研究發展基金會,「台灣下水道發展策略」,臺灣 (2002)。
張信堃、莊順興、李岳翰及黃春財,「微生物燃料電池產電效能之研究-以活性污泥水解產物為基質」,下水道與水環境再生研討會論文集,台北市 (2011)。
陳幸德及梁德明,「技術報導(二) 超音波污泥減量技術」,環境工程會刊 (2016)。
陳旻聰,「利用電動力輔助板框式壓濾脫水系統處理不同生物污泥之研究」,國立中山大學環境工程研究所,高雄市 (2012)。
陳高孝,「下水道普及率提升衍生污泥處理與管理之研究」,國立台北科技大學環境規劃與管理研究所,台北市 (2005)。
陳鴻濤,「污泥減量設備技術及選用實例」,台灣環保雙月刊,第20期,第8-11頁 (2003)。
經濟部工業局,廢水污泥減容減量技術研析,台北市 (2008)。
經濟部工業局工業污染防治技術服務團,財團法人中國技術服務社,工業污染防治技術手冊之二十八,台北市 (1980)。
經濟部工業局工業污染防治技術服務團,財團法人中國技術服務社,工業污染防治技術手冊之十四,台北市 (1988)。
葉秉樺,「超音波-化學雙調理結合凹板式壓濾電脫水技術進行都市下水污泥脫水之效能評估」,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2017)。
葉峮甫,「電動力法輔助奈米Fe3O4/S2O82-程序整治受TCE及1,2-DCA汙染土壤」, 碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
劉永章及葛煥彰,「電動力現象的基本理論」,化工,第45卷,第2期,第77-83頁 (1988)。
蔡佳伶,「板框壓濾電脫水系統對於不同生物污泥脫水效能及其中之鄰苯二甲酸酯類流布研究」,國立中山大學環境工程研究所,高雄市 (2013)。
謝哲松、盧至人及邱應志,「都市廢水污泥處理」,華泰文化事業公司,國立編譯館,台北市 (2001)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code