Responsive image
博碩士論文 etd-0021118-213242 詳細資訊
Title page for etd-0021118-213242
論文名稱
Title
具過熱保護裝置混合型PWM與PFM控制的電荷泵升壓發光二極體驅動晶片設計
Pulse Width and Pulse Frequency Hybrid Modulation Dickson Charge Pump Boost LED Driver with Overheat Protection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-09-23
繳交日期
Date of Submission
2018-01-26
關鍵字
Keywords
抗溫度飄移電路、脈衝頻率調變、脈衝寬度調變、電荷泵、發光二極體驅動
LED driver, Anti-temperature drifting circuit, PFM, PWM, Charge Pump
統計
Statistics
本論文已被瀏覽 5654 次,被下載 7
The thesis/dissertation has been browsed 5654 times, has been downloaded 7 times.
中文摘要
隨著政府近年來大力推進節能減碳政策的實施,現代人環保意識提高,使人們更加認識到節能的重要性與迫切性。各類照明佔總用電量的三分之一,因此如何從照明方面節約能源,已成為大家所關心的議題。傳統的白熾燈因使用壽命短、發光效率低,不符合環保提倡之訴求,近年來利用發光二極體 (Light Emitting Diode- LED),來當作替換白熾燈、鹵素燈已成為時代的潮流。因LED具有壽命長、體積小、亮暗反應速度快、環保無使用汞和水銀材料,發光效率高等優點。
本設計以電荷汞(Charge Pump)為架構,設計一驅動IC來驅動LED負載。此驅動IC具有混合PWM(Pulse Width Modulation)及PFM/PFM(Pulse Frequency Modulation)的PFWM自動控制功能。能夠自動因應負載輕重而採用不同的調變模式。電路中包含了抗溫度飄移電路,輸出參考電壓在-25~125℃時之溫度係數為20.12ppm/℃,藉此參考電壓可以在驅動LED時較不受IC環境溫度的變化而影響LED工作電流改變。使用MOSFET來取代BJT來產生負溫度係數,大大的減少佈局面積和消耗功率。最後本設計電壓輸出端使用一AND邏輯閘將PWM調光端和過熱保護電路端(OTP)結合做數位控制,其優點是每個通道的電流並不會受輸出電壓的影響,且利用AND閘將保護裝置和PFWM調光做同步輸出,可增加其切換的速度,提高保護效用的精確度。
本研究之LED驅動IC,電源電壓為1.8V,輸入電壓為1.8V,輸出電壓6V,能量轉換效率84.88%。而驅動LED最大電流為20mA,供應多串LED負載,電路使用TSMC 0.18 UM CMOS Mixed Signal RF General Purpose MiM 1P6M 1.8V&3.3V製程實現,晶片面積為1.8245×1.715mm^2。
Abstract
In this energy shortage and the rising awareness of environmental protection, people pay more attention to the urgency and important of energy conservation. In recent years, the use of light-emitting diode (Light Emitting Diode- LED) have replaced the incandescent lamps and halogen lamps because the traditional incandescent bulb has short life of its usage and low luminous efficiency which do not meet the needs of energy saving policy. LED is environmental friendly without mercury materials and luminous efficiency.
In this research, designing a driver IC based on the charge pump to control the output voltage and supply a constant current to LED. This IC provides the hybrid of PWM (Pulse Width Modulation) and PFM (Pulse Frequency Modulation), so called PWFM. It can automatically control the circuit to choose controlling mode depends on the load. The circuit contains low temperature drift circuit which temperature coefficient is 20.12 ppm/℃ between -25~125 ℃. The final, the AND gate is combined with overheat protection circuit (OTP) signal and PWM signal. The advantage is that the output voltage does not affect the each channel current, increase switch speed and improve the accuracy of the protective effect.
In this work, the power supply voltage is 1.8V, the input voltage is 1.8V, the output voltage is 6V, the energy conversion efficiency is 87.1%. And drive the maximum current of 20mA to LED, and can supply the multi-string LED load. The IC is realized by using TSMC 0.18 UM CMOS Mixed Signal RF General Purpose MiM 1P6M 1.8V & 3.3V. The chip area is 1.8245 × 1.715mm^2.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
第一章 緒論 1
1.1 研究背景 1
1.2 LED驅動IC發展 2
1.3 研究動機 21
1.4 論文大綱 22
第二章 LED之發光原理與整體架構簡介 23
2.1 LED發光二極體 23
2.1.1 概述 23
2.1.2 LED的演變 24
2.1.3 LED的結構特性 25
2.1.4 LED的發光原理 26
2.1.5 LED的元件特性 27
2.1.6 LED常用半導體材料及種類 30
2.2 LED之陣列結構 31
2.2.1 LED串聯陣列 31
2.2.2 LED並聯陣列 31
2.2.3 LED混聯陣列 32
2.2.4 LED交叉陣列 33
2.3 LED調光原理 33
2.3.1 調光器調光 34
2.3.2 類比調光 34
2.4 LED控制器系統 35
2.4.1 PWM控制系統 35
2.4.2 PFM控制系統 36
2.5 LED驅動電路架構 37
2.5.1 LED驅動電路之基本需求 37
2.5.2 LED驅動電路之分類及簡介 37
2.5.3 各種LED驅動電路特性介紹和比較 42
第三章 電路設計架構 45
3.1 整體架構簡介 45
3.1.1 Feedback Loop 45
3.1.2 PWM ( Pulse Width Modulation ) 45
3.1.3 PFM ( Pulse Frequency Modulation ) 45
3.1.4 PFWM ( Pulse Frequency and Width Modulation ) 45
3.1.5 過熱保護系統 ( OTP ) 45
3.1.6 參考電壓 ( TPC ) 46
3.1.7 電荷汞 ( Charge Pump ) 46
3.2 基礎電路介紹 47
3.2.1 溫度補償電路 ( Temperature Compensation Circuit ) 47
3.2.2 比較器(Comparator) 48
3.2.3 波型產生電路 ( Wave Generator ) 50
3.2.4 誤差放大器 ( Error Amplifier ) 53
3.2.5 過熱保護電路 ( Overheat Protection Circuit ) 53
3.2.6 電荷汞 ( Charge Pump ) 54
3.2.7 三輸入及閘 ( 3-Input AND Gate ) 55
3.3 設計流程 57
第四章 模擬結果與討論 58
4.1 基礎電路 58
4.1.1 溫度補償電路 ( TPC) 58
4.1.2 AND Gate 61
4.1.3 電壓控制震盪器 62
4.1.4 三角波產生器 63
4.2 系統電路 64
4.2.1 PFWM 64
4.3 整體輸出 65
4.4 佈局平面圖 67
4.5 預期規格與比較 68
第五章 結果討論與未來展望 70
5.1 結果討論 70
5.2 未來展望 71
參考文獻 72
參考文獻 References
[1] 晶綺科技, [線上]. Available: http://www.starchips.com.tw.
[2] 聚積科技, [線上]. Available: http://www.mblock.com.tw/tw.
[3] 點晶科技, [線上]. Available: http://www.siti.com.tw/info/info1.html.
[4] 天鈺科技, [線上]. Available: http://www.fitipower.com.
[5] 普誠科技, [線上]. Available: http://www.princeton.com.tw.
[6] Z.-M. Jiang, “A study on influence of various types spectral characteristics of artificial lighting for human responses,” Jun. 2008.
[7] Y. Wang, M. Guo 且 D. Guo, “Design of 16-bits constant-current LED driver,” 於 International Conference on IEEE, Anti-Counterfeiting Security and Identification in Communication, Jul. 2010.
[8] J. Qiu and L. He, "A LED driver IC with constant current and temperature compensation," in IEEE International Conference on Computer Science and Information Technology, Jul. 2010.
[9] J. Lu 且 X. Wu, “A PWM Controller IC for LED driver used to multiple DC-DC topologies,” 於 Asia-Pacific Power and Energy Engineering Conference, Mar. 2009.
[10] Z.-Y. Huang, J.-S. Chiang, W.-B. Yang 且 C.-H. Wang, “A new temperature independent current controlled oscillator,” International Symposium on IEEE, Intelligent Signal Processing and Communications Systems, pp. pp. 1-4, Dec. 2011.
[11] 李農 且 楊燕譯, LED照明手冊(第二版), 全華圖書, 2012.
[12] 劉博文, 光電元件導論(第二版), 全威圖書, 2007.
[13] 周志敏, 周紀海 且 紀愛華, LED驅動電路設計與應用(初版), 五南圖書, 2008.
[14] B. Bose, “Pulse width modulation for electronic power conversion,” Wiley-IEEE Press, pp. pp.138-208.
[15] . M. T. Chung, C. L. Lee, C. Yin 且 C. C. Hsieh, “A 0.5 V PWM CMOS Imager With 82 dB Dynamic Range and 0.055% Fixed-Pattern-Noise,” IEEE Journal of Solid-State Circuits, pp. 2522-2530, Aug. 2013.
[16] E. Gutierrez, L. Hernandez 且 F. Cardes, “A Pulse Frequency Modulation Interpretation of VCOs Enabling VCO-ADC Architectures With Extended Noise Shaping,” IEEE Circuits and Systems Society, pp. 1-14, 24 August 2017.
[17] M. Abdulqader, A. Mohammand 且 M. Baker, “A Multi-Input, Multi-Output Power Management Unit Using Dickson Charge Pump for Energy Harvesting Application,” 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 16-19, 06 March 2017.
[18] S. C. Moon, G.-B. Koo 且 G.-W. Moon, “Dimming-feedback control method for TRIAC dimmable LED drivers,” IEEE Transactions on Industrial Electronics, Feb. 2015.
[19] J.-S. Lee, M.-S. Keel, S.-I. Lim 且 S. Kim, “Charge pump with perfect current matching characteristics in phase-locked loop,” ELECTRONICS LETTERS, pp. 1907-1908, 9 November 2000.
[20] M. R. Hoque, T. Ahmad, T. R. McNutt, H. A. Mantooth 且 M. M. Mojarradi, “A Technique to Increase the Efficiency of High-Voltage Charge Pumps,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, MAY 2006.
[21] C.-H. Wu 且 C.-L. Chen, “High-Efficiency Current-Regulated Charge Pump for a White LED Driver,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, OCTOBER 2009.
[22] T. Tanzawa, “A Behavior Model of a Dickson Charge Pump Circuit for Designing a Multiple Charge Pump System Distributed in LSIs,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, JULY 2010.
[23] J.-M. Baek, D.-J. Seo, J.-H. Chun 且 K.-W. Kwon, “A Dual Charge Pump for Quiescent Touch Sensor Power Supply,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, NOVEMBER 2012.
[24] N. Kamal, S. Al-Sarawi 且 . D. Abbott, “Reference spur suppression technique using ratioed current charge pump,” ELECTRONICS LETTERS, 6 June 2013.
[25] H. Peng, N. Tang, . Y. Yang 且 D. Heo, “CMOS Startup Charge Pump With Body Bias and Backward Control for Energy Harvesting,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, JUNE 2014.
[26] S. S. Prasad 且 P. Mandal, “A CMOS beta multiplier voltage reference with improved temperature performance and silicon tunability,” 於 17th International Conference on VLSI Design. Proceedings., 2004.
[27] M. K. Adimulam 且 K. K. Movva, “A low power CMOS current mode bandgap reference circuit with low temperature coefficient of output voltage,” 於 2012 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, 2012.
[28] Y. Blaq, O. Valorge 且 N. Laflamme-Mayer, “A low-power, small-area voltage reference array for a wafer-scale prototyping platform,” 於 Proceedings of the 8th IEEE International NEWCAS Conference 2010, 2010.
[29] S. M. Atarodi 且 R. Dehghani, “A new low voltage precision CMOS current reference with no external components,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, pp. 928-932, 2003.
[30] V. P. Pyara, C. M. Markan 且 G. kapur, “On-chip tunable wide ranged multiple output voltage reference,” 於 2012 Proceedings of IEEE Southeastcon, 2012.
[31] M.-D. Ker, H.-W. Zan 且 T.-C. Lu, “Temperature Coefficient of Poly-Silicon TFT and its Application on Voltage Reference Circuit With Temperature Compensation in LTPS Process,” IEEE Transactions on Electron Devices, pp. 2583-2589, 2008.
[32] R. J. Baker 且 S. Liu, “Process and temperature performance of a CMOS beta-multiplier voltage reference,” 於 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268), 1998.
[33] D. Hua, Z. Shun'an 且 C. Yueyang, “Design of a Bandgap Current Reference with Wide Range of Output Voltage in a 0.18µm Bi-CMOS Process,” 於 2009 WRI World Congress on Computer Science and Information Engineering, 2009.
[34] B. Razavi, Design of analog CMOS integrated circuits, Boston: McGraw-Hill, 2000.
[35] C. L. Fang, J. F. Wu, B. D. Liu, Y. T. Hsieh, Y. Z. Juang 且 H. H. Tsai, “A high current accuracy boost white LED driver based on offset calibration technique,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 244-248, Apr. 2011.
[36] T. Pimenta, P. Crepaldi 且 A. Pivoto, “A low power thermal protection topology,” 於 2012 24th International Conference on Microelectronics (ICM), 2012.
[37] P. Pietrzak, M. Janicki, M. Szermer, A. Napieralski 且 Z. Kulesza, “PTAT sensor for chip overheat protection,” 於 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2010.
[38] J. Liang, J. Chen 且 Y. Han, “Summary of HV power ICs protecting circuit design,” 於 2001 6th International Conference on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No.01EX443), 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code