Responsive image
博碩士論文 etd-0021120-133749 詳細資訊
Title page for etd-0021120-133749
論文名稱
Title
使用Daubechies濾波與可自調閥值技術之精確RR時距偵測法
Accurate RR-Interval Detection with Daubechies Filtering and Adaptive Thresholding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-01-14
繳交日期
Date of Submission
2020-01-21
關鍵字
Keywords
ExG放大器,衰減電荷放大器,可編程記錄系統,RR-interval,SWT,Daubechies,自適應閾值
ExG amplifier, attenuating charge amplifier, programmable recording system, RR-interval, Stationary Wavelet Transform, Daubechie
統計
Statistics
本論文已被瀏覽 5631 次,被下載 21
The thesis/dissertation has been browsed 5631 times, has been downloaded 21 times.
中文摘要
本文提出了一種針對生物醫學應用的信號採集可編程CMOS整合前端積體電路。 本設計提供了獨特的傳感接口介面,包括一個直流耦合ExG監測器、一個用於測量壓電振動的電容傳感器、一個1°C精準度溫度計、一個50/60 Hz電容交換式陷波濾波器和一個8位元脈衝寬度調變之數位類比轉換器。並採用180 nm製程實現,其晶片面積為0.06 mm2。
心電圖(ECG)信號分析需要QRS檢測。我們提出了一種基於第4級穩定小波轉換(SWT)的心律變動性分析演算法,用以分解ECG訊號,並採用自適應閾值演算法將QRS複合波與其他不需要的訊號分開。選擇Daubechies濾波器作為母小波,模擬結果顯示,靈敏度為99.64%,正確預測率為99.48%。
Abstract
This dissertation presents a programmable CMOS integrated front-end ASIC targeting the acquisition of signals in biomedical applications. The ASIC provides a unique combination of sensing interfaces, including a dc-coupled ExG monitor, a capacitive sensor readout for piezoelectric vibration measurement, a 1 °C-precision thermometer, a 50-/60-Hz switched-capacitor notch filter, and an 8-bit analog-to-digital pulse-width-modulating converter. The design is realized in 180-nm technology where it occupies an area of 0.06 mm2.
QRS detection is needed for electrocardiogram (ECG) signal analysis. We proposed an algorithm to acquire RR-interval based on a level-4 Stationary Wavelet Transform (SWT) to decompose ECG signal followed by an adaptive thresholding algorithm to separate QRS complex from other unwanted signals. Daubechies filter is chosen as the mother wavelet. Simulation results showed 99.64 % of sensitivity and 99.48 % of positive predictivities.
目次 Table of Contents
Table of Contents
Dissertation Validation Letter i
Acknowledgements ii
Abstract (Chinese) iii
Abstract (English) iv
Chapter 1 Integrated ExG, Vibration and Temperature Measurement Front-End for Wearable Sensing 1
1.1 Introduction 1
1.2 Circuit Design and Implementation 3
1.2.1 Charge Amplifier for Vibration Detection 6
1.2.2 ExG Amplifier With Offset Control 11
1.2.3 Notch Filter 13
1.2.4 Analog-to-Digital Conversion 14
1.2.5 Bandgap Reference and Temperature Sensor 15
1.2.6 Microcontroller Programming 18
1.3 Measured Results 20
1.3.1 Charge Amplifier 21
1.3.2 ExG Amplifier 23
1.3.3 Notch Filter 26
1.3.4 Analog-to-Digital Converter 27
1.3.5 Temperature Sensor 28
1.4 Conclusions 30
Chapter 2 Accurate RR-interval Detection with Daubechies Filtering and Adaptive Thresholding 33
2.1 Introduction 33
2.2 Accurate RR-Interval Estimation Approach Based on SWT and Adaptive Threshold 34
2.2.1 Wavelet Transform 35
2.2.2 Stationary Wavelet Transform (SWT) 36
2.2.3 Adaptive Thresholding 38
2.2.4 Peak Detector 39
2.3 Experiments 40
2.4 Conclusions 42
Reference 46
參考文獻 References
References
[1] M. Jiang et al., “IoT-based remote facial expression monitoring system with sEMG signal,” in Proc. IEEE Sensors Appl. Symp. (SAS), Catania, Italy, Apr. 2016, pp. 1–6.
[2] Y. D. Gu, D. Sun, J. S. Li, M. R. Graham, and X. J. Ren, “Plantar pressure variation during jogging with different heel height,” Appl. Bionics Biomech., vol. 10, nos. 2–3, pp. 89–95, 2013.
[3] L. Fanucci et al., “Sensing devices and sensor signal processing for remote monitoring of vital signs in CHF patients,” IEEE Trans. Instrum. Meas., vol. 62, no. 3, pp. 553–569, Mar. 2013.
[4] Y. Chuo et al., “Mechanically flexible wireless multisensor platform for human physical activity and vitals monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 5, pp. 281–294, Oct. 2010.
[5] W. Qin, K. Ke, Y. Wang, Y. Qin, T. Yi, and Z. Hong, “A low power analog front-end for portable biopotential acquisition systems,” in Proc. 12th IEEE Int. Conf. Solid-State Integr. Circuit Technol. (ICSICT), Guilin, China, Oct. 2014, pp. 1–3.
[6] S.-L. Teng, R. Rieger, and Y.-B. Lin, “Programmable ExG biopotential front-end IC for wearable applications,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp. 543–551, Aug. 2014.
[7] X. Zou, X. Xu, L. Yao, and Y. Lian, “A 1-V 450-nW fully integrated programmable biomedical sensor interface chip,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1067–1077, Apr. 2009.
[8] H. Kim et al., “A configurable and low-power mixed signal SoC for portable ECG monitoring applications,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 2, pp. 257–267, Apr. 2014.
[9] Y. Zhang et al., “A batteryless 19 μW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 199–213, Jan. 2013.
[10] G. Yang, L. Xie, M. Mäntysalo, J. Chen, H. Tenhunen, and L. R. Zheng, “Bio-patch design and implementation based on a low-power systemon-chip and paper-based inkjet printing technology,” IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 6, pp. 1043–1050, Nov. 2012.
[11] Y.-J. Huang et al., “A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications,” IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 851–866, Apr. 2014.
[12] N. Van Helleputte et al., “A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 230–244, Jan. 2015.
[13] R. Rieger, “Variable-gain, low-noise amplification for sampling front ends,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 3, pp. 253–261, Jun. 2011.
[14] R. Rieger and Y. Y. Pan, “A high-gain acquisition system with very large input range,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 1921–1929, Sep. 2009.
[15] Measurement Specialties, Piezo Film Sensors Technical Manual, document P/N 1005663-1 Rev D 15, Mar. 2006.
[16] P. E. Allen, D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. London, U.K.: Oxford Univ. Press, 2002.
[17] R. Rieger, “Signal-folding for range-enhanced acquisition and reconstruction,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 10, pp. 2617–2625, Oct. 2015.
[18] R. Rieger and S.-H. Ou, “Pulse-width-modulating biosignal ADC for rapid ASIC design and IP core reuse,” IEEE Des. Test, vol. 33, no. 4, pp. 49–60, Aug. 2016.
[19] R.-L. Wang et al., “Temperature sensor using BJT-MOSFET pair,” Electron. Lett., vol. 48, no. 9, pp. 503–504, Apr. 2012.
[20] K. K. Lee, T. S. Lande, and P. D. Häfliger, “A sub-μWbandgap reference circuit with an inherent curvature-compensation property,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 1–9, Jan. 2015.
[21] R. Rieger and S.-L. Deng, “Double-differential recording and AGC using microcontrolled variable gain ASIC,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21, no. 1, pp. 47–54, Jan. 2013.
[22] J. G. Webster, Medical Instrumentation—Application and Design, 3rd ed. Hoboken, NJ, USA: Wiley, 1998.
[23] N. Bayasi, N. Saleh, B. Mohammad and M. Ismail, "65-nm ASIC implementation of QRS detector based on Pan and Tompkins algorithm," in 10th International Conference on Innovations in Information Technology (IIT), pp. 84-87, Al Ain, United Arab Emirates, Nov. 9-11, 2014.
[24] X. Zhang and Y. Lian, "A 300-mV 220-nW Event-Driven ADC With Real-Time QRS Detection for Wearable ECG Sensors," IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 6, pp. 834-843, Dec. 2014.
[25] X. Tang, Q. Hu and W. Tang, "A Real-Time QRS Detection System With PR/RT Interval and ST Segment Measurements for Wearable ECG Sensors Using Parallel Delta Modulators," IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 4, pp. 751-761, Aug. 2018.
[26] S. Mallat, "A Wavelet Tour of Signal Processing," New York, NY, USA: Academic, 2009.
[27] S. Mallat, "Multifrequency channel decompositions of images and wavelet models," IEEE Transaction on Acoustics Speech and Signal Processing, vol. 37, no. 12, pp. 2091−2110, Dec. 1989.
[28] G. Nason and B. Silverman, "The Stationary Wavelet Transform and Some Statistical Applications," University of Bristol, 1995.
[29] M. Merah, T. A. Abdelmalik and B. H. Larbi, "R-peaks detection based on stationary wavelet transform," Computer Methods and Programs in Biomedicine, vol. 121, no. 3, pp. 149-160, Oct. 2016.
[30] I. Daubechies, "Orthonormal Bases of Compactly SupportedWavelets," Communications on Pure and Applied Mathematics, vol. XLI, pp. 909-996, 1988.
[31] C.-L. Liu," A Tutorial of the Wavelet Transform," 2010.
[32] N. V. Thakor, J. G. Webster and W. Tompkins, "Optimal QRS detector," Medical and Biological Engineering and Computing, vol. 21, no. 3, pp. 343−350, May 1983.
[33] J. G. Webster," Medical Instrumentation Application and Design," New York: John Wiley & Sons, 2010.
[34] Physionet, "PhysioBank ATM," 23 09 2018. [Online]. Available: https://www.physionet.org/cgi-bin/atm/ATM.
[35] N. Ravanshad and H. Rezaee-Dehsorkh, "An event-based ECG-monitoring and QRS-detection system based on level-crossing sampling," in 2017 Iranian Conference on Electrical Engineering (ICEE), pp. 302-307, Tehran, 2017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code