Responsive image
博碩士論文 etd-0022114-114419 詳細資訊
Title page for etd-0022114-114419
論文名稱
Title
溫度計碼數位類比轉換器之省電技術
Power Saving Technology for Thermometer-code Digital-to-analog Converters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-16
繳交日期
Date of Submission
2014-01-22
關鍵字
Keywords
開關機制、校正、數位類比轉換器、高精準度、高速度、省電
power saving, switching scheme, calibration, high precision, high speed, DAC
統計
Statistics
本論文已被瀏覽 5762 次,被下載 81
The thesis/dissertation has been browsed 5762 times, has been downloaded 81 times.
中文摘要
在行動通訊應用中,數位類比轉換器需要越來越高的精準度和速度。然而行動裝置的使用時間是由電池的容量所限制。提高速度和精準度都是現在數位類比轉換器電路設計的趨勢。為了增加操作時間,降低數位類比轉換器的功耗是無法避免的。也因此高速度和低功率消耗的數位類比轉換器是具強烈需求的。
由於電流導引式架構在高速應用中有良好的線性,經常被廣泛的應用於高速數位類比轉換器之中。因此,本文採用電流導引式架構來設計數位類比轉換器,以實現高速應用。此論文亦提出溫度計碼數位類比轉換器之省電技術,此技術可以減少功率消耗和時脈訊號貫穿。傳統的設計是在每一個週期使用時脈訊號更新所有電流單元。但此論文的設計是先偵測資料的變化,才更新實際上資料有變化的電流單元。此設計可以節省由閂鎖電路開關所產生的電力消耗。
最後,此設計採用TSMC 90nm製程製作。此數位類比轉換器的取樣速率和解析度分別為1GS/s和12位元。功率消耗為30毫瓦。模擬結果顯示,所提出的省電技術,可以節省電力消耗。即使在最差的情況下,此技術依然可節省10%的耗電量。
Abstract
In the mobile communication applications, the Digital-to-analog convert (DAC) needs higher and higher accuracy and speed. However, the operation time is limited by the battery capacity of the mobile devices. Increasing speed and accuracy are the trend of present DAC’s circuit design. To increase the operation time, reducing the power consumption of the DAC are necessary. As a result, the high speed and the low power consumption DACs are in high demand.
The current-steering architecture is widely used in high-speed DACs, since this architecture has good linearity at high speed. Therefore, this thesis adopts the current-steering architecture to design the DAC in order to achieve the high-speed application. The power saving technology for the thermometer-code DAC is proposed in the thesis. This technique can reduce the power consumption and the clock feedthrough. Instead of the traditional design, which using clock signal to update all current cells in each period, this design detects the data variation first and then only update the current cells which actually change the data. The proposed design can save the power consumption produced by the latches switched.
Finally, the design was fabricated in TSMC 90nm CMOS process. The sample rate and resolution of the DAC are 1GS/s and 12-bit, respectively. The power consumption is 30mW. The simulation results show that the proposed power saving technology can save power consumption. Even in the worst case, this technique can still save 10% power consumption.
目次 Table of Contents
Contents
摘要 III
ABSTRACT IV
CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Organization 3
CHAPTER 2 SURVEY OF CURRENT-STEERING DAC 5
2.1 Introduction 5
2.2 DAC Specification 5
2.2.1 Static Specification 8
2.2.2 Dynamic Specification 10
2.3 Current-steering DAC 12
2.3.1 Binary-Weighted DAC 12
2.3.2 Thermometer-code DAC 14
2.3.3 Segmented DAC 16
2.4 Design Consideration for DACs 20
2.4.1 Cell-Dependent Delay Differences (CDDDs) [29] 20
2.4.2 Output-Dependent Delay Differences (ODDDs) [30] 22
2.4.3 DAC’s Output Impedance and Distortion 24
2.5 Power Saving Technology for DACs 26
2.6 Dynamic Element Matching (DEM) Technique [35] 29
CHAPTER 3 A 12-BIT 1GS/S 90NM DAC 32
3.1 Introduction 32
3.2 Proposed Segmentation DAC Architecture 32
3.3 8-bit Thermometer-Coded DAC 34
3.3.1 Unit Current Cells 34
3.3.2 Column Clock Controller (CCC) 37
3.4 Switching Scheme 40
3.5 4-bit Binary-Weighted DAC 52
3.6 Biasing Circuit 54
3.7 Layout 55
CHAPTER 4 SIMULATION AND EXPERIMENTAL RESULTS 58
4.1 Simulation Results 58
4.2 Measurement Setup 64
4.3 Experimental Results 68
4.4 Summary 70
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 72
5.1 Conclusion 72
5.2 Future Works 72
REFERENCES 74
參考文獻 References
References
[1] N. Ghittori, A. Vigna, P. Malcovati, S. D'Amico, and A. Baschirotto, "1.2-V low-power multi-mode DAC plus filter blocks for reconfigurable (WLAN/UMTS, WLAN/Bluetooth) transmitters," IEEE Journal of Solid-State Circuits, vol. 41, pp. 1970-1982, Sep 2006.
[2] J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, "A 12-bit intrinsic accuracy high-speed CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 33, pp. 1959-1969, Dec 1998.
[3] G. A. M. Van der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert, and G. G. E. Gielen, "A 14-bit intrinsic accuracy Q(2) Random Walk CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 34, pp. 1708-1718, Dec 1999.
[4] J. Deveugele and M. S. J. Steyaert, "A 10-bit 250-MS/s binary-weighted current-steering DAC," IEEE Journal of Solid-State Circuits, vol. 41, pp. 320-329, Feb 2006.
[5] T. Chen and G. G. E. Gielen, "A 14-bit 200-MHz current-steering DAC with switching-sequence post-adjustment calibration," IEEE Journal of Solid-State Circuits, vol. 42, pp. 2386-2394, Nov 2007.
[6] W. T. Lin and T. H. Kuo, "A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection," IEEE Journal of Solid-State Circuits, vol. 47, pp. 444-453, Feb 2012.
[7] W. H. Tseng, C. W. Fan, and J. T. Wu, "A 12-Bit 1.25-GS/s DAC in 90 nm CMOS With > 70 dB SFDR up to 500 MHz," IEEE Journal of Solid-State Circuits, vol. 46, pp. 2845-2856, Dec 2011.
[8] Y. J. Tang, J. Briaire, K. Doris, R. van Veldhoven, P. C. W. van Beek, H. J. A. Hegt, et al., "A 14 bit 200 MS/s DAC With SFDR > 78 dBc, IM3 <-83 dBc and NSD <-163 dBm/Hz Across the Whole Nyquist Band Enabled by Dynamic-Mismatch Mapping," IEEE Journal of Solid-State Circuits, vol. 46, pp. 1371-1381, Jun 2011.
[9] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching Properties of Mos-Transistors," IEEE Journal of Solid-State Circuits, vol. 24, pp. 1433-1440, Oct 1989.
[10] T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, "An 80-MHz 8-bit CMOS D/A converter," IEEE Journal of Solid-State Circuits, vol. 21, pp. 983-988, 1986.
[11] Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, "A 10-b 70-MS/s CMOS D/A converter," IEEE Journal of Solid-State Circuits, vol. 26, pp. 637-642, 1991.
[12] K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copeland, "Characterisation and modeling of mismatch in MOS transistors for precision analog design," IEEE Journal of Solid-State Circuits, vol. 21, pp. 1057-1066, 1986.
[13] H. P. Tuinhout and M. Vertregt, "Test structures for investigation of metal coverage effects on MOSFET matching," in Microelectronic Test Structures, 1997. ICMTS 1997. Proceedings. IEEE International Conference on, 1997, pp. 179-183.
[14] J. Bastos, M. S. J. Steyaert, A. Pergoot, and W. M. Sansen, "Influence of die attachment on MOS transistor matching," IEEE Transactions on Semiconductor Manufacturing, vol. 10, pp. 209-218, 1997.
[15] Y. H. Cong and R. L. Geiger, "A 1.5-V 14-bit 100-MS/s self-calibrated DAC," IEEE Journal of Solid-State Circuits, vol. 38, pp. 2051-2060, Dec 2003.
[16] D. W. J. Groeneveld, H. J. Schouwenaars, H. A. H. Termeer, and C. A. A. Bastiaansen, "A Self-Calibration Technique for Monolithic High-Resolution D/a Converters," IEEE Journal of Solid-State Circuits, vol. 24, pp. 1517-1522, Dec 1989.
[17] A. R. Bugeja and B. S. Song, "A self-trimming 14-b 100-MS/s CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 35, pp. 1841-1852, Dec 2000.
[18] F. F. Dai, W. N. Ni, S. Yin, and R. C. Jaeger, "A direct digital frequency synthesizer with fourth-order phase domain Delta Sigma noise shaper and 12-bit current-steering DAC," IEEE Journal of Solid-State Circuits, vol. 41, pp. 839-850, Apr 2006.
[19] R. J. v. d. Plassche, CMOS integrated analog-to-digital and digital-to-analog converters, 2nd ed. Boston: Kluwer Academic Publishers, 2003.
[20] C. Shi and M. Ismail, Data converters for wireless standards. Boston: Kluwer Academic Publishers, 2002.
[21] F. Maloberti and SpringerLink (Online service). (2007). Data Converters. Available: http://dx.doi.org/10.1007/978-0-387-32486-9
[22] B. Razavi, Principles of data conversion system design. New York: IEEE Press, 1995.
[23] "IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters," IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000), pp. 1-139, 2011.
[24] "IEEE Standard for Terminology and Test Methods of Digital-to-Analog Converter Devices," IEEE Std 1658-2011, pp. 1-126, 2012.
[25] R. J. Baker. (2010). CMOS : circuit design, layout, and simulation (3rd ed.). Available: http://onlinelibrary.wiley.com/book/10.1002/9780470891179
[26] C. H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6 mm(2)," IEEE Journal of Solid-State Circuits, vol. 33, pp. 1948-1958, Dec 1998.
[27] Y. H. Cong and R. L. Geiger, "Switching sequence optimization for gradient error compensation in thermometer-decoded DAC arrays," IEEE Transactions on Circuits and Systems II-Analog and Digital Signal Processing, vol. 47, pp. 585-595, Jul 2000.
[28] K. C. Kuo and C. W. Wu, "A Switching Sequence for Linear Gradient Error Compensation in the DAC Design," IEEE Transactions on Circuits and Systems II-Express Briefs, vol. 58, pp. 502-506, Aug 2011.
[29] T. Chen and G. G. E. Gielen, "The analysis and improvement of a current-steering DACs dynamic SFDR - I: The cell-dependent delay differences," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 53, pp. 3-15, Jan 2006.
[30] T. Chen and G. Gielen, "The analysis and improvement of a current-steering DAC's dynamic SFDR-III: The output-dependent delay differences," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 54, pp. 268-279, Feb 2007.
[31] P. Palmers and M. S. J. Steyaert, "A 10-Bit 1.6-GS/s 27-mW Current-Steering D/A Converter With 550-MHz 54-dB SFDR Bandwidth in 130-nm CMOS," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 57, pp. 2870-2879, Nov 2010.
[32] S. Luschas and H. S. Lee, "Output impedance requirements for DACs," in Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on, 2003, pp. I-861-I-864 vol.1.
[33] M. Steyaert, J. H. Huijsing, A. H. M. van Roermund, and SpringerLink (Online service). (2006). Analog Circuit Design RF Circuits: Wide band, Front-Ends, DAC's, Design Methodology and Verification for RF and Mixed-Signal Systems, Low Power and Low Voltage. Available: http://dx.doi.org/10.1007/1-4020-3885-2
[34] Y. Xu and H. Min, "A low-power video 10-bit CMOS D A converter using modified look-ahead circuit," IEEE Transactions on Consumer Electronics, vol. 45, pp. 295-298, May 1999.
[35] M. H. Shen, J. H. Tsai, and P. C. Huang, "Random Swapping Dynamic Element Matching Technique for Glitch Energy Minimization in Current-Steering DAC," IEEE Transactions on Circuits and Systems II-Express Briefs, vol. 57, pp. 369-373, May 2010.
[36] D. Mercer, "A 16-B D/a Converter with Increased Spurious Free Dynamic-Range," Ieee Journal of Solid-State Circuits, vol. 29, pp. 1180-1185, Oct 1994.
[37] J. Deveugele, G. Van der Plas, M. Steyaert, G. Gielen, and W. Sansen, "A gradient-error and edge-effect tolerant switching scheme for a high-accuracy DAC," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 51, pp. 191-195, Jan 2004.
[38] W. Yang, X. Wang, and J. Cai, "A Sub-1-V Linear CMOS Bandgap Voltage Reference," in High Density Microsystem Design and Packaging and Component Failure Analysis, 2005 Conference on, 2005, pp. 1-4.
[39] Q. Bo, J. Chen, C. Zhiliang, and C. Hongyi, "A 1V MNC Bandgap Reference with High Temperature Stability," in Communications, Circuits and Systems Proceedings, 2006 International Conference on, 2006, pp. 2205-2209.
[40] L. Yang, Y. Shi, L. Li, and Z. Zheng, "CMOS bandgap voltage reference with 1.8-V power supply," in ASIC, 2003. Proceedings. 5th International Conference on, 2003, pp. 611-614 Vol.1.
[41] L. Ka Nang and P. K. T. Mok, "A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device," Solid-State Circuits, IEEE Journal of, vol. 37, pp. 526-530, 2002.
[42] W. T. Lin and T. H. Kuo, "A 12b 1.6GS/s 40mW DAC in 40nm CMOS with >70dB SFDR over entire Nyquist bandwidth," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 2013, pp. 474-475.
[43] W. H. Tseng, J. T. Wu, and Y. C. Chu, "A CMOS 8-Bit 1.6-GS/s DAC With Digital Random Return-to-Zero," IEEE Transactions on Circuits and Systems II-Express Briefs, vol. 58, pp. 1-5, Jan 2011.
[44] M. Steyaert, J. H. Huijsing, and A. H. M. v. Roermund, Analog circuit design. Scalable analog circuit design, high speed D/A converters, RF power amplifiers. Boston [Mass.] ; London: Kluwer Academic, 2002.
[45] C. Tao, P. Geens, G. Van der Plas, W. Dehaene, and G. Gielen, "A 14-bit 130-MHz CMOS current-steering DAC with adjustable INL," in Solid-State Circuits Conference, 2004. ESSCIRC 2004. Proceeding of the 30th European, 2004, pp. 167-170.
[46] D. Giotta, P. Pessl, M. Clara, W. Klatzer, and R. Gaggl, "Low-power 14-bit current steering DAC, for ADSL2+/CO applications in 0.13μm CMOS," in Solid-State Circuits Conference, 2004. ESSCIRC 2004. Proceeding of the 30th European, 2004, pp. 163-166.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code