Responsive image
博碩士論文 etd-0022114-121534 詳細資訊
Title page for etd-0022114-121534
論文名稱
Title
一個具有時脈控制器之十二位元省電數位類比轉換器
A 12-bit Power Saving DAC with Clock Controller
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-16
繳交日期
Date of Submission
2014-01-22
關鍵字
Keywords
二進位權重碼、溫度計碼、時脈饋入、數位類比轉換器、行時脈控制器
binary-weighted code, thermometer code, clock feedthrough, column clock controller, digital-to-analog converter
統計
Statistics
本論文已被瀏覽 5773 次,被下載 133
The thesis/dissertation has been browsed 5773 times, has been downloaded 133 times.
中文摘要
本論文中,實現一個應用於無線通訊之12位元1GS/s電流導向數位類比轉換器(DAC),所提出的數位類比轉換器採用分段式電流導向架構,其中最大八個有效位元碼(MSB)轉成溫度計碼,最小四個有效位元(LSB)使用二進位權重碼。此架構中,提出一個行時脈控制器的新技術,用來減少時脈饋入對輸出的失真影響與整體的功率消耗。
所設計的數位類比轉換器採用TSMC 90nm 的製程來實現,在靜態效能上,當有開啟時脈控制器時:差分非線性誤差為0.008LSB,積分非線性誤差為0.019LSB;當關閉時脈控制器時:差分非線性誤差為0.011LSB,積分非線性誤差為0.018LSB。當取樣頻率為1GS/s,輸入訊號為499MHz時,有開啟與關閉時脈控制器的無突波動態範圍(SFDR)分別為85dB與82dB,整個功率消耗為24mW。
Abstract
In this thesis, A 12-bit 1GS/s DAC for wireless communications is proposed. In order to achieve the high performance requirements, the current-steering architecture is the most suitable and widely used in the present design. The segmented current steering architecture that comprises 8MSB’s thermometer code and 4LSB’s binary-weighted is used. In this design, a new technique of the column clock controller (CCC) is proposed to improve the DAC performance. The Column clock controller (CCC) is able to reduce the clock feed-through effect for DAC and reduce power consumption from switching activity.
The designed DAC implemented in TSMC 90nm CMOS technology. When the CCC is enabled, the simulation results show that INL is 0.019LSB and DNL is 0.008LSB; When the CCC is disabled, the simulation results show that INL is 0.018LSB and DNL is 0.011LSB. When the CCC is enabled and disabled, the SFDR is 85dB and 82dB respectively. The power consumption is 24mW.
目次 Table of Contents
摘要 II
ABSTRACT III
LIST OF TABLES VI
LIST OF FIGURES VII
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Organization 4
CHAPTER 2 SURVEY OF CURRENT-STEERING DAC 5
2.1 Introduction 5
2.2 DAC Specification 5
2.2.1 Static Specification 8
2.2.2 Dynamic Specification 11
2.3 Current-steering DAC 13
2.3.1 Binary-Weighted DAC 13
2.3.2 Thermometer-code DAC 14
2.3.3 Segmented DAC 17
2.4 Design Consideration for DACs 21
2.4.1 Cell-Dependent Delay Differences (CDDDs) [29] 22
2.4.2 Output-Dependent Delay Differences (ODDDs) [30] 23
2.4.3 DAC’s Output Impedance and Distortion 25
2.5 Dynamic Element Matching Technique[34] 27
CHAPTER 3 A 12-BIT 1GS/S DAC IN 90NM 30
3.1 Introduction 30
3.2 Proposed Segmentation DAC Architecture 30
3.3 8-bit Thermometer-Coded DAC 32
3.3.1 Unit Current Cells 32
3.3.2 Column Clock Controller (CCC) 35
3.4 4-bit Binary-Weighted DAC 39
3.5 Biasing Circuit 41
CHAPTER 4 SIMULATION AND EXPERIMENTAL RESULTS 42
4.1 Simulation Results 42
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 49
5.1 Conclusion 49
5.2 Future Works 50
REFERENCES 51
參考文獻 References
[1] N. Ghittori, A. Vigna, P. Malcovati, S. D'Amico, and A. Baschirotto, "1.2-V low-power multi-mode DAC plus filter blocks for reconfigurable (WLAN/UMTS, WLAN/Bluetooth) transmitters," IEEE Journal of Solid-State Circuits, vol. 41, pp. 1970-1982, Sep 2006.
[2] J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, "A 12-bit intrinsic accuracy high-speed CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 33, pp. 1959-1969, Dec 1998.
[3] G. A. M. Van der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert, and G. G. E. Gielen, "A 14-bit intrinsic accuracy Q(2) Random Walk CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 34, pp. 1708-1718, Dec 1999.
[4] J. Deveugele and M. S. J. Steyaert, "A 10-bit 250-MS/s binary-weighted current-steering DAC," IEEE Journal of Solid-State Circuits, vol. 41, pp. 320-329, Feb 2006.
[5] T. Chen and G. G. E. Gielen, "A 14-bit 200-MHz current-steering DAC with switching-sequence post-adjustment calibration," IEEE Journal of Solid-State Circuits, vol. 42, pp. 2386-2394, Nov 2007.
[6] W. T. Lin and T. H. Kuo, "A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection," IEEE Journal of Solid-State Circuits, vol. 47, pp. 444-453, Feb 2012.
[7] W. H. Tseng, C. W. Fan, and J. T. Wu, "A 12-Bit 1.25-GS/s DAC in 90 nm CMOS With > 70 dB SFDR up to 500 MHz," IEEE Journal of Solid-State Circuits, vol. 46, pp. 2845-2856, Dec 2011.
[8] Y. J. Tang, J. Briaire, K. Doris, R. van Veldhoven, P. C. W. van Beek, H. J. A. Hegt, et al., "A 14 bit 200 MS/s DAC With SFDR > 78 dBc, IM3 <-83 dBc and NSD <-163 dBm/Hz Across the Whole Nyquist Band Enabled by Dynamic-Mismatch Mapping," IEEE Journal of Solid-State Circuits, vol. 46, pp. 1371-1381, Jun 2011.
[9] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching Properties of Mos-Transistors," IEEE Journal of Solid-State Circuits, vol. 24, pp. 1433-1440, Oct 1989.
[10] T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, "An 80-MHz 8-bit CMOS D/A converter," IEEE Journal of Solid-State Circuits, vol. 21, pp. 983-988, 1986.
[11] Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, "A 10-b 70-MS/s CMOS D/A converter," IEEE Journal of Solid-State Circuits, vol. 26, pp. 637-642, 1991.
[12] K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copeland, "Characterisation and modeling of mismatch in MOS transistors for precision analog design," IEEE Journal of Solid-State Circuits, vol. 21, pp. 1057-1066, 1986.
[13] H. P. Tuinhout and M. Vertregt, "Test structures for investigation of metal coverage effects on MOSFET matching," in Microelectronic Test Structures, 1997. ICMTS 1997. Proceedings. IEEE International Conference on, 1997, pp. 179-183.
[14] J. Bastos, M. S. J. Steyaert, A. Pergoot, and W. M. Sansen, "Influence of die attachment on MOS transistor matching," IEEE Transactions on Semiconductor Manufacturing, vol. 10, pp. 209-218, 1997.
[15] Y. H. Cong and R. L. Geiger, "A 1.5-V 14-bit 100-MS/s self-calibrated DAC," IEEE Journal of Solid-State Circuits, vol. 38, pp. 2051-2060, Dec 2003.
[16] D. W. J. Groeneveld, H. J. Schouwenaars, H. A. H. Termeer, and C. A. A. Bastiaansen, "A Self-Calibration Technique for Monolithic High-Resolution D/a Converters," IEEE Journal of Solid-State Circuits, vol. 24, pp. 1517-1522, Dec 1989.
[17] A. R. Bugeja and B. S. Song, "A self-trimming 14-b 100-MS/s CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 35, pp. 1841-1852, Dec 2000.
[18] F. F. Dai, W. N. Ni, S. Yin, and R. C. Jaeger, "A direct digital frequency synthesizer with fourth-order phase domain Delta Sigma noise shaper and 12-bit current-steering DAC," IEEE Journal of Solid-State Circuits, vol. 41, pp. 839-850, Apr 2006.
[19] R. J. v. d. Plassche, CMOS integrated analog-to-digital and digital-to-analog converters, 2nd ed. Boston: Kluwer Academic Publishers, 2003.
[20] C. Shi and M. Ismail, Data converters for wireless standards. Boston: Kluwer Academic Publishers, 2002.
[21] F. Maloberti and SpringerLink (Online service). (2007). Data Converters. Available: http://dx.doi.org/10.1007/978-0-387-32486-9
[22] B. Razavi, Principles of data conversion system design. New York: IEEE Press, 1995.
[23] "IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters," IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000), pp. 1-139, 2011.
[24] "IEEE Standard for Terminology and Test Methods of Digital-to-Analog Converter Devices," IEEE Std 1658-2011, pp. 1-126, 2012.
[25] R. J. Baker. (2010). CMOS : circuit design, layout, and simulation (3rd ed.). Available: http://onlinelibrary.wiley.com/book/10.1002/9780470891179
[26] C. H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6 mm(2)," IEEE Journal of Solid-State Circuits, vol. 33, pp. 1948-1958, Dec 1998.
[27] Y. H. Cong and R. L. Geiger, "Switching sequence optimization for gradient error compensation in thermometer-decoded DAC arrays," IEEE Transactions on Circuits and Systems Ii-Analog and Digital Signal Processing, vol. 47, pp. 585-595, Jul 2000.
[28] K. C. Kuo and C. W. Wu, "A Switching Sequence for Linear Gradient Error Compensation in the DAC Design," IEEE Transactions on Circuits and Systems Ii-Express Briefs, vol. 58, pp. 502-506, Aug 2011.
[29] T. Chen and G. G. E. Gielen, "The analysis and improvement of a current-steering DACs dynamic SFDR - I: The cell-dependent delay differences," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 53, pp. 3-15, Jan 2006.
[30] R. A. Campbell, E. Sanchez, J. Steinberg, M. Share, J. Wang, M. J. Li, et al., "The novel potent pan-deacetylase (DAC) inhibitor, panobinostat (LBH589), markedly enhances the anti-myeloma effects of chemotherapy in vitro and in vivo," Blood, vol. 110, pp. 743a-743a, Nov 16 2007.
[31] P. Palmers and M. S. J. Steyaert, "A 10-Bit 1.6-GS/s 27-mW Current-Steering D/A Converter With 550-MHz 54-dB SFDR Bandwidth in 130-nm CMOS," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 57, pp. 2870-2879, Nov 2010.
[32] S. Luschas and H. S. Lee, "Output impedance requirements for DACs," in Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on, 2003, pp. I-861-I-864 vol.1.
[33] M. Steyaert, J. H. Huijsing, A. H. M. van Roermund, and SpringerLink (Online service). (2006). Analog Circuit Design RF Circuits: Wide band, Front-Ends, DAC's, Design Methodology and Verification for RF and Mixed-Signal Systems, Low Power and Low Voltage. Available: http://dx.doi.org/10.1007/1-4020-3885-2
[34] M. H. Shen, J. H. Tsai, and P. C. Huang, "Random Swapping Dynamic Element Matching Technique for Glitch Energy Minimization in Current-Steering DAC," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 57, pp. 369-373, 2010.
[35] D. Mercer, "A 16-B D/a Converter with Increased Spurious Free Dynamic-Range," IEEE Journal of Solid-State Circuits, vol. 29, pp. 1180-1185, Oct 1994.
[36] W. Yang, X. Wang, and J. Cai, "A Sub-1-V Linear CMOS Bandgap Voltage Reference," in High Density Microsystem Design and Packaging and Component Failure Analysis, 2005 Conference on, 2005, pp. 1-4.
[37] Q. Bo, J. Chen, C. Zhiliang, and C. Hongyi, "A 1V MNC Bandgap Reference with High Temperature Stability," in Communications, Circuits and Systems Proceedings, 2006 International Conference on, 2006, pp. 2205-2209.
[38] L. Yang, Y. Shi, L. Li, and Z. Zheng, "CMOS bandgap voltage reference with 1.8-V power supply," in ASIC, 2003. Proceedings. 5th International Conference on, 2003, pp. 611-614 Vol.1.
[39] L. Ka Nang and P. K. T. Mok, "A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device," IEEE Journal of Solid-State Circuits, vol. 37, pp. 526-530, 2002.
[40] W. H. Tseng, J. T. Wu, and Y. C. Chu, "A CMOS 8-Bit 1.6-GS/s DAC With Digital Random Return-to-Zero," IEEE Transactions on Circuits and Systems Ii-Express Briefs, vol. 58, pp. 1-5, Jan 2011.
[41] W. T. Lin and T. H. Kuo, "A 12b 1.6GS/s 40mW DAC in 40nm CMOS with >70dB SFDR over entire Nyquist bandwidth," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 2013, pp. 474-475.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code