Responsive image
博碩士論文 etd-0022114-144355 詳細資訊
Title page for etd-0022114-144355
論文名稱
Title
氧化釔、氧化釹及氧化釓對於銅鋅觸媒催化甲醇水蒸氣重組反應的影響
Effect of Y2O3, Nd2O3, and Gd2O3 on the steam reforming of methanol over Cu/ZnO catalysts
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-10
繳交日期
Date of Submission
2014-02-12
關鍵字
Keywords
氧化釹、甲醇水蒸氣重組反應、氧化釔、銅鋅觸媒、氧化釓
Nd2O3, Gd2O3, Y2O3, Cu/ZnO, Steam reforming of methanol (SRM)
統計
Statistics
本論文已被瀏覽 5801 次,被下載 783
The thesis/dissertation has been browsed 5801 times, has been downloaded 783 times.
中文摘要
甲醇蒸氣重組反應製氫是一個受到研究者廣泛注意的一個反應,利用其可以產生高濃度的氫氣並利用在使用燃料電池為動力的車輛上。本研究利用含浸法製備Cu/ZnO觸媒,並探討於其中加入Y2O3、Nd2O3或Gd2O3對於催化甲醇蒸氣重組反應反應中H2產率、CO2選擇率以及長時間穩定性的影響。使用比表面積測定儀、N2O分解式吸附、程溫還原實驗、掃描式電子顯微鏡、X光繞射分析儀以及X射線光電子能譜儀進行觸媒鑑定。利用power rate law以及Langmuir-Hinshelwood rate expreession進行反應動力學的分析。最後,並以共沉澱法製備Cu/ZnO觸媒,比較不同製備方法對於添加劑促進效果的影響。
以含浸法製備的觸媒中所有添加劑均可以有效地增加反應活性和CO2選擇性。對於H2的產率而言,Nd2O3的效果與Gd2O3相當而且皆優於Y2O3。添加劑可以顯著地增加觸媒的金屬銅表面積。從TPR和XPS實驗的結果得知促進劑似乎可以改變銅物種的化學環境。Y2O3和其他兩者促進觸媒催化SRM反應的機制並不完全一樣。Y2O3可能只能少許地影響觸媒的活性位置;其主要角色為分散劑,提升銅在觸媒中的分散度。另一方面,Nd2O3以及Gd2O3不只可以提升銅的分散度,也會影響活性位置的催化行為。
從動力學的角度而言,添加劑可以增加反應中速率決定步驟的反應速率,同時伴隨著降低觸媒對於反應物的吸附能力。每種添加劑在觸媒中皆有最適中的含量;過多的添加劑含量雖然可以更進一步地提升RDS的反應速率,但是此種提升卻可能會被觸媒對於反應物的吸附能力減弱而抵銷。
長時間穩定性測試的結果顯示Y2O3、Nd2O3和Gd2O3三種添加劑皆可以顯著地增加Cu/ZnO觸媒的穩定性。4Y-10Cu/ZnO擁有最佳的8小時後H2產率32.3%,而10Gd-10Cu/ZnO則具有最佳的8小時後穩定性60%。
在以沉澱法製備的觸媒中同樣可以發現Y2O3、Nd2O3和Gd2O3三者的促進能力。其原因主要應為降低CuO和ZnO的顆粒大小並增加CuO在觸媒中的分散度。
Abstract
Production of hydrogen (H2) by steam reforming of methanol (SRM) reaction has received much attention. This reaction can produce H2 gas in a high concentration that can be used for vehicles powered by fuel cells. In this study, the impregnation method was used to prepare Cu/ZnO catalysts, and the effect of additives,Y2O3, Nd2O3, or Gd2O3, to the catalysts on the H2 production, CO2 selectivity, and long-term stability of the SRM reaction were investigated. These catalysts were characterized using Brunauer–Emmett–Teller (BET) surface area analyzer, N2O dissociative adsorption method, temperature-programmed reduction (TPR) method, scanning electron microscopy, X-ray diffraction measurement, and X-ray photoelectron spectroscopy (XPS). The reaction kinetics analysis was performed by fitting with the power rate law and Langmuir–Hinshelwood rate expression. Finally, the Cu/ZnO catalysts were also prepared by the coprecipitation method, and the effect of the preparation method on the promoting effect of additives was investigated.
All the additives could effectively increase the activity and CO2 selectivity of the catalyst prepared by the impregnation method. The effect of Nd2O3 was equal to that of Gd2O3 and superior to that of Y2O3 in terms of H2 production. The additives greatly increased the metallic surface areas of the catalysts. The results of the TPR and XPS analyses showed that the additives altered the chemical environment of the Cu species. The promoting mechanism of Y2O3 was not entirely the same as that of Nd2O3 and Gd2O3. Y2O3 mainly acted as a separator and improved the dispersion of Cu; however, it also affected the active sites of the catalyst to some extent. In comparison, Nd2O3 and Gd2O3 not only improved the dispersion of Cu but also affected the catalytic behavior of the active sites.
Kinetically, the additives increased the rate of the rate-determining step (RDS), with a concomitant decrease in the adsorption capacity of the catalyst toward the reactants. The optimum catalyst for the SRM process is likely to contain a moderate amount of one of the studies additives. The use of an excessive quantity of additive may result in a further increase in the rate of the RDS; however, this increase is likely to be offset by the decrease in the adsorption capacity of the catalysts for the reactants.
The results of the long-term stability experiments showed that all the additives greatly improved the stability of the Cu/ZnO catalysts. 4Y-10Cu/ZnO catalyst showed the best H2-production capability of 32.3% after 8 h, and 10Gd-10Cu/ZnO catalyst possessed the best stability of 60% after 8 h.
The promoting effects of Y2O3, Nd2O3, and Gd2O3 were also observed in the catalysts prepared by the coprecipitation method. These were mainly caused by decreasing the particle size of CuO and ZnO and increasing the dispersion of CuO in the catalysts.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 氫能 3
2-2 燃料電池 4
2-2-1 燃料電池的原理 4
2-2-2 燃料電池的種類 4
2-2-3 燃料電池的優點 5
2-2-4 燃料電池的應用 6
2-3 甲醇 9
2-4 甲醇重組製氫反應 11
2-5 Cu/ZnO觸媒催化甲醇水蒸氣重組(SRM)反應 12
2-5-1 Cu/ZnO觸媒 12
2-5-2 Cu/ZnO觸媒的微結構與催化SRM反應活性間的關係 13
2-5-3 Cu的氧化態與催化SRM反應活性間的關係 14
2-5-4 Cu/ZnO觸媒的失活 15
2-5-5 製備方法的改善 16
2-5-6 促進劑的添加 17
第三章 實驗方法 22
3-1 觸媒的製備 22
3-1-1 藥品 22
3-1-2 氧化鋅的製備 22
3-1-3 以含浸法製備觸媒 23
3-1-4 以共沉澱法製備觸媒 23
3-1-5 樣品的命名 23
3-2 Brunauer–Emmett–Teller (BET)比表面積測量 24
3-3 金屬銅表面積測量 24
3-4 程溫還原(Temperature-programmed reduction, TPR)實驗 26
3-5 掃描式電子顯微鏡與X光能量散佈面掃描(Scanning electron microscopy-energy dispersive X-ray mapping, SEM-EDX mapping)分析 26
3-6 X-光繞射(X-ray diffraction, XRD)分析 27
3-7 X-射線光電子能譜(X-ray photoelectron spectroscopy, XPS)分析 27
3-8 觸媒的活性測試 27
第四章 結果與討論 30
4-1 添加各種金屬氧化物對於Cu/ZnO觸媒催化甲醇水蒸氣重組(SRM)反應的影響 30
4-2 觸媒活性 36
4-3 觸媒鑑定 44
4-3-1 SEM/EDX mapping分析 44
4-3-2 BET比表面積、金屬銅的表面積與分散度測量 47
4-3-3 XRD分析 49
4-3-4 TPR鑑定 54
4-3-5 XPS分析 58
4-3-6 反應轉化頻率(Turnover frequency, TOF)分析 60
4-4 動力學分析 65
4-4-1 Power rate law 65
4-4-2 Langmuir–Hinshelwood rate expression 71
4-4-3 外觀活化能 78
4-5 觸媒的長時間穩定性 82
4-5-1 長時間穩定性測試 82
4-5-2 長時間反應後觸媒的XRD 鑑定 87
4-6 以共沉澱法製備的含Y2O3, Nd2O3 或Gd2O3 之Cu/ZnO 觸媒的表現 90
4-6-1 活性和CO2選擇率測試 90
4-6-2 BET比表面積與XRD鑑定 94
4-6-3 TPR鑑定 96
第五章 結論 98
第六章 參考文獻 99
參考文獻 References
[1] 黃鎮江. 燃料電池. 第三版. 臺中市, 滄海書局 (2008).
[2] http://butane.chem.uiuc.edu/pshapley/Enlist/Labs/FuelCellLab/FuelCell.html.
[3] Trimma DL, Önsanb ZI. Onbord fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev. (2001) 43,31-84.
[4] Palo DR, Dagle RA, Holladay JD. Methanol steam reforming for hydrogen production. Chem Rev. (2007) 107,3992-4021.
[5] Lindstrom B, Pettersson LJ. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications. Int J Hydrogen Energy. (2001) 26,923-33.
[6] Figueiredo RT, Martinez-Arias A, Granados ML, Fierro JLG. Spectroscopic evidence of Cu–Al interactions in Cu–Zn–Al mixed oxide catalysts used in CO hydrogenation. J Catal. (1998) 178,146-52.
[7] Huang X, Ma L, Wainwright MS. The influence of Cr, Zn and Co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions. Appl Catal A. (2004) 257,235-43.
[8] Günter MM, Ressler T, Jentoft RE, Bems B. Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy. J Catal. (2001) 203,133-49.
[9] Kniep BL, Girgsdies F, Ressler T. Effect of precipitate on the microstructural characteristics of Cu/ZnO catalysts for methanol steam reforming. J Catal. (2005) 236,34-44.
[10] Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schlogl R, Ressler T. Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming - A comparative study. Appl Catal A. (2008) 348,153-64.
[11] Reitz TL, Lee PL, Czaplewski KF, Lang JC, Popp KE, Kung HH. Time -resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction. J Catal. (2001) 199,193-201.
[12] Shishido T, Yamamoto T, Morioka H, Takehira K. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: steam reforming and oxidative steam reforming. J Mol Catal A: Chem. (2007) 268,185-94.
[13] Oguchi H, Kanai H, Utani K, Matsumura Y, Imamura S. Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts. Appl Catal A. (2005) 293,64-70.
[14] Mrad M, Gennequin C, Aboukaïs A, Abi-Aad E. Cu/Zn-based catalysts for H2 production via steam refroming of methanol. Catal Today. (2011) 176,88-92.
[15] Jones SD, Neal LM, Hagelin-Weaver HE. Steam reforming of methanol using Cu-ZnO catalysts supported on nanoparticle alumina. Appl Catal B. (2008) 84,631-42.
[16] Twigg MV, Spencer MS. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Top Catal. (2003) 22,191-203.
[17] Hughes R. Deactivation of Catalysts. New York, Academic Press (1994).
[18] Spencer MS. Stable and metastable metal surfaces in heterogeneous catalysis. Nature. (1986) 323,685-7.
[19] Takahashi K, Takezawa N, Kobayashi H. The mechanism of steam reforming of methanol over a copper-silica catalyst. Appl Catal. (1982) 2,363-6.
[20] Patel S, Pant KK. Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol. J Porous Mater. (2006) 13,373-8.
[21] Shen JP, Song CS. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells. Catal Today. (2002) 77,89-98.
[22] Yao CZ, Wang LC, Liu YM, Wu GS, Cao Y, Dai WL, et al. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts. Appl Catal A. (2006) 297,151-8.
[23] Wang LC, Liu YM, Chen M, Cao Y, He HY, Wu GS, et al. Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis. J Catal. (2007) 246,193-204.
[24] Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catal Rev Sci Eng. (1996) 38,439-520.
[25] Li Y, Fu Q, Flytzani-Stephanopoulos M. Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl Catal B. (2000) 27,179-91.
[26] Harrison PG, Ball IK, Azelee W, Daniell W, Goldfarb D. Nature and surface redox properties of copper(II)-promoted cerium(IV) oxide CO-oxidation catalysts. Chem Mater. (2000) 12,3715-25.
[27] Chen YZ, Liaw BJ, Chen HC. Selective oxidation of CO in excess hydrogen over CuO/CexZr1-xO2 catalysts. Int J Hydrogen Energy. (2006) 31,427-35.
[28] Martínez-Arias A, Hungría AB, Munuera G, Gamarra D. Peferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream. Appl Catal B. (2006) 65,207-16.
[29] Liu YY, Hayakawa T, Suzuki K, Hamakawa S. Highly active copper/ceria catalysts for steam reforming of methanol. Appl Catal A. (2002) 223,137-45.
[30] Liu YY, Hayakawa T, Tsunoda T, Suzuki K, Hamakawa S, Murata K, et al. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts. Top Catal. (2003) 22,205-13.
[31] Zhang XR, Shi PF. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts. J Mol Catal A: Chem. (2003) 194,99-105.
[32] Patel S, Pant KK. Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol J Power Sources. (2006) 159,139-43.
[33] Udani PPC, Gunawardana PVDS, Lee HC, Kim DH. Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts. Int J Hydrogen Energy. (2009) 34,7648-55.
[34] Lindstrom B, Pettersson LJ. Steam reforming of methanol over copper-based monoliths: the effects of zirconia doping. J Power Sources. (2002) 106,264-73.
[35] Zhang XRR, Shi PF, Zhao JX, Zhao MY, Liu CT. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts. Fuel Process Technol. (2003) 83,183-92.
[36] Purnama H, Girgsdies F, Ressler T, Schattka JH, Caruso RA, Schomacker R, et al. Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol. Catal Lett. (2004) 94,61-8.
[37] Oguchi H, Nishiguchi T, Matsumoto T, Kanai H, Utani K, Matsumura Y, et al. Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts. Appl Catal A. (2005) 281,69-73.
[38] Matsumura Y, Ishibe H. Effect of zirconium oxide added to Cu/ZnO catalyst for steam reforming of methanol to hydrogen. J Mol Catal A: Chem. (2011) 345,44-53.
[39] Huang G, Liaw BJ, Jhang CJ, Chen YZ. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Appl Catal A. (2009) 358,7-12.
[40] Chang CC, Chang CT, Chiang SJ, Liaw BJ, Chen YZ. Oxidative steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Int J Hydrogen Energy. (2010) 35,7675-83.
[41] Zhang L, Pan LW, Ni CJ, Sun TJ, Zhao SS, Wang SD, et al. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming. Int J Hydrogen Energy. (2013) 38,4397-406.
[42] Ma L, Gong B, Tran T, Wainwright MS. Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift. Catal Today. (2000) 63,499-505.
[43] Idem RO, Bakhshi NN. Production of hydrogen from methanol over promoted coprecipitated Cu-Al catalysts: the effects of various promoters and catalysts activation methods. Ind Eng Chem Res. (1995) 34,1548-57.
[44] Papavasiliou J, Avgouropoulos G, Ioannides T. Steam reforming of methanol over copper-manganese spinel oxide catalysts. Catal Commun. (2005) 6,497-501.
[45] Papavasiliou J, Avgouropoulos G, Ioannides T. In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen. Appl Catal B. (2006) 66,168-74.
[46] Papavasiliou J, Avgouropoulos G, Ioannides T. Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts. J Catal. (2007) 251,7-20.
[47] Fukunaga T, Ryumon N, Ichikuni N, Shimazu S. Characterization of CuMn-spinel catalyst for methanol steam reforming. Catal Commun. (2009) 10,1800-3.
[48] Houteit A, Mahzoul H, Ehrburger P, Bernhardt P, Legare P, Garin F. Production of hydrogen by steam reforming of methanol over copper-based catalysts: The effect of cesium doping. Appl Catal A. (2006) 306,22-8.
[49] Clancy P, Breen JP, Ross JRH. The preparation and properties of coprecipitated Cu-Zr-Y and Cu-Zr-La catalysts used for the steam reforming of methanol. Catal Today. (2007) 127,291-4.
[50] Yang HM, Chan MK. Steam reforming of methanol over copper-yttria catalyst supported on praseodymium-aluminum mixed oxides. Catal Commun. (2011) 12,1389-95.
[51] Giamello E, Fubini B, Lauro P, Bossi A. A microcalorimetric method for the evaluation of copper surface area in Cu/ZnO catalyst. J Catal. (1984) 87,443-51.
[52] Dell RM, Stone FS, Tiley PF. The adsorption of oxygen and other gases on copper. Trans Faraday Soc. (1953) 49,195-201.
[53] Chen WH, Chen I, Liou JS, Lin SS. Supported Cu catalysts with yttria-doped ceria for steam reforming of methanol. Top Catal. (2003) 22,225-33.
[54] Liu Y, Hayakawa T, Tsunoda T, Suzuki K, Hamakawa S, Murata K, et al. New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol. Top Catal. (2003) 22,205-13.
[55] Peppley BA, Amphlett JC, Kearns LM, Mann RF. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: The reaction network. Appl Catal A. (1999) 179,21-9.
[56] Peppley BA, Amphlett JC, Kearns LM, Mann RF. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl Catal A. (1999) 179,31-49.
[57] Madon RJ, Braden D, Kandoi S, Nagel P, Mavrikakis N, Dumesic JA. Microkinetic analysis and mechanism of the water gas shift reaction over copper catalysts. J Catal. (2011) 281,1-11.
[58] Sanches SG, Flores JH, Avillez RRd, Silva MIPd. Influence of preparation methods and Zr and Y promoters on Cu/ZnO catalysts used for methanol steam reforming. Int J Hydrogen Energy. (2012) 37,6572-9.
[59] Jun KW, Shen WJ, Rao KSR, Lee KW. Residual sodium effect on the catalytic activity of Cu/ZnO/Al2O3 in methanol synthesis from CO2 hydrogenation. Appl Catal A. (1998) 174,231-8.
[60] Pintar A, Batista J, Hocevar S. TPR, TPO, and TPD examinations of Cu0.15 Ce0.85 O2-y mixed oxides prepared by co-precipitation, by the sol-gel peroxide route, and by citric acid-assisted synthesis. J Colloid Interface Sci. (2005) 285,218-31.
[61] Imoto T, Harano Y, Nishi Y, Masuda S. The reduction of zinc oxidem by hydrogen. Ⅲ. The effect of nitrogen on the reduction. Bull Chem Soc Jpn. (1964) 37,441-4.
[62] Robertson SD, McNicol BD, Debaas JH, Kloet SC, Jenkins JW. Dtermination of reducibility and identification of alloying in copper-nickel-on silica catalysts by temperature-programmed reduction. J Catal. (1975) 37,424-31.
[63] Vandergrift CJG, Mulder A, Geus JW. Characterization of silica-supported copper catalysts by means of temperature-programmed reduction. Appl Catal. (1990) 60,181-92.
[64] Agrell J, Birgersson H, Boutonnet M, Melian-Cabrera I, Navarro RM, Fierro JLG. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. J Catal. (2003) 219,389-403.
[65] Idem RO, Bakhshi NN. Production of hydrogen from methanol over promoted coprecipitated Cu-Al catalysts: the effects of various promoters and catalysts activation methods. Ind Eng Chem Res. (1995) 34,1548-57.
[66] Breen JP, Ross JRH. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts. Catal Today. (1999) 51,521-33.
[67] Jones SD, Hagelin-Weaver HE. Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3. Appl Catal B. (2009) 90,195-204.
[68] Vernon GA, Stucky G, Carlson TA. Comprehensive study of satellite structure in the photoelectron spectra of transition metal compounds. Inorg Chem. (1976) 15,278-84.
[69] Saito M, Wu J, Tomoda K, Takahara I, Murata K. Effects of ZnO contained in supported Cu-based catalysts on their activities for several reactions. Catal Lett. (2002) 83,1-4.
[70] Huang X, Ma L, Wainwright MS. The influence of Cr, Zn and Co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions. Appl Catal A. (2004) 257,235-43.
[71] Frank B, Jentoft FC, Soerijanto H, Krohnert J, Schlogl R, Schomacker R. Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics. J Catal. (2007) 246,177-92.
[72] Chorkendorff I, Niemantsverdriet JW. Concepts of Modern Catalysis and Kinetics. Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA (2003).
[73] Lee JK, Ko JB, Kim DH. Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Appl Catal A. (2004) 278,25-35.
[74] Purnama H, Ressler T, Jentoft RE, Soerijanto H, Schlogl R, Schomacker R. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Appl Catal A. (2004) 259,83-94.
[75] Mastalir A, Frank B, Szizybalski A, Soerijanto H, Deshpande A, Niederberger M, et al. Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study. J Catal. (2005) 230,464-75.
[76] Papavasiliou J, Avgouropoulos G, Ioannides T. Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Appl Catal B. (2009) 88,490-6.
[77] Jung KD, Bell AT. Role of hydrogen spillover in methanol synthesis over Cu/ZrO2. J Catal. (2000) 193,207-23.
[78] Pokrovski KA, Bell AT. An investigation of the factors influencing the activity of Cu/CexZr1-xO2 for methanol synthesis via CO hydrogenation. J Catal. (2006) 241,276-86.
[79] Jiang CJ, Trimm DL, Wainwright MS, Cant NW. Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst. Appl Catal A. (1993) 97,145-58.
[80] Jiang CJ, Trimm DL, Wainwright MS, Cant NW. Kinetic study of steam reforming of methanol over copper-based catalysts. Appl Catal A. (1993) 93,245-55.
[81] Takezawa N, Iwasa N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. In: Haruta M, Souma Y, editors. Workshop on Environmental Catalysis - The Role of IB Metals. Ikeda, Japan1995. p. 45-56.
[82] Agrell J, Birgersson H, Boutonnet M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. J Power Sources. (2002) 106,249-57.
[83] Tsai MC, Wang JH, Shen CC, Yeh CT. Promotion of a copper-zinc catalyst with rare earth for the steam reforming of methanol at low temperatures. J Catal. (2011) 279,241-5.
[84] Mater PH, Braden DJ, Ozkan US. Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts. J Catal. (2004) 223,340-51.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code