Responsive image
博碩士論文 etd-0022115-230447 詳細資訊
Title page for etd-0022115-230447
論文名稱
Title
利用聚二甲基矽氧烷表面結構控制液晶分子排列
The Use of Patterned Polydimethylsiloxane to Control Arrangement of Liquid Crystals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-12-22
繳交日期
Date of Submission
2015-01-24
關鍵字
Keywords
表面壓印、侷限空間、聚二甲基矽氧烷、表面結構、液晶
liquid crystal, polydimethylsiloxane, imprinting, confinement, patterned surface
統計
Statistics
本論文已被瀏覽 5762 次,被下載 56
The thesis/dissertation has been browsed 5762 times, has been downloaded 56 times.
中文摘要
如何良好的控制液晶分子的排列,一直以來都是製作液晶器件的關鍵要素之一。現今業界主流方式為使用絨毛摩擦有機高分子薄膜表面,使液晶分子能夠在基板上呈現整齊一致地排列。摩擦表面所產生的細微溝槽結構,被認為是液晶配向的主要原因之一,因此引起許多關注,並開始著手研究表面拓樸結構對於液晶分子排列的影響。
聚二甲基矽氧烷為有機高分子聚合物,它能夠展現出高透光、可撓曲及穩定的物化特性,一直以來都是一款熱門的應用材料。由過去研究得知,聚二甲基矽氧烷具有低表面能之性質,液晶分子在其表面能夠形成垂直配向。因此,若將液晶分子束縛於聚二甲基矽氧烷的二維侷限結構中,則分子將受到來自四個表面作用力的影響。一旦改變了侷限結構的寬度或深度,則周邊表面對液晶分子的作用力也將跟著變化,進而改變液晶分子的排列狀態。
於本研究中,我們利用壓印方式將微米溝槽結構轉印至聚二甲基矽氧烷表面,並將其製作成二維侷限空間的結構,並改變溝槽結構的深度與寬度之比值,觀察液晶分子於侷限空間內的排列情形。透過光學顯微鏡觀察樣品呈現出的光學圖像及量測其穿透光強度,我們推斷出液晶分子的排列情形會隨著溝槽結構的深寬比不同,而有著不同的排列狀態。
當溝槽結構的深寬比愈大,則液晶分子於結構中的排列,將以水平排列模式為主;若深寬比愈小,則液晶分子於溝槽內的排列會以垂直形式為主。研究結果表明,聚二甲基矽氧烷的微溝槽結構深寬比比值對液晶分子的排列有著重大的影響。
Abstract
Controlling arrangement of liquid crystals plays an important role in
manufacturing LC devices. Rubbing polyimide surface which can drive LC molecules
to form uniform arrangement is the conventional way to achieve this goal. The grooved
structures of polyimide surface caused by rubbing process is regarded as the one
mechanism to arrange LC molecules. Therefore, many researches concerning to the
effect of surface topological structures to arrangement of LC molecules have been
proposed.
Polydimethylsiloxane, a silicon-based polymer, is a transparent, flexible and
environment friendly material. Besides, the stable physico-chemical properties makes
it be popular in many applied area. According to our past studies, nematic liquid crystal
molecules can be driven to form homeotropic alignment on polydimethylsiloxane plate
surface. Based on the results, PDMS confinement walls are built to confine liquid
crystals. The arrangement of liquid crystals will be affect by the four PDMS boundaries.
Through varying the depth to width aspect ratio of PDMS confinement structure, the
effect of boundaries of PDMS surfaces will be changed. That is, the arrangement mode
of liquid crystals will be changed.
In this study, imprinting method is involved to produce the PDMS confinement
structure. And we find that the arrangement of calamitic nematic liquid crystals will be
affected by means of varying the depth to width aspect ratio of PDMS confinement.
The aspect ratio is a key factor to obtain different LC arrangement. That is, nematic
liquid crystals favor to form planar arrangement as the larger aspect ratio which is
greater than 0.4. Otherwise, smaller aspect ratio would make liquid crystals to form
vertical arrangement. And for discotic liquid crystals, the PDMS confinement structure
can drive the discotic mesogens to form uniform planar arrangement.
目次 Table of Contents
第一章 緒論 1
參考文獻 4
第二章 液晶及其應用介紹 6
2.1 液晶基本概念 6
2.1.1 液晶的分類 6
2.1.2 分子長軸、短軸、指向矢與秩序參數 8
2.2 液晶基本物理特性 10
2.2.1 液晶連續彈性理論 10
2.2.2 光學異向性 12
2.2.3 電學異向性 15
2.3 液晶的相態 16
2.3.1 桿狀液晶的相態 16
2.3.2 盤狀液晶的相態 18
參考文獻 19
第三章 實驗材料、檢測理論及儀器設備 21
3.1 實驗材料介紹 21
3.1.1 聚二甲基矽氧烷 21
3.1.2 光阻SU-8 23
3.1.3 液晶材料 25
3.2 表面能理論 26
3.2.1 表面能與表面張力 26
3.2.2 表面能量測 27
3.3 光學檢測理論 29
3.3.1 相位延遲量 29
3.3.2 Jones matrix 30
3.3.3 錐光干涉檢測 37
3.4 Malus’s Law 39
3.5 液晶預傾角量測原理 41
3.6 儀器設備介紹 44
3.6.1 主要製程設備 44
3.6.2 接觸角量測儀 46
3.6.3 光學偏光顯微鏡 47
3.6.4 樣品穿透光強度量測 48
參考文獻 49
第四章 聚二甲基矽氧烷表面對液晶排列的影響 52
4.1 引言 52
4.2 聚二甲基矽氧烷薄膜製備 52
4.3 薄膜表面性質 53
4.3.1 PDMS薄膜表面能 53
4.3.2 PDMS薄膜表面穩定性 54
4.4 液晶分子於PDMS薄膜表面之排列 56
4.4.1 樣品光學圖像分析 56
4.4.2 分子在PDMS薄膜上的排列 57
4.5 本章小結 61
參考文獻 61
第五章 聚二甲基矽氧烷侷限結構對桿狀液晶排列之影響 63
5.1 引言 63
5.2 液晶的表面配向 63
5.3 液晶配向機制 65
5.4 表面結構配向液晶文獻回顧 67
5.4.1 機械力刻劃 67
5.4.2 雷射引致溝槽結構 67
5.4.3 撕裂引致溝槽法 68
5.4.4 奈米壓印法 69
5.5 表面侷限結構 70
5.6 具表面結構的聚二甲基矽氧烷樣品製備 72
5.6.1 光學微影蝕刻流程 72
5.6.2 PDMS壓印翻模及樣品盒製備過程 74
5.7 液晶在結構內之排列探討 78
5.7.1 液晶分子於溝槽內的排列 78
5.7.2 模擬溝槽結構對液晶分子排列影響 88
5.8 本章小結 92
參考文獻 92
第六章 盤狀液晶在聚二甲基矽氧烷結構內的排列 94
6.1 引言 94
6.2 盤狀液晶簡介及應用 94
6.2.1 盤狀液晶簡介 94
6.2.2 應用價值 95
6.2.3 盤狀液晶之態行為 98
6.2.4 盤狀液晶分子配向模式 100
6.3 盤狀液晶水平配向文獻回顧 101
6.4 盤狀液晶材料介紹及樣品製備 103
6.4.1 盤狀液晶材料 103
6.4.2 樣品製備 104
6.5 盤狀液晶分子的排列 105
6.5.1 液晶分子在PDMS平整薄膜上的排列 106
6.5.2 液晶分子在PDMS侷限結構內的排列 108
6.5.3 熱退火處理溫度對液晶排列的影響 112
6.5.4 盤狀液晶分子於不同尺寸PDMS溝槽結構內 113
6.5.5 他款盤狀材料在PDMS侷限空間內的排列 115
6.6 本章小結 116
參考文獻…………………………………………………………………………… 117
第七章 總結與未來工作及展望 119
7.1 總結 119
7.2 未來工作及展望 120
附錄X1、光斜向入射雙折射介質的相位差推導 121
附錄X2、晶體旋轉法公式推導 123
參考文獻 References
[1] G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, Mol. Cryst. and Liq. Cryst., 8,
293 (1969).
[2] W. Helfrich, and M. Schadt, Phys. Rev. Lett., 27, 561 (1971).
[3] G. W. Gray, and S. M. Kelly, J. Mater. Chem., 9, 2037-2050 (1999).
[4] V. K. Gupta, T. B. Dubrovsky, and N. L. Abbott, Science, 279, 2077-2080 (1998).
[5] J. Brake, M. Daschner, and N. L. Abbott, Science, 302, 2094-2097 (2003).
[6] J. L. Janning, Appl. Phys. Lett., 21, 173 (1972).
[7] J. Cheng, G. D. Boyd, and G. Storz, Appl. Phys. Lett., 37, 716 (1980).
[8] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, Nature, 351, 49-50 (1991).
[9] P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, Nature, 411, 56-59 (2001).
[10] C. Mauguin, Bull. Soc. Fr. Miner, 34, 71(1911).
[11] D. W. Berreman, Phys. Rev. Lett., 28, 1683 (1972).
[12] Y. J. Lee, J. H. Baek, Y. Kim, J. U. Heo, C. J. Yu, and J. H. Kim, J. phys. D:Appl. Phys., 46, 145305 (2013).
[13] J. V. Harren, Nature, 411, 29-30 (2001).
[14] M. Schadt, H. Seiberle, and A. Schuster, Nature, 381, 212 (1996).
[15] K. P. Lee, N. C. Chromey, R. Culik, J. R. Barnes, and P. W. Schneider, Fundam. Appl. Toxicol., 9, 222-235 (1987).
[16] M. Ishiyama, T. Tanaka, M. Sato, H. Seki, and T. Uchida, Mol. Crys. and Liq. Cryst., 368, 589-597 (2001).
[17] H. Niino, A. Yabe, S. Nagano, and T. Miki, Appl. Phys. Lett., 54, 2159 (1989).
[18] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science, 272, 85-87 (1996).
[19] C. H. Chiu, H. L. Kuo, P. C. Chen, C. H. Wen Y. C. Liu, and H. M. P. Chen, Appl. Phys. Lett., 88, 073509 (2006).
[20] J. N. Lee, C. Park, and G. M. Whitesides, Anal. Chem., 75, 6544-6554 (2003).
[21] W. J. Zheng, and M. H. Huang, Thin Solid Film, 520, 2841-2845 (2012).
[22] J. H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, Adv. Funct. Mater., 19, 3632-3637 (2009).
[23] N. J. Fendinger, D. C. Mcavoy, W. S. Eckhoff, and B. B. Price, Environ. Sci. Technol., 31, 1555-1563 (1997).
[24] Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, Phys. Rev. E, 79, 041701 (2009).
[25] Peter J. Collings and Michael Hird, ‘Introduction to liquid crystals : chemistry
and physics’, Taylor and Francis, Oxon, United Kingdom, CRC Press (1997).
[26] A. G. Petrov, ‘The Lyotropic State of Matter : Molecular Physics and Living Matter
Physics’, New York, United States : Golden and Breach Science Publisher, (1999).
[27] C. J. Drummond and C. Fong, Curr. Opin. Colloid Interface Sci., 4, 449-456 (1999).
[28] S. Z. Mohammady, M. Pouzo, and R. Mezzenga, Biophysical Journal, 96, 1537-1546 (2009).
[29] F. Reinitzer, Monatsh. Chem., 9, 421-441 (1888).
[30] P. Yeh and C. Gu, ‘Optics of Liquid Crystal Displays’, New York, United States (1999).
[31] C. W. Oseen, Trans. Faraday Soc., 29, 883-899 (1933).
[32] H. Zocher, Trans. Faraday Soc., 29, 19-28 (1933).
[33] F. C. Frank, Trans. Faraday Soc., 25, 19-28 (1958).
[34] D. K. Yang and S. T. Wu, ‘Fundamental of Liquid Crystal Devices’, John Wiley & Sons, New Jersey, United States (2006).
[35] P. G. de Gennes and J. Prost, ‘Physics of Liquid Crystals’, Oxford University, New York, United States (1993).
[36] P. Oswald and P. Pieranski, ‘Nematic and Cholesteric Liquid Crystals : Concepts and Physical Properties Illustrated By Experiments’, Taylor and Francis, Boca Raton, United States, CRC Press (2004).
[37] I. Dierking, ‘Textures of Liquid Crystals’, Wiley-VCH, Weinheim, Germany (2003).
[38] S. Kumar, Chem. Soc. Rev., 35, 83-109 (2006).
[39] W. J. Zheng and M. H. Huang, Thin Solid Film, 520, 2841-2845 (2012).
[40] J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, J. Micromech. Microeng., 7, 145-147 (1997).
[41] D. W. Lee and J. S. Park, Sensors and Materials, 19, 497-504 (2007).
[42] J. C. McDonald and G. M. Whitesides, J. Am. Chem. Soc., 125, 14986-14987 (2003).
[43] Y. C. Chen, W. L. Tseng, and C. H. Lin, AUSMT, 2, 63-68 (2012).
[44] S. Sang and J. Witte, Biosens. Bioelectron., 25, 2420-2424 (2010).
[45] B. Pramanick, P. K. Dey, S. Das, and T. K. Bhattacharyya, J. ISSS, 2, 1-9 (2013).
[46] C. R. Martin and I. A. Aksay, J. Mater. Res., 20, 1995-2003 (2005).
[47] P. Argyrakis, L. T. Stevenson, and R. Cheung, Microelectron. Eng., 78-79, 647-652 (2005).
[48] H. Kind, J. M. Bonard, L. Forró, and K. Kern, Langmuir, 16, 6877-6883 (2000).
[49] S. K. Sia and G. M. Whitesides, Electrophoresis, 24, 3563-3576 (2003).
[50] Y. Hongbin, Z. Guangya, C. F. Siong, W. Shouhua, and L. Feiwen, Sens. Actuators, B, 137, 754-761 (2009).
[51] Q. Xu, B. T. Mayers, M. Lahav, D. V. Vezenov, and G. M. Whitesides, J. Am. Chem. Soc., 127, 854-855 (2005).
[52]http://www.momentive.com/Products/ShowTechnicalDataSheet.aspx?id=3603&Rev
[53] V. K. Varadan, K. J. Vinoy, and K. A. Jose, "RF MEMS and Their Application", John Wiley & Sons, New Jersey, United States (2003).
[54] R. Martinez-Duarte and M. J. Madou, ‘SU-8 Photolithography and Its Impact on Microfluidics’, Microfluidics and Nanofluidics Handbook, 231-268 (2011).
[55] D. Figura and J. Bartel, ECS Trans., 25, 29-35 (2010).
[56] H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, J. Micromech. Microeng., 7, 121-124 (1997).
[57] J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, and H. Q. Gong, J. Micromech. Microeng., 11, 20-26 (2001).
[58] http://gersteltec.ch/userfiles/1197911855.pdf
[59] 江征晏(2013)。表面物化特性對盤狀液晶配向影響之研究 (博士論文,國立中山大學,2013)
[60] B. S. J. Prakash, ‘Clay Surfaces : Fundamentals and Applications’, ELSEVIER
(2004).
[61] E. I. Vargha-Butler, T. K. Zubovits, H. A. Hamza, and A. W. Neumann, J. Disper.
Sci. Technol., 6, 357-379 (2007).
[62] W. R. Tyson and W. A. Miller, Surf. Sci., 61, 267-276 (1977).
[63] K. Sangwal, J. Cryst. Growth, 97, 393-405 (1989).
[64] D. W. Fuerstenau, J. Diao, and J. S. Hanson, Energy & Fuels, 4, 34-37 (1990).
[65] A. E. V. Giessen, D. J. Bukman, and B. Widom, J. Colloid Interface Sci., 192, 257-265 (1997).
[66] Z. M. Zorin, V. P. Romanov, and N. V. Churaev, Collid. Polym. Sci., 257, 968-972 (1979).
[67] R. S. Faibish, W. Yoshida, and Y. Cohen, J. Colloid Interface Sci., 256, 341-350 (2002).
[68] Y. L. Hung, Y. Y. Chang, M. J. Wang, and S. Y. Lin, Rev. Sci. Instrum., 81, 065105-065105-9 (2010).
[69] T. K. Young, Philos. Trans. R. Soc. London, 95, 65-87 (1805).
[70] F. M. Fowkes, Ind. Eng. Chem., 56, 40-52 (1964).
[71] D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741-1747 (1969).
[72] W. D. Nesse, "Introduction to optical mineralogy," Oxford University, New York (1991).
[73] C. Mauguin, Bull. Soc. Fr. Miner., 34, 71 (1911).
[74] W. D. Nesse, "Introduction to optical mineralogy," Oxford University, New York 1991).
[75] D. Amrani and P. Paradis, Lat. Am. J. Phys. Educ., 3, 229-231 (2009).
[76] Y. Toko and T. Akahane, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 368, 469-481 (2006).
[77] T. J. Scheffer and J. Nehring, J. Appl. Phys, 48, 1783 (1977).
[78] G. Baur, V. Wittwer, and D. W. Berreman, Phys. Lett. A, 56, 142-144 (1976).
[79] M. O. H. Cioffi, H. J. C. Voorwald, and R. P. Mota, Mater. Charact., 50, 209-215 (2003).
[80] D. K. Yang and S. T. Wu, ‘Fundamental of Liquid Crystal Devices’, John Wiley & Sons, New Jersey, United States (2006).
[81] M. O. H. Cioffi, H. J. C. Voorwald, and R. P. Mota, Mater. Charact., 50, 209-215,
(2003).
[82]楊陸翔(1997)。以Dimethylsiloxane做為液晶配向膜之製備與研究(碩士論文,
國立中山大學,1997)
[83]黃明宏(1999)。聚二甲基矽氧烷應用於可撓液晶顯示器的研究(碩士論文,
國立中山大學,1999)
[84] W. J. Zheng and M. H. Huang, Thin Solid Film, 520, 2841-2845 (2011).
[85] B. Jerome, Rep. Prog. Phys., 54, 391-451 (1991).
[86] L. T. Creagh and A. R. Kmetz, Mol. Cryst. Liq. Cryst., 24, 59-68 (1972).
[87] K. Takatoh, M. Sakamoto, R. Hasegawa, M Koden, N. Itoh, and M. Hasegawa,
‘Alignment Technology and Applications of Liquid Crystal Devices’, Taylor and
Francis, New York (2005).
[88] G. Porte, J. de Physique, 37, 1245-1252 (1976).
[89] I. Haller, Appl. Phys. Lett., 24, 349-351 (1974).
[90] L. M. Tarakhan, Ukr. J. Phys., 51, 22-26 (2006).
[91] C. Mauguin, Bull. Soc. Fr. Miner, 34, 71(1911).
[92] J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, J. Appl. Phys., 62, 4100-4108 (1987).
[93] D. W. Berreman, Phys. Rev. Lett., 28, 1683 (1972).
[94] J. A. Castellano, Mol. Cryst. Liq. Cryst., 94, 33-41 (1983).
[95]江征晏(2013)。表面物化特性對盤狀液晶配向影響之研究(博士論文,國立中
山大學,2013)
[96] S. Faetti, Phys. Rev. A, 36, 408 (1987).
[97] J. B. Fournier and P. Galatola, Phys. Rev. E, 60, 2404 (1999).
[98] J. Elgeti and F. Schmid, Eur. Phys. J. E., 18, 407 (2005).
[99] J. I. Fukuda, M. Yoneya, and H. Yokoyama, Phys. Rev. Lett, 98, 187803 (2007).
[100] M. Ishiyama, T. Tanaka, M. Sato, H. Seki, and T. Uchida, Mol. Cryst. and Liq.
Cryst., 368, 589-597 (2001).
[101] Q. H. Lu, Z. G. Wang, J. Yin, and Z. K. Zhu, Appl. Phys. Lett., 76, 1237-1239 (2000).
[102] Q. H. Lu, X. M. Lu, J. Yin, Z. K. Zhu, Z. G. Wang, and H. Hiraoka, Jpn. J. Appl.
Phys., 41, 4635-4638 (2002).
[103] T. C. Lin, L. C. Huang, T. R. Chou, and C. Y. Chao, Soft Matter, 5, 3672-3676
(2009).
[104] J. S. Gwag, M. Oh-e, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, J. Appl.
Phys., 102, 063501 (2007).
[105] J. H. Kim, M. Yoneya, and H. Yokoyama, Nature, 420, 159 (2002).
[106] Y. W. Yi, V. Khire, C. N. Bowman, J. E. Maclennan, and N. A. Clark, J. Appl. Phys,
103, 093518 (2008).
[107] C. Tsakonas, A. J. Davidson, C. V. Brown, and N. J. Mottram, Appl. Phys. Lett.,
90, 111913 (2007).
[108] Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J. E. Maclennan, and N. A. Clark, Phys.
Rev. E, 79, 041701 (2009).
[109] A. J. Davidson and N. J. Mottram, Euro. J. Appl. Math., 23, 99-119 (2012).
[110] G. Carbone, G. Lombardo, and R. Barberi, Phys. Rev. Lett., 103, 167801 (2009).
[111] S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, Pramana, 9, 471-480 (1977).
[112] R. J. Bushby and O. R. Lozman, Curr. Opin. Colloid In., 7, 343-354 (2002).
[113] D. Adam, P. Schuhmacher, J. Simmerer, L. Häussling, K. Siemensmeyer, K. H. Etzbachi, H. Ringsdorf, and D. Haarer, Nature, 371, 141-143 (1994).
[114] J. Simmerer, B. Glüsen, W. Paulus, A. Kettner, P. Schuhmacher, D. Adam, K.-H.Etzbach, K. Siemensmeyer, J. H. Wendorff, H Ringsdorf, and D. Haarer, Adv. Mater., 8, 815-819 (1996).
[115] I. O. Shklyarevskiy, P. Jonkheijm, N. Stutzmann, D. Wasserberg, H. J. Wondergem, P. C. M. Christianen, A. P. H. J. Schenning, D. M. de Leeuw, Ž. Tomović, J. Wu, K. Műllen, and J. C. Maan, J. Am. Chem. Soc., 127, 16233-16237 (2005).
[116] S. Chandrasekhar and V. S. K. Balagurusamy, Proc. R. Soc. Lond. A, 458, 1783-1794 (2002).
[117] A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. Watson, K. Müllen, H. D. Chanzy, H. Sirringhaus, and R.H. Friend, Adv. Mater., 15, 495-499 (2003).
[118] W. Pisula, A. Menon, M. Steppuate, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, and K. Müllen, Adv. Mater., 17, 684-689 (2005).
[119] 江征晏(2013)。表面物化特性對盤狀液晶配向影響之研究 (博士論文,國立中山大學,2013)
[120] L. Schmit-Mende, A. Fechtenkotter, K. Müllen, E. Moons, R. Friend, and J. D. Mackenzie, Science, 293, 1119-1122 (2001).
[121] L. Schmidt-Mende, M. Watson, K. Müllen, and R. H. Friend, Mol. Cryst. Liq. Cryst., 396, 73-90 (2003).
[122] F. Charra and J. Cousty, Phys. Rev. Lett., 80, 1682-1685 (1998).
[123] S. D. Xu, Q. D. Zeng, J. Lu, C. Wang, L. J. Wan and C. L. Bai, Surf. Sci., 538, L451–L459 (2003).
[124] M. Palma, J. Levin, V. Lemaur, A. Liscio, V. Palermo, J. Cornil, Y. Geerts, M. Lehmann, and P. Samorì, Adv. Mater., 18, 3313-3317 (2006).
[125] R. Friedlein, X. Crispin, C. D. Simpson, M. D. Watson, F. Jäckel, W. Osikowicz, S. Marciniak, M. P. de Jong, P. Samorí, S. K. M. Jönsson, M. Fahlman, K. Müllen, J. P. Rabe, and W. R. Salaneck, Phys. Rev. B, 68, 195414-7 (2003).
[126] H. Eichhorn, J. Porphyrins Phthalocyanines, 4, 88-102 (2000).
[127] H. Monobe, K. Awazu and Y. Shimizu, Adv. Mater., 12, 1495-1499 (2000).
[128]W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, and K. Müllen, Adv. Mater., 17, 684-689 (2005).
[129] P.-O. Mouthuy, S. Melinte, Y. H. Geerts, and A. M. Jonas, Nano Lett., 7, 2627-2632 (2007).
[130] W. Zheng, Y. T. Hu, C. Y. Chiang, and C. W. Ong, Int. J. Mol. Sci., 11, 943-955 (2010).
[131] S. Y. Chou, C. J. Chen, S. L. Tsai, H. S. Sheu, G. H. Lee, and C. K. Lai, Tetrahedron, 65, 1130-1139 (2009).
[132] C. W. Ong, J. Y., Hwang, M. C. Tzeng, S. C. Liao, H. F. Hsu, and T. H. Chang, J.
Mater. Chem., 17, 1785-1790 (2007).
[133] M. Yoshio, T. Mukai, H. Ohno, and T. Kato, J. Am. Chem. Soc., 126, 994-995 (2004).
[134] Z. An, J. Yu, S. C. Jones, S. Barlow, S. Yoo, B. Domercq, P. Parins, L. D. A. Siebbeles, B. Kippelen, and S. R. Marder, Adv. Mater., 17, 2580-2583 (2005).
[135] J. C. Wittmann and P. Smith, Nature, 352, 414-417 (1991).
[136] S. Zimmermann, J. H. Wendorff, and C. Weder, Chem. Mater., 14, 2218-2223 (2002).
[137] E. Grelet and H. Bock, Europhys. Lett., 73, 712-718 (2006).
[138] 江征晏(2013)。表面物化特性對盤狀液晶配向影響之研究 (博士論文,國立中山大學,2013)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code