Responsive image
博碩士論文 etd-0023115-163510 詳細資訊
Title page for etd-0023115-163510
論文名稱
Title
在都市環境中具資料壅塞意識的車載隨意網路路由協定
Data Congestion-Aware Routing for Vehicular Ad Hoc Networks in Urban Environments
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-16
繳交日期
Date of Submission
2015-01-23
關鍵字
Keywords
多重跳躍無線通訊、具資料壅塞意識、以路口為基礎的路由協定、車流量、車載隨意網路
vehicular traffic, intersection-based routing, data congestion-aware, multihop wireless communication, vehicular ad hoc networks (VANETs)
統計
Statistics
本論文已被瀏覽 5676 次,被下載 362
The thesis/dissertation has been browsed 5676 times, has been downloaded 362 times.
中文摘要
因為車載隨意網路(vehicular ad hoc networks, VANETs)具有一些不同於傳統行動隨意網路(mobile ad hoc networks, MANETs)的特性,例如節點移動的速度較快、網路拓撲(network topology)的變化性較高等等,若直接將MANETs的路由協定使用於VANETs環境中,效果並不理想。因此針對VANETs特性所設計的路由協定相繼出現,其中有許多在近幾年內被提出來的VANETs路由協定都會利用道路上的車流量(vehicular traffic)來決定資料封包的傳送路徑。雖然選擇車輛密度比較高的路段進行資料傳輸可以減少傳送路徑中斷的狀況,但是我們發現這種做法卻會導致另外一個問題的發生:當某些車流量較大的主要道路經常被不同的資料流優先選為封包傳送的路徑時,在這些熱門路段上就可能會有很多的節點同時在發送封包,使得封包碰撞的機率大幅升高,而大量的封包碰撞將導致封包遺失,網路的效能勢必會受到影響。在本論文中,我們提出了一種以路口為基礎的路由機制(intersection-based routing scheme),稱為具資料壅塞意識的路由協定(data congestion-aware routing protocol, DCAR),除了考慮車流量的資訊之外,DCAR也會使用路段上資料壅塞的程度來協助路徑的選擇。由模擬結果可以得知DCAR的封包到達率相較於Greedy Traffic-Aware Routing Protocol (GyTAR)來說,有非常明顯的改善;另一方面,我們統計出資料封包的重新傳送次數來分析VANETs中資料壅塞的情況,結果顯示在目的節點每成功收到一個資料封包,其平均所重送的封包數量上,DCAR可以達到與VANET Load Balanced Routing Protocol (VLBR)差不多的功效,跟GyTAR相較之下都降低了許多,說明DCAR能夠利用即時的路段壅塞資訊,達到分散資料流量的目標,減輕封包碰撞的問題。
Abstract
Because of different characteristics, the performance of traditional mobile ad hoc networks (MANETs) routing protocols is demonstrated poor in vehicular ad hoc networks (VANETs). Therefore, many routing protocols have been designed for VANETs during the past few years. Most of them choose the road segments with high vehicular traffic to construct routing paths. Although it can avoid path broken, a great amount of data traffic will construct on these road segments which incur serious packet loss due to packet collision. In this paper, we introduce an intersection-based routing protocol referred to as data congestion-aware routing protocol (DCAR). DCAR will consider both the vehicular traffic and the amount of data traffic on road segments to construct an optimal routing path. The performance evaluation of proposed protocol reveals significant improvement compared to Greedy Traffic-Aware Routing Protocol (GyTAR) and VANET Load Balanced Routing Protocol (VLBR) in terms of packet delivery ratio and number of retransmitted packets per received packet.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 x
字母縮寫對照表 xi
第一章 導論 1
1.1 簡介 1
1.2 車載隨意網路的背景與介紹 4
1.2.1. 無線通訊的分類與架構 4
1.2.2. 車載隨意網路介紹 4
1.3 車載隨意網路路由協定 7
1.3.1 以拓撲為基礎的路由協定 7
1.3.2 以地理位置資訊為基礎的路由協定 8
1.3.3 以路口為基礎的路由協定 9
1.4 研究動機 9
1.5 論文架構 10
第二章 相關研究 11
2.1 以地理位置資訊為基礎的路由協定 11
2.2 以路口為基礎的路由協定 13
2.3 將車流量列入考量的路由協定 14
2.4 考慮到資料流量的路由協定 16
第三章 系統之架構與運作 18
3.1 設計動機與方向 18
3.2 功能及名詞釋義 20
3.3 運作方式 21
3.3.1 基本設定 21
3.3.2 估計路段上的車流量與資料壅塞程度 27
3.3.3 使用look-ahead機制決定出下ㄧ個路口 29
第四章 模擬結果與討論 39
4.1 模擬環境參數設定 39
4.2 數據分析與討論 41
4.2.1. 資料流數量 42
4.2.2. 資料封包發送頻率 44
4.2.3. 節點數量 46
第五章 結論 49
參考文獻 50
參考文獻 References
[1] S. Basagni, I. Chlamtac, V. R. Syrotiuk and B. A. Woodward, “A distance routing effect algorithm for mobility (DREAM),” 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 76-84, New York, USA, Oct. 1998.
[2] J.-J. Chang, Y.-H. Li, W. Liao and I.-C. Chang, “Intersection-Based Routing for Urban Vehicular Communications with Traffic-Light Considerations,” IEEE Wireless Communications, vol. 19, no. 1, pp. 82-88, Feb. 2012.
[3] Carlos de Morais Cordeiro and Dharma Prakash Agrawal, Ad Hoc and Sensor Networks Theory and Applications, 2nd ed., pp. 18-73, Singapore: World Scientific Publishing Company, Feb. 2011.
[4] Y. Ding and L. Xiao, “SADV: Static-Node-Assisted Adaptive Data Dissemination in Vehicular Networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 5, pp. 2445-2455, Jun. 2010.
[5] Mattbew S. Gast, 802.11 Wireless Networks: The Definitive Guide, 2nd ed., pp. 12-62, Sebastopol, California, USA: O’Reilly Media, Inc., Apr. 2005.
[6] Z.J. Haas and B. Liang, “Ad Hoc Mobility Management with Uniform Quorum Systems,” IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp. 228-240, Apr. 1999.
[7] H.T. Hashemi and S. Khorsandi, “Load Balanced VANET Routing in City Environments,” IEEE 75th Vehicular Technology Conference (VTC Spring), pp. 1-6, Yokohama, Japan, May. 2012.
[8] Teerawat Issariyakul and Ekram Hossain, Introduction to Network Simulator NS2, New York, USA: Springer Science+Business Media, LLC, 2009.
[9] M. Jerbi, S.-M. Senouci, T. Rasheed and Y. Ghamri-Doudane, “Towards Efficient Geographic Routing in Urban Vehicular Networks,” IEEE Transactions on Vehicular Technology, vol. 58, no. 9, pp. 5048-5059, Nov. 2009.
[10] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,” Mobile Computing, vol. 353, no. 5, pp. 153-161, 1996.
[11] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless networks,” 6th Annual International Conference on Mobile Computing and Networking, pp. 243-254, New York, USA, Aug. 2000.
[12] J.-W. Lee, C.-C. Lo, S.-P. Tang, M.-F. Horng and Y.-H. Kuo, “A Hybrid Traffic Geographic Routing with Cooperative Traffic Information Collection Scheme in VANET,” 13th International Conference on Advanced Communication Technology (ICACT), pp. 1496-1501, Seoul, South Korea, Feb. 2011.
[13] C. Lochert, H. Hartenstein, J. Tian, H. Füßler, D. Herrmann and M. Mauve, “A routing strategy for vehicular ad hoc networks in city environments,” IEEE Intelligent Vehicles Symposium, pp. 156-161, Columbus, Ohio, USA, Jun. 2003.
[14] V. Naumov, ETH Zurich and T. R. Gross, “Connectivity-Aware Routing (CAR) in Vehicular Ad Hoc Networks,” 26th IEEE International Conference on Computer Communications, pp. 1919-1927, Anchorage, Alaska, USA, May 2007.
[15] J. Nzouonta, N. Rajgure, G. Wang and C. Borcea, “VANET routing on city roads using Real-Time vehicular traffic information,” IEEE Transactions on Vehicular Technology, vol. 58, no. 7, pp. 3609-3626, Sep. 2009.
[16] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers,” conference on Communications architectures, protocols and applications, pp. 234-244, New York, USA, Oct. 1994.
[17] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance vector routing,” 2nd IEEE Workshop on Mobile Computing Systems and Applications, pp. 90-100, New Orleans, USA, Feb. 1999.
[18] M. Piorkowsk, M. Raya, A. Lezama Lugo, P. Papadimitratos, M. Grossglauser and J.-P. Hubaux, “TraNS: Realistic Joint Traffic and Network Simulator for VANETs,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 12, no. 1, pp. 9-14, Jan. 2008.
[19] M. Rondinone and J. Gozalvez, “Distributed and Real Time Communications Road Connectivity Discovery through Vehicular Ad-hoc Networks,” 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1079-1084, Funchal, Portugal, Sep. 2010.
[20] B.-C. Seet, G. Liu, B.-S. Lee, C.-H. Foh, K.-J. Wong and K.-K. Lee, “A-STAR: A Mobile Ad Hoc Routing Strategy for Metropolis Vehicular Communications,” 3rd International IFIP-TC6 Networking Conference, pp. 989-999, Athens, Greece, May 2004.
[21] Q. Yang, A. Lim, S. Li, J. Fang and P. Agrawal, “ACAR: Adaptive Connectivity Aware Routing Protocol for Vehicular Ad Hoc Networks,” 17th International Conference on Computer Communications and Networks, pp. 1-6, Saint Thomas, U.S. Virgin Islands, USA, Aug. 2008.
[22] H. Yu, J. Yoo and S. Ahn, “A VANET Routing based on the Real-time Road Vehicle Density in the City Environment,” Fifth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 333-337, Da Nang, Vietnam, July 2013.
[23] J. Zhao and G. Cao, “VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks,” IEEE Transactions on Vehicular Technology, vol. 57, no. 3, pp. 1910-1922, May 2008.
[24] Institute of Electrical and Electronic Engineers (IEEE), “IEEE Standard for Information technology— Telecommunications and information exchange between systems— Local and metropolitan area networks— Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments,” New York, USA, July 2010.
[25] National Highway Traffic Safety Administration, U.S. Department of Transportation, “Vehicle Safety Communications Project Task 3 Final Report: Identify Intelligent Vehicle Safety Applications Enabled by DSRC,” DOT HS 809 859, Washington, D.C., USA, Mar. 2005.
[26] The Network Simulator NS-2, http://www.isi.edu/nsnam/ns/, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code