Responsive image
博碩士論文 etd-0023115-165516 詳細資訊
Title page for etd-0023115-165516
論文名稱
Title
科學想像力學習進程之驗證
Validation of Learning Progressions in Scientific Imagination
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
174
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-21
繳交日期
Date of Submission
2015-01-23
關鍵字
Keywords
BERA評量系統、學習進程、科學想像力、Rasch 模式
scientific imagination, BEAR Assessment System, learning progression, Rasch model
統計
Statistics
本論文已被瀏覽 5683 次,被下載 0
The thesis/dissertation has been browsed 5683 times, has been downloaded 0 times.
中文摘要
本研究旨在採用Wilson(2005, 2009)提出之BEAR評量系統(BEAR Assessment System, BAS),以Wang、Ho、以及Cheng(revised)所發展的科學想像力學習進程為架構,提出一個國小三至六年級學生科學想像力之假設性學習進程模式,並以實徵證據驗證之,試圖釐清科學想像力發展階段中的核心概念與發展途徑,進而修編科學想像力評量工具;另外,並根據此學習進程發展一套科學想像力融入自然科之課程教材,以準實驗研究方法之不等組前、後測設計(nonequivalent pretest-posttest design),探討科學想像力融入課程教學成效,作為未來科學想像力教育培育和推展之參考。本研究之研究對象、研究工具、資料分析將依據評量工具信、效度檢驗及實驗教學等兩階段,分別簡述如下:
在研究對象方面,共分為兩類,第一類為評量工具施測對象以及國小自然科績優教師。其中,評量工具施測對象為臺灣國小三至六年級學生共767名,研究者並依據研究結果,訪談兩名指導科學發明展且獲獎無數的自然科績優教師,以獲得更多豐富訊息。第二類則為實驗教學對象,分別是國小自然科高年級實驗教師一名,以及實驗教師所教授的兩班國小六年級學生共41名(實驗組22名,對照組19名)。
在研究工具方面,在兩個階段共使用五種研究工具,第一階段主要是(1﹚科學想像力情境測驗(Wang et al., revised)以及(2)自編心像問卷。其中,科學想像力情境測驗包含漫想力、聯想力、奇想力以及妙想力等四個成分;心像問卷主要是測量個體能運用想像力在腦中形成不同景物、圖畫或實體的能力。另外,研究者使用(3)自編式訪談大綱,對自然科績優教師進行半結構性訪談,以作為研究結果探討之參考。第二階段的研究工具,除了使用科學想像力情境測驗及物體-空間心像問卷外,亦應用(4)課程教學自我檢核表(鄭英耀、莊雪華,2011)於實驗教學中,作為教師實施想像力教學之檢核工具。在融入實驗課程教材內容方面,則修改(5)「漫聯奇妙科學發明想像力歷程教學教材」(曾秀玉,2014),進行實驗教學。
在資料分析方面,共分為兩個階段,第一階段為評量工具之信效度檢驗,研究者使用Rasch PCM(Masters, 1982)分析學生在科學想像力情境測驗的反應,以提供量表的內容、結構、類推、本質、解釋及外在面向的效度證據(Wolfe & Smith, 2007),並輔以訪談資料作為解釋結果之參考依據。第二階段則為實驗教學成效之檢驗,探討進行不同教學法的學生,在實驗教學前後的科學想像力是否有所不同,進行單因子重複量數變異數分析,以檢驗其科學想像力融入課程教學之成效。另一方面,本研究將提供課程教學自我檢核表及教師反省札記資料,作為進一步了解實驗組與對照組學生的想像力改變情形之輔助資料。
在研究發現方面,根據研究結果可歸結以下幾點結論:
(一)運用BEAR評量架構和Rasch測量模式的分析方法,能開發具多元效度證據的科學想像力之學習進程評量工具。
(二)學生的實徵資料能支持科學想像力的學習進程是由「漫想力、聯想力、奇想力、妙想力」所發展之理論假設。
(三)科學想像力學習進程所發展的融入課程教學,學生在教學前後雖無顯著差異,但對於整合學習進程的評量與教學,提升學生的科學發明意願及表現,具有正面的意義。
基於此,研究者建議未來能在此研究基礎下,持續發展相同難度不同情境的科學想像力評量試題、將學習進程延伸至不同年級、對象、發展不同融入單元、年級的學科單元、在未來課程實驗教學安排上,能控制實驗教學干擾因素、增加探討如人格特質、外在環境等影響想像力之因素,並且能運用BEAR評量系統發展其他領域的學習進程,探究及驗證不同知識結構的學習進程等相關議題。最後,本研究雖然旨在進行科學想像力學習進程之驗證,但學習進程本質是屬於假設性的,是一種隨著時間發展的學習推測模式,學習進程的精緻歷程,亟待未來建立在多元迭代的循環實徵的基礎。
Abstract
This study aimed to validate a learning progression (LP) for the scientific imagination (Wang, Ho, & Cheng, revised) based on a measurement approach using the BEAR Assessment System (BAS; Wilson, 2005, 2009) in an attempt to better understand the core ideas and the developmental path of the scientific imagination process as well as align curriculum, instruction, and assessment through LP. Participants in this study were selected from Taiwan, and classified into two categories. The first category included 767 3th to 6thgrade elementary school students, were administered the Scientific Imagination Test-Verbal (SIT-Verbal; Wang et al., revised). Besides, two award-winning teachers were interviewed in order to achieve more information for the LP. The second category included one award-winning experimental teacher who implemented a set of curriculum infusing scientific imagination and 41 6th grade elementary school students (experimental group: 22 students; control group: 19 students). For instruments, The SIT-Verbal, Imagery Questionnaire, the outline of interview, checklist of teaching (Cheng & Chuang, 2011), and curriculum of “man lien chi Miao” (Theng, 2014) were used in this study. Among these, the SIT-Verbal covered four key components of scientific imagination process: brainstorming, association, transformation/elaboration, and conceptualization/organization/formation; the Imagery Questionnaire covered one imagery ability which could generate imagery, objects, and pictures in mind. For analysis, firstly, the multiple validities (Wolfe & Smith, 2007) of the SIT-Verbal were assessed using the Rasch partial credit model (PCM; Master, 1982). Secondly, nonequivalent pretest-posttest design was used to explore teaching effect of scientific imagination between experimental group and ccompared group in pre- and post-test using one-way repeated measured ANOVA.
The findings showed that (1) the BEAR assessment system and Rasch measurement approaches provided a feasible framework for developing validated tools to assess the LP of scientific imagination; (2) the empirical data supported students’ scientific imagination progressed “from brainstorming, association, transformation/elaboration, to conceptualization/organization/formation; (3) the developmental effect of scientific imagination was not achieved in experimental stage, however the teaching practice integrated assessment feedback facilitated students’ motivation and performance of scientific invention.
Based on the findings, the researcher suggested that develop a set of items for assessing LPs of scientific imagination and a series of materials for teaching practices integrated assessment feedback. Besides, to control interfered factors in experimental teaching, to explore different factors influenced imagination, such as personality and surroundings etc., and to develop other LPs in other domain using BAS could be considered in further studies. Finally, exploration and validation of LPs need to iterateconsistently based on multiple empirical evidence. The contribution of the study not only enhance teachers’ professions, but also provide more abundant information to verify the LP for scientific imagination. Implications for the assessments with the LPs, revisions for both the SIT-Verbal and the scientific imagination LP are also proposed.
目次 Table of Contents
目 錄
論文審定書..............................i
誌謝............................. ii
中文摘要............................. iii
英文摘要............................. iv
第一章 緒論............................. 1
第一節 研究背景............................. 1
第二節 研究目的............................. 5
第三節 名詞釋義............................. 6
第二章 文獻探討............................. 8
第一節 想像力定義、內涵、與創造力的關係、影響因素及其相關研究............................. 8
第二節 想像力在科學領域之應用............................. 32
第三節 想像力相關課程、教學及評量............................. 41
第四節 學習進程定義、內涵、探究方式及相關研究............................. 64
第三章 研究方法............................. 80
第一節 研究流程 .............................81
第二節 科學想像力評量工具............................. 82
第三節 實驗教學............................. 93
第四章 結果與討論............................. 99
第一節 評量工具的信效度............................. 99
第二節 實驗教學效果............................. 112
第五章 結論與建議............................. 117
第一節 結論............................. 117
第二節 未來建議............................. 118
參考文獻............................. 120
附錄............................. 131
附錄一:探險號時光機(科學想像力情境測驗和心像問卷)............................. 131
附錄二:教師同意函............................. 138
附錄三:實驗教學課程教案內容............................. 141
附錄四:課程教學自我檢核表............................. 164
參考文獻 References
98年度-「想像力與科技研究/實作能力培育」整合型計畫(2009)。2012年7月10日,取自http://www.nsc.gov.tw/sci/ct.asp?xItem=16326&ctNode=3395
王佳琪、何曉琪、鄭英耀(2014)。科學創造性問題解決測驗之發展。測驗學刊,61(3),337-360。
王依仁、葉忠達、江怡瑩(2012)。國小六年級學童的繪畫創作想像力研究。藝術教育研究,23,105-134。
任東屏(2001)。想像類型的知識與活動~一項多元智慧的課程。課程與教學季刊,5(1),37-54。
吳可久、蘇于倫、曹筱玥(2013)。由激發想像力思維探索設計課程教學方式。建築學報,83,19-35。
呂愛麗(2009年1月10日)。愈閱讀,愈創意。遠見雜誌,2009創意特刊,28-29。
李賢哲、李彥斌(2002)。以科學過程技能融入動手做工藝教材培養國小學童科學創造力。科學教育學刊,10(4),341-372。
周進洋、韓承靜(1999)。心智表徵與創造思考。科學與教育學報,3,1-25。
林緯倫、連韻文、任純慧(2005)。想得多是想得好的前提嗎?探討發散性思考能力在創意問題解決的角色。中華心理學刊,27,3,211-227。
邱發忠、陳學志、林耀南、涂莉苹(2012)。想像力構念之初探。教育心理學報,44(2),389-410。
侯雅齡(2009)。幼兒科學創造力評量方法之發展:嵌入式評量設計。教育科學研究期刊,54(1),113-142。
洪文東(2002)。創造型兒童之思考特性與科學創造力的關聯性。屏東師院學報,16,355-394。
洪瑞雲、王精文、拾已寰、李泊諺、王愉敏(2013)。以概念結合理論為基礎的想像力測驗之編製。測驗學刊,60(4),681-713。
張蕙慧(2001)。想像的本質及其在音樂審美活動中的效用探析。新竹師院學報,14,281-301
教育部(2003)。科學教育白皮書。台北:教育部。
教育部顧問室人文社會科學教育計畫(無日期)。2012年7月10日,取自http://hss.edu.tw/plan_detail.php?class_plan=174。
曹筱玥、林小慧(2012)。想像力量表之編製。教育科學研究期刊,57(4),1-37。
梁朝雲(2011)。轉化虛無-試論想像力評測指標。資訊傳播研究,2:1(October 2011),99-111。
梁朝雲、許育齡、林威聖(2014)。探究想像力內涵暨評測量表研發。測驗學刊,61(1),27-50。
許育齡、梁朝雲(2012)。探究想像力的意涵與特徵-探索性與驗證性因素分析之發現。教育心理學報,44(2),349-372。
許育齡、梁朝雲、林志成(2013)。教師發揮教學設計想像力的心理與環境因素探究。當代教育研究季刊,21(2),113-148。
許育齡、黃文宗、林立中(2012)。視覺傳達設計學習者發揮想像的內在因素探索與驗證。藝術教育研究,23,41-66。
陳坤淼、沈思岑(2011)。設計想像力之探討-以個案創意設計分析為例。文化創意產業研究學報,1(1),1-12。
陳昭儀(2000)。傑出理化科學家之人格特質及創造歷程之研究。師大學報-科學教育類,45(1),27-45。
陳慧霞、游萬來(2006)。平面設計過程中使用傳統工具與電腦工具的草圖行為研究。設計學報,11,113-135 。
曾秀玉(2014)。「漫聯奇妙」科學發明想像力歷程之教學成效。國立中山大學教育研究所碩士論文,未出版,高雄市。
曾琬迪(2009)。觀察與想像,讓世界更美好。科學月刊,472,243。
楊宜倫(2006)。「小小發明家」創造思考課程之探討。生活科技教育月刊。39(5),154-169。
楊瑪利(2009年1月10日)。你今天說故事了嗎?遠見雜誌,2009創意特刊,10。
葉玉珠、彭月茵、林志哲、蔡維欣、鍾素香(2008)。「情境式科學創造力測驗」之發展暨科學創造力之性別與年級差異分析。測驗學刊,55(1),33-60。
詹志禹(2002)。科學發現與知識成長:我們能從科學哲學當中學到什麼?應用心理研究,15,105-127。
詹志禹(2010)。「未來想像與創意人才培育」中程個案計畫。教育部顧問室委託計畫。台北市:教育部。
詹志禹、陳玉樺(2011)。發揮想像力共創臺灣未來-教育系統能扮演的角色。教育資料與研究雙月刊,100,23-52。
鄭昭明(1993)。認知心理學:理論與實踐。台北市:桂冠。
謝甫佩、洪振方(2006)。從匯合取向的觀點探討科學創造力的評量。科學教育月刊,291,11-23。
韓承靜、洪蘭、蔡介立(2008)。心、眼與世界的連結—從認知神經科學看知覺與心像的關係。科學教育月刊,308,16-23。
韓承靜、洪蘭、蔡介立(2010)。心像旋轉之心智表徵特性—探討圖形複雜度與整合性的影響。教育心理學報,41(3),551-578。
Sternberg, R. J. (Ed.). (1999/2005). 創造力理論(Handbook of creativity)(李乙明、李淑貞譯)。台北﹕五南。
Adadan, E., Trundle, K. C., & Irving, K. E. (2010). Exploring grade 11 students' conceptual pathways of the particulate nature of matter in the context of multirepresentational instruction. Journal of Research in Science Teaching, 47, 1004-1035. doi: 10.1002/tea.20366
Adams, J. (2004). The imagination and social life. Qualitative Sociology, 27, 277-297. doi: 10.1023/B:QUAS.0000037619.28845.ef
Al-Balushi, S. M. (2009). Factors influencing pre-service science teachers’ imagination at the microscopic level in chemisity. International Journal of Science and Mathematics Education, 7, 1089-1110. doi: 10.1007/s10763-009-9155-1
Alonzo, A. C., & Gearhart, M. (2006). Considering learning progressions from a classroom assessment perspective. Measurement, 14(1&2), 99-126.
Alonzo, A., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education,93, 389-421. doi: 10.1002/sce.20303
Amabile, T. M. (1996). Creativity in context. Boulder, CO: Westview Press.
American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (1999). Standards for educational and psychological testing. Washington, DC: Authors.
Ayas, M. B., & Sak, U. (2014). Objective measure of scientific creativity: Psychometric validity of the creative scientific ability test. Thinking Skills and Creativity, 13, 195-205. doi:10.1016/j.tsc.2014.06.001
Baer, J., & Kaufman, J. C. (2008). Gender differences in creativity. Journal of Creative Behavior, 42, 75-105. doi: 10.1002/j.2162-6057.2008.tb01289.x
Bencze, J. L., & Bowen, G. M. (2009). A national science fair: Exhibiting support for the knowledge economy. International Journal of Science Education, 31, 2459-2483. doi: 10.1080/09500690802398127
Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94, 765-793. doi: 10.1002/sce.20402
Black, P., Wilson, M., & Yao, S. Y. (2011). Road maps for learning: A guide to the navigation of learning progressions. Measurement, 9, 71-123. doi: 10.1080/15366367.2011.591654
Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006). Object-spatial imagery: A new self-report imagery questionnaire. Applied Cognitive Psychology, 20, 239-263. doi: 10.1002/acp.1182
Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11, 33-63. doi: 10.1207/s15326977ea1101_2
Brill, F. (2004). Thinking outside the box: Imagination and empathy beyond story writing. Literacy, 38, 83-89. doi: 10.1111/j.0034-0472.2004.03802004.x
Campbell, K. H. S., Mcwhir, J., Ritchie, W. A., & Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380, 64-66. doi:10.1038/380064a0
Caravita, S., & Hallde´n, O. (1994). Re-framing the problem of conceptual change. Learning and Instruction, 4, 89-111.doi:10.1016/0959-4752(94)90020-5
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.
Chan, D. W., Cheung, P. C., Lau, S., Wu, W. Y., & Kwong, J. M., & Li, W. L. (2001). Assessing ideational fluency in primary students in Hong Kong. Creativity Research Journal, 13 (3-4), 359-365. doi: 10.1207/S15326934CRJ1334_13
Cheng, Y. Y., Wang, W. C., & Ho, Y. H. (2009). Multidimensional Rasch analysis of a psychological test with multiple subtests: A statistical solution for the bandwidth–fidelity dilemma. Educational and Psychological Measurement, 69, 369-388.
Church, E. B. (2006). Let’s invent. Scholastic Parent & Child, 13, 28-35.
Claesgens, J., Scalise, K., Wilson, M., & Stacy, A. (2009). Mapping student understanding in chemistry: The perspectives on chemists. Science Education, 93, 56-85. doi: 10.1002/sce.20292
Cooper, M. M., Underwood, S. M., Hilley, C. Z., & Klymkowsky, M. W. (2012). Development and assessment of a molecular structure and properties learning progression. Journal of Chemical Education, 89, 1351-1537. doi: 10.1021/ed300083a
Cruz, H. D., & Smedt, J. D. (2010). Science as structured imagination. Journal of Creative Behavior, 44, 29-44. doi: 10.1002/j.2162-6057.2010.tb01324.x
Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. New York, NY: HarperCollins Publishers.
Dilek, D. (2009). The reconstruction of the past through images: An iconographic analysis on the historical imagination usage skills of primary school pupils. Educational Sciences: Theory & Practice, 9, 665-689.
Douville, P. (2004). Use mental imagery across the curriculum. Preventing School Failure, 49, 36-39. doi: 10.3200/PSFL.49.1.36
Dudek, S. Z., Strobel, M. G., & Runco, M. A. (1993). Cumulative and proximal influences on the social environment and children’s creative potential. Journal of Genetic Psychology, 154, 487-499. doi: 10.1080/00221325.1993.9914747
Duncan, R. G. (2009). Learning Progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46, 606-609. doi: 10.1002/tea.20316
Duncan, R. G., & Rivet, A. E. (2013). Science learning progressions. Science, 339, 396-397. doi: 10.1126/science.1228692
Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students’ understandings of modern genetics across the 5th-10th grades. Journal of Research in Science Teaching, 46, 655-674. doi: 10.1002/tea.20312
Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47, 123-182. doi: 10.1080/03057267.2011.604476
Eckhoff, A., & Urbach, J. (2008). Understanding imaginative thinking during childhood: Sociocultural conceptions of creativity and imaginative thought. Early Childhood Educ J, 36, 179-185. doi: 10.1007/s10643-008-0261-4
Egan, K., & Judson, G. (2009). Values and imagination in teaching: With a special focus on social studies. Educational Philosophy and Theory, 41, 126-140. doi: 10.1111/j.1469-5812.2008.00455.x
Elmesky, R. (2013). Building capacity in understanding foundational biology concepts: A K-12 learning progression in genetics informed by research on children’s thinking and learning. Research in Science Education, 43, 1155-1175. doi: 10.1007/s11165-012-9286-1
Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, N.J.: Lawrence Erlbaum Associates.
Finke, R. A., & Slayton, K. (1988). Explorations of creative visual synthesis in mental synthesis in mental imagery. Memory & Cognition, 16, 252-257. doi: 10.3758/BF03197758
Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.
Foley, M. A., Wozniak, K. H., & Gullun, A. (2006). Imagination and false memory inductions: Investigating the role of process, content and source of imagination. Applied Cognitive Psychology, 20, 1119-1141. doi: 10.1002/acp.1265
Freidenreich, H.B., Duncan, R. G., & Shea, N. (2011). Exploring middle school students' understanding of three conceptual models in genetics. International Journal of Science Education, 33, 2323-2349. doi: 10.1080/09500693.2010.536997
Gallas, K. (2001). Look, Karen, I’m running like Jell-O: Imagination as a question, a topic, a tool for literacy research and learning. Research in the Teaching of English, 35, 457-492.
Gerard, R. W. (1946). The biological basis of imagination. The Science Monthly, 62, 477-499.
Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S., & Kaschak, M. P. (2004). Activity and imagined activity can enhance children’s reading comprehension. Journal of Educational Psychology, 96, 424-436.
Gotwals, A. W., & Songer, N. B. (2013). Validity evidence for learning progression-based assessment items that fuse core disciplinary ideas and science practices. Journal of Research in Science Teaching, 50, 597-626. doi: 10.1002/tea.21083
Grant, E. (2004). Scientific imagination in the middle ages. Perspectives on Science, 12, 394-422.doi:10.1162/1063614042776021
GÜNDOĞAN, A., ARI, M., & GÖNEN, M. (2013). Test of creative imagination: Validity and reliability study. Educational Sciences: Theory & practice, 13, 15-20.
Hadzigeorgiou, Y., & Stefanich, G. (2000). Imagination in science education. Contemporary Education, 71, 23-28.
Hampson, P. E. & Morris, P. J. (1983). Imagery and consciousness. London: Academic Press.
Hargreaves, D. J. (1977). Sex roles in divergent thinking. British Journal of Educational Psychology, 47, 25-32. doi: 10.1111/j.2044-8279.1977.tb02997.x
Hill, D. (1988). Humor in the classroom: A textbook for teachers and other entertainers! Springfield, IL: Charles C. Thomas.
Ho, H. C., Wang, C. C., & Cheng, Y. Y. (2013). Analysis of the scientific imagination process. Thinking Skills and Creativity, 10, 68-78.doi:10.1016/j.tsc.2013.04.003
Holland, P. W., & Wainer, H. (Eds.) (1993). Differential item functioning. Hillsdale, NJ: Lawrence Erlbaum.
Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24, 389-403. doi: 10.1080/09500690110098912
Hu, W., Wu, B., Jia, X., Yi, X., Duan, C., Meyer, W., & Kaufman, J. (2013). Increasing students’ scientific creativity: The “learn to think” intervention program. The Journal of Creative Behavior, 47, 3-21. doi: 10.1002/jocb.20
Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49, 1149-1180. doi: 10.1002/tea.21051
Johnson, P., & Tymms, P. (2011). The emergence of a learning progression in middle school chemistry. Journal of Research in Science Teaching, 48, 849-877.doi: 10.1002/tea.20433
Kaewowski, M., & Soszynski, M. (2008). How to develop creative imagination? Assumptions, aims and effectiveness of Role Play Training in Creativity (RPTC). Thinking Skills and Creativity, 3, 163-171. doi:10.1016/j.tsc.2008.07.001
Karwowski, M. (2008). Measuring creativity using the Test of Creative Imagination (TCI). Part 2. On validity of the TCI. The New Educational Review, 2, 216–232.
King, A. (2007). Developing imagination, creativity, and literacy through collaborative storymaking: A way of knowing. Harvard Educational Review, 77, 204-227.
Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31, 549-579. doi: 10.1080/15326900701399897
Kuhrik, M., Kuhrik, N., & Berry, P. A. (1997). Facilitating learning with humor. Journal of Nursing Education, 36, 332-334.
LeBoutillier, N., & Marks, D. F. (2003). Mental imagery and creativity: A meta-analytic review study. British Journal of Psychology, 94, 29-44. doi: 10.1348/000712603762842084
Lee, H. S., & Liu, O. L. (2010). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Science Education, 94, 665-68. doi: 10.1002/sce.20382
Lehrer, R., & Schauble, L. (2009). Images of learning. Images of progress. Journal of Research in Science Teaching, 46, 731-735. doi: 10.1002/tea.20317
Lindqvist, G. (2003). Vygotsky’s theory of creativity. Creativity Research Journal, 15(2 & 3), 245-251. doi: 10.1080/10400419.2003.9651416
Long, S.A., Winograd, P.N., & Bridge, C.A. (1989). The effects of reader and text characteristics on reports of imagery during and after reading. Reading Research Quarteriy, 24, 353-372.
Lothane, Z. (2007). Imagination as reciprocal process and its role in the psychoanalytic situation. International Forum of Psychoanalysis, 16, 152-163. doi: 10.1080/08037060701278636
Loui, M. C. (2006). Teaching students to dream. College Teaching, 54, 58.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174.
Mayer, R. E. (1999). Fifty years of creativity research. In R. J. Sternberg (ed.), Handbook of creativity (pp.449-460). NY: Cambridge.
McCormack, A. (2010). Imagine and invent: Create a great future. Journal of College Science Teaching, 40, 8-9.
McGown, A., Green, G., & Rodgers, P. (1998). Visible ideas: Information patterns of conceptual sketch activity. Design Studies, 19, 431-453.doi:10.1016/S0142-694X(98)00013-1
McLellan, R., & Nicholl, B. (2011). “If I was going to design a chair, the last thing I would look at is a chair”: Product analysis and the causes of fixation in students’ design work 11-16 years. International Journal of Technology and Design Education, 21, 71–92. doi: 10.1007/s10798-009-9107-7
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220-232.
Mellou, E. (1995). Creativity: The imagination condition. Early Child Development and Care, 114, 97-106. doi: 10.1080/0300443951140108
Mellou, E. (1996). The two-conditions view of creativity. Journal of Creative Behavior, 30, 126-143. doi: 10.1002/j.2162-6057.1996.tb00763.x
Mey, T. D. (2006). Imagination’s grip on science. Metaphilosophy, 37, 222-239. doi: 10.1111/j.1467-9973.2006.00432.x
Mikulan, P. (2013). Imaginative science teaching: A brief guide for teachers. Resource from http://ierg.ca/IST/wp-content/uploads/2014/08/IST-Brief-Guide.pdf
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (2nd ed.). Thousand Oaks, CA: Sage.
Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46, 675-698. doi: 10.1002/tea.20314
Mountain, V. (2007). Educational contexts for the development of children’s spirituality: Exploring the use of imagination. International Journal of Children’s Spirituality, 12, 191-205. doi: 10.1080/13644360701467535
National Research Council. (2001). Knowing what students know: The science and design of educational assessment. Committee on the Foundations of Assessment. J. Pellegrino, N. Chudowsky, & R. Glaser (Eds). Washington, DC: National Academy Press.
National Research Council. (2006). Systems for state science assessment. Committee on Test Design for K-12 Science Achievement. M. Wilson & M. Bertenthal (Eds.), Board on Testing and Assessment, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.
National Research Council. (2007). Taking science to school: Learning and Teaching Science in Grades K-8. Committee on Science Learning, Kindergarten through Eighth Grade. R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.). Washington, DC: National Academy Press.
Ontell, V. (2003). Imagine that! Science fiction as a learning motivation. Community & Junior College Libraries, 12, 57-70. doi: 10.1300/J107v12n01_09
Osborn, A. (1953). Applied imagination. New York: Charles Scribner's Sons.
Paivio, A. (1971). Imagery and verbal processes. New York: Holt, Rinehart and Winston.
Parloff, M. B., & Handlon, J. H. (1964). The influence of criticalness on creative problem-solving in dyads. Psychiatry, 27, 17-27.
Pendry, J. B., Schurig, D., & Smith, D. R. (2006). Controlling electromagnetic fields. Science, 312, 1780–1782. doi: 10.1126/science.1125907
Pérez-Fabello, M. J., & Campos, A. (2011). Dissociative experiences and creativity in fine arts students. Creativity Research Journal, 23, 38-41. doi: 10.1080/10400419.2011.545721
Peterson, R. E. (2002). Establishing the creative environment in technology education. Technology Teacher, 61, 7-10.
Plummer, J. D., & Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an earth-based perspective. Journal of Research in Science Teaching, 47, 768-787. doi: 10.1002/tea.20355
Raju, N. S., Price, L. R., Oshima, T. C., & Nering, M. L. (2007). Standardized conditional SEM: A case for conditional reliability. Applied Psychological Measurement, 31, 169-180. doi: 10.1177/0146621606291569
Razumnikova, O. M. (2004). Gender differences in hemispheric organization during divergent thinking: An EEG investigation in human subjects. Neuroscience Letters, 362, 193-195.doi:10.1016/j.neulet.2004.02.066
Ren, F., Li, X., Zhang, H., & Wang, L. (2012). Progression of Chinese students’ creative imagination from elementary through high school. International Journal of Science Education, 34, 2043-2059. doi: 10.1080/09500693.2012.709334
Robinson, A. (2010). Chemistry’s visual origins-Vivid imagination was key to unlocking the secrets of molecular structure in the nineteenth century. [Review of the book Image and Reality: Kekulé, Kopp, and the Scientific Imagination, by A. Rocke]. Nature, 465, 36.
Root-Bernstein, M., & Root-Bernstein, R. (2006). Imaginary worldplay in childhood and maturity and its ımpact on adult creativity. Creativity Research Journal, 18, 405-425. doi: 10.1207/s15326934crj1804_1
Schumacker, R. E., & Smith, E. V., Jr. (2007). A Rasch perspective. Educational and Psychological Measurement, 67, 394-409.doi: 10.1177/0013164406294776
Schwab, K., & Porter, M. E. (2008). The global competitiveness report 2008-2009. Geneva, Switzerland: World Economic Forum.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46, 632-654. doi: 10.1002/tea.20311
Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15, 10-23. doi: 10.1039/C3RP00111C
Shea, N. A., & Duncan, R. G. (2013). From theory to data: The process of refining learning progressions. The Journal of the Learning Sciences, 22, 7-32. doi: 10.1080/10508406.2012.691924
Smith, C. L., Wiser, M., Anderson, C. W., & Krajcik, J. (2006). Implications of research on children’s learning for standards and assessment: A proposed learning progression for matter and the atomic-molecular theory. Measurement, 14, 1–98. doi: 10.1080/15366367.2006.9678570
Smith, C., Wiser, M., Carraher, D. (2010, March).Using a comparative, longitudinal study with upper elementary school students to test some assumptions of a learning progression for matter. Paper presented at NARST, Philaelphia, PA.
Smith, M., & Mathur, R. (2009). Childrens' imagination and fantasy: Implications for development, education, and classroom activities. Research in the Schools, 16, 52-63.
Smith, S. M., Ward, T. B., & Finke, R. A. (1995). The creative cognition approach. Cambridge: MIT Press.
Smolucha, F. (1989). The relevance of Vygotsky’s theory of creative imagination for contemporary research on play. Paper presented at the National Biennial Meeting of the Society for Research in Child Development.
Songer, N. B., & Gotwals, A. W. (2012). Guiding explanation construction by children at the entry points of learning progressions. Journal of Research in Science Teaching, 49, 141-165. doi: 10.1002/tea.20454
Songer, N. B., Kelcey, B., & Gotwals, A. W. (2009). How and when does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity. Journal of Research in Science Teaching, 46, 610-631. doi: 10.1002/tea.20313
Steedle, J. T., & Shavelson, R. J. (2009). Supporting valid interpretations of learning progression level diagnoses. Journal of Research in Science Teaching, 46, 699-715. doi: 10.1002/tea.20308
Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51, 677-688.
Sternberg, R. J., & Williams, W. M. (1996). How to develop student creativity.Alexandria, VA: Association for Supervision and Curriculum Development.
Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science teaching, 47, 687-715. doi: 10.1002/tea.20324
Stumpf, H. (1995). Scientific creativity: A short overview. Educational Psychology Review, 7, 225-241. doi: 10.1007/BF02213372
The Next Generation Science Standards. (2013, April). Appendix h – Understanding the scientific enterprise: The nature of science in the next generation science standards. Retrieved from http://www.nextgenscience.org/sites/ngss/files/Appendix H - The Nature of Science in the Next Generation Science Standards 4.15.13.pdf
Thomas, N. J. T. (1999). Are theories of imagery theories of imagination? An active perception approach to conscious mental content. Cognitive science, 23, 207-245.doi:10.1016/S0364-0213(99)00004-X
Vygotsky, S. L. (1930/2004). Imagination and creativity in childhood. Journal of Russian and East European Psychology, 42, 7-97.
Wang, C. C., Cheng, Y. Y., Liu, K. S., & Ho, H. C. (2011). Validation of the multidimensional sense of humor scale using Rasch analyses. Psychological Testing, 58, 691-713 (In Chinese).
Wang, C. C., Ho, H. C., & Cheng, Y. Y. (revised). Building a learning progression for scientific imagination: A measurement approach. Thinking Skills and Creativity.
Wang, C. C., Ho, H. C., Cheng, C. L., & Cheng, Y. Y. (2014). Application of the Rasch model to the measurement of creativity: The Creative achievement questionnaire. Creativity Research Journal, 25, 1-8. doi: 10.1080/10400419.2013.843347
Wang, C. C., Ho, H. C., Wu, J. J.,& Cheng, Y. Y. (2014). Development of the scientific imagination model: A concept-mapping perspective. Thinking Skills and Creativity, 13, 106–119.doi:10.1016/j.tsc.2014.04.001
Wang, W. C. (2008). Assessment of differential item functioning. Journal of Applied Measurement, 9, 1-22.
Ward, T. B. (1994). Structured imagination: The role of category structure in exemplar generation. Cognitive Psychology, 27, 1-40.doi:10.1006/cogp.1994.1010
Ward, T. B., & Wickes, K. N. S. (2009). Stable and dynamic properties of category structure guide imaginative thought. Creativity Research Journal, 21, 15-23. doi: 10.1080/10400410802633376
Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, NJ: Erlbaum.
Wilson, M. (2009). Measuring processions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46, 716-730. doi: 10.1002/tea.20318
Wilson, M., & Carstensen, C. (2005). Assessment to improve learning in mathematics: The BEAR assessment system. Journal of Educational Research and Development, 1, 27-50.
Wolfe, E. W., & Smith, E. V., Jr. (2007). Instrument development tools and activities for measure validation using Rasch models: Part II-Validation activities. Journal of Applied Measurement, 8, 204−233.
Wood, K. D., & Endres, C. (2004). Motivating student interest with the imagine, elaborate, predict, and confirm (IEPC) strategy. The Reading Teacher, 58, 346-357. doi: 10.1598/RT.58.4.4
Wright, B. D., & Linacre, J. M. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions, 8, 370.
Wu, M. L., Adams, R. J., & Wilson, M. R. (2007). ConQuest [Computer software and manual]. Camberwell, Victoria, Australia: Australian Council for Educational Research.
Zabriskie, B. (2004). Imagination as laboratory. Journal of Analytical Psychology, 49, 235-242. doi: 10.1111/j.1465-5922.2004.00455.x
Zarnowski, M. (2009). The thought experiment: An imaginative way into civic literacy. Social Studies, 10, 55-62. doi: 10.3200/TSSS.100.2.55-62
Zhao, M., Hoeffler, S., & Dahl, D. W. (2009). The role of imagination-focused visualization on new product evaluation. Journal of Marketing Research, 46, 46-55.doi: http://dx.doi.org/10.1509/jmkr.46.1.46
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.255.162
論文開放下載的時間是 校外不公開

Your IP address is 3.149.255.162
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code