Responsive image
博碩士論文 etd-0023117-112953 詳細資訊
Title page for etd-0023117-112953
論文名稱
Title
甘藷Cu/Zn superoxide dismutase 活性的變化與ethephon、NaCl逆境及銅礦物元素缺乏誘導的葉片老化有負相關性
Sweet potato Cu/Zn superoxide dismutase activity exhibits a negative association with leaf senescence caused by ethephon, NaCl stress and copper mineral deficiency
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-18
繳交日期
Date of Submission
2017-01-23
關鍵字
Keywords
Cu/Zn SOD、甘藷、鹽分逆境、葉片老化、乙烯、DDTC
Sweet potato, NaCl stress, Leaf senescence, Ethephon, DDTC, Cu/Zn SOD
統計
Statistics
本論文已被瀏覽 5728 次,被下載 18
The thesis/dissertation has been browsed 5728 times, has been downloaded 18 times.
中文摘要
超氧化物歧化酶 (superoxide dismutase, SOD),為催化超氧化物經由反應生成O2和H2O2的酵素,在植物生長發育過程及環境逆境反應中扮演重要角色。本研究利用甘藷台農57號為材料分析探討葉片SOD同功酵素表現型態及其與生長發育及環境逆境誘導的葉片老化之關聯性,結果顯示甘藷葉片可偵測到明顯的四條SOD 同功酵素分別為SOD1、SOD2、SOD3、及SOD4,利用H2O2、ethanol/chloroform、及銅離子螯合劑diethyldithiocarbamate (DDTC)處理顯示SOD1/SOD3/SOD4可能為Cu/Zn SOD同功酵素,而SOD2可能為Fe SOD同功酵素。甘藷SOD總活性及Cu/Zn SOD同功酵素含量於自然葉片老化過程顯著下降且呈負相關性。甘藷葉片分別處理DTTC、ethephon (釋放乙烯的化合物)、或NaCl逆境亦顯著減少SOD總活性及Cu/Zn SOD同功酵素含量,與誘導的葉片老化亦呈負相關性,外加CuSO4 (DTTC處理)或還原態抗壞血酸(reduced ascorbate) (ethephon或NaCl逆境處理)前處理可以拮抗抑制此影響,回復至DTTC、NaCl逆境、或ethephon單獨處理的結果。外加proteasome抑制劑MG132前處理亦可以顯著減緩ethephon或NaCl逆境下誘導的葉片老化、SOD總活性及Cu/Zn SOD同功酵素含量下降。根據這些結果顯示甘藷SOD總活性及Cu/Zn SOD同功酵素含量變化與發育過程、銅礦物元素缺乏、ethephon、及NaCl逆境下葉片老化過程呈負相關性。
Abstract
Superoxide dismutase (SOD) is an antioxidant enzyme that catalyzes the superoxide radicle into the products of O2 and H2O2. In plants, it plays an important role in cope with developmental processes and environmental responses. In this research, sweet potato (cv. Tainong 57) leaves are used as the material to study its isoform patterns and their correlation with leaf senescence. There are four SOD isoforms identified as SOD1, SOD2, SOD3 and SOD4. The SOD1/SOD3/SOD4 and SOD2 are likely the Cu/Zn SOD and Fe SOD isoforms, respectively, based on the results of H2O2, ethanol/chloroform, and copper chelator diethyldithiocarbamate (DDTC) treatments. Sweet potato total SOD activity and Cu/Zn SOD isoform level are significantly decreased and exhibit a negative correlation with natural leaf senescence. Leaves treated with DTTC, ethephon (an ethylene-releasing compound), or NaCl stress also remarkably reduce their total SOD activity and Cu/Zn SOD isoform level and display a negative association with induced leaf senescence, which could be antagonized and repressed by the exogenous CuSO4 (for DTTC) and reduced ascorbate (ethephon or NaCl stress) pretreatments, respectively, and reverse it to the status of the DTTC, ethephon or NaCl stress alone. Pretreatment of exogenous proteasome inhibitor MG132 also significantly attenuates the ethephon and NaCl stress-mediated leaf senescence, decrease of total SOD activity and Cu/Zn SOD isoform level. Based on the results, sweet potato total SOD activity and Cu/Zn SOD isoform level exhibits a negative association with leaf senescence under developmental processes, copper mineral deficiency, ethephon, and NaCl stress.
目次 Table of Contents
壹、緒論 1
1.1 甘藷 1
1.2 葉片老化 1
1.3 乙烯 2
1.4 鹽分逆境 3
1.5 抗氧化物 4
1.6 超氧化物歧化酶 (SOD) 4
1.7 Proteasome 6
贰、研究材料和方法 8
實驗架構圖 8
2.1 實驗材料 9
2.11 不同發育階段葉片選取 9
2.2 實驗方法 9
2.2.1 甘藷葉片不同生長發育階段 9
2.2.2 鑒別SOD類型的染色定位法 10
2.2.3 外加DDTC及Cu2+回復處理 10
2.2.4 DDTC處理 11
2.2.5 DDTC及Cu2+回復處理 11 
2.2.6 Ethephon處理 12
2.2.7 Ethephon及抗壞血酸(ASA)處理 12
2.2.8 NaCl處理 13
2.2.9 NaCl及抗壞血酸(ASA)處理 13
2.2.10 Ethephon及MG132處理 14
2.2.11 NaCl及MG132處理 15
2.2.12 SOD活性染色 15
2.2.13 總SOD活性測定 16
2.2.14 H2O2含量測定 16
2.2.15 軟體image J分析 17
2.2.16 葉綠素含量的測定 17
2.2.17 光化學效率的測定 18
2.2.18 統計分析 19
2.2.19 藥品配製 20
叁、結果 22
3.1 自然老化之下SOD活性表現 22
3.2 SOD不同isoform 種類與區別 22
3.3 在DDTC處理下缺失銅離子所產生葉片老化過程中的SOD 同功酵素表現型態 23
3.4 在DDTC處理及外加銅離子回復下的SOD 同功酵素表現型態 24
3.5 在乙烯誘導的葉片老化下之SOD 同功酵素表現型態 25
3.6 在使用乙烯及ASA處理之下葉片中的SOD同功酵素表現型態 26
3.7 在鹽分逆境所產生葉片老化過程中的SOD同功酵素表現型態 27
3.8 在鹽分逆境及ASA處理所產生葉片老化過程的SOD同功酵素表現型態 28
3.9 在使用乙烯及MG132處理之下葉片中的SOD同功酵素表現型態 29
3.10 在鹽分逆境及MG132處理所產生葉片老化過程中的SOD同功酵素表現型態 29
肆、討論 32
參考文獻 35

圖一:Cu/Zn SOD在不同生長發育時期的活性表現 45
圖二:SOD不同isoform 種類與區別 47
圖三:Cu/Zn SOD在DDTC處理下缺失銅離子所產生葉片老化過程中的同功酵素表現型態 49
圖四:Cu/Zn SOD在DDTC處理下外加銅離子回復 51
圖五:Cu/Zn SOD在乙烯誘導的葉片老化下之同功酵素表現型態 53
圖六:Cu/Zn SOD在使用乙烯及ASA處理之下葉片中的同功酵素表現型態 55
圖七: Cu/Zn SOD在鹽分逆境所產生葉片老化過程中的同功酵素表現型態 57
圖八: Cu/Zn SOD在鹽分逆境及ASA處理所產生葉片老化過程的同功酵素表現型態 59
圖九: Cu/Zn SOD在使用乙烯及MG132處理之下葉片中的同功酵素表現型態 61
圖十:Cu/Zn SOD在鹽分逆境及MG132處理所產生葉片老化過程中的同功酵素表現型態 63
參考文獻 References
Adams D O, Yang S F. Ethylene biosynthesis: identification of 1-aminocyclopropane -1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences (1979) 76: 170-174.

Allen R D. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol (1995) 107: 1049-1054.

Alscher R G, Erturk N and Heath L S. Role of superoxide dismutases(SODs) in controlling oxidative stress in plants. Journal of Experimental Botany (2002)53: 1331-1341.

Aquilano K, Rotilio G and Ciriolo M R. Proteasome activation and nNOS down-regulation in neuroblastoma cells expressing a Cu,Zn superoxide dismutase mutant involved in familial ALS. Journal of Neurochemistry (2003) 5: 1324-1335.

Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Plant Physiol (1999) 50: 601-639.

Bafana A, Dutt S, Kumar A, Kumar S and Ahuja P S. The basic and applied aspects of superoxide dismutase . Journal of Molecular Catalysis B:Enzymatic (2011) 68 : 129-138.

Baum J A. Development alexpression and intracellular localization of superoxide dismutase in maize. Differentiation (1979) 13: 133-140.

Bhattacharjee S. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Current Science (2005) 89: 1113-1121.

Bleecker A B, Kende H. Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology (2000) 16: 1-18.

Brawn K F I. DNA strand scission by enzymically generated oxygen radicals. Journal Arch Biochem Biophys (1981) 206: 414-419.

Cheeseman J M. Mechanisms of salinity tolerance in plants. Plant Physiology (1988) 87: 547-550.

Chen H J, Su C T, Lin C H, Huang G J and Lin Y H. Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Journal of plant physiology (2010) 167: 838-847.

de Jong A J, Yakimova E T, Kapchina V M and Woltering E J. A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta (2002) 214: 537-45.

Dionisio-Sese M L, Tobita S. Antioxidant responses of rice seedlings to salinity stress. Plant Science (1998) 135: 1-9.

Furukawa Y, Torres A S, O'Halloran T V. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. The EMBO Journal (2004) 23: 2872-2881.

Gossett D R, Millhollon E P, Lucas M C. Antioxidant responses to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science (1994) 34: 706-714.

Grbic V and Bleecker A B. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant Journal (1995) 8: 595-602.

Guo H and Ecker J R. The ethylene signal-ing pathway: new insights. Current Opinion in Plant Biology (2004) 7: 40-4.

Gupta A S, Heinen J L, Holaday A S, Burke J J and Allen R D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Plant Biology (1993) 90: 1629-1633.

Hattori T, Nakagawa T, Maeshima M, Nakamura K, Asahi T. Molecular cloning and nucleotide sequence of cDNA for sporamin, the major soluble protein of sweet potato tuberous roots. Plant molecular biology (1985) 5: 313-320.

Hernandez J A, Jimenez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L) to long-term salt stress is associated with induction of antioxidant defences.
Plant Cell and Environment (2000) 23: 853-862.

Jasmina K, Didier H, Marc van M, Dirk I. Differential Expression of CuZn- and Fe-Superoxide Dismutase Genes of Tobacco during Development, Oxidative Stress, and Hormonal Treatments. Plant Cell Physiol (1997) 38: 463-470.

Jeffry M L, Priscilla J Y, and Culotta V C. The Right tochoose: multiple pathways for activating copper, zinc superoxide dismutase. The Journal of Biological Chemistry (2009) 284: 24679-24683.

Kliebenstein D J, Monde R A, Last R L. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol (1998) 118: 637-650.

Kim Y H, Kim Y, Cho E, Kwak S, Kwon S, Bae J, et al. Alterations in intracellular and extracellular activities of antioxidant enzymes during suspension culture of sweetpotato. Phytochemistry (2004) 65: 2471-2476.

Lastra O G M, Gorge J L. Catalase activity and isozymepattern of the metallo-Enzyme system, superoxide dismutase , as a function of leaf development during growth of Pisumsativum L. Journal Plants Physiol (1982) 55: 209-213.

Lee M H, Hyun D H, Marshall K A, Ellerby L M, Bredesen D E, Jenner P, et al. Effect of overexpression of Bcl-2 on cellular oxidative damage, nitric oxide production, antioxidant defenses, and the proteasome. Free Radical Biology and Medicine (2001) 12: 1550-1559.

Lee S H, Ahsan N, Lee K W, Kim D H, Kim D H, Lee D G,et al. Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. Journal of Plant Physiology (2007) 164: 1626-1638.

Lim P O, Kim H J and Nam H G. Leaf senescence. Annual Review of Plant Biology (2007) 58: 115-36.

Liu Z B, Zhang W J, Gong X D, Zhang Q and Zhou L R. A Cu/Zn superoxide dismutase from Jatropha curcas enhances salt tolerance of Arabidopsis thaliana. Genetics and Molecular Research (2015) 14: 2086-2098.

Lutts S, Kinet J and Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany (1996) 78: 389-398.

Mahajan S and Tuteja N. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics (2005) 444: 139-158.

Mann T, Keilin D. Haemocuprein and Hepatocuprein, Copper-Protein Compounds of Blood and Liver in Mammals. Beit Memorial Research Fellow (1938) 11: 303-315.

Marklund Gudrun, Marklund Stefan. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. European Journal of Biochemistry (1974)47: 469-474.

McCord J M and Fridovich I. Superoxide Dismutase an enzymic function for erythrocuprein (Hemocuprein). The Journal of Biological Chemistry (1969) 244: 6049-6055.

Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Science (2002) 7: 405-410.

Miyazaki J H and Yang S F. The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiologia Plantarum (1987) 69: 366-370.

Moftah A E and Michel B E. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiology (1987) 83: 238-240.

Nooden L D, Guiamet J J and John I. Senescence mechanisms. Physiologic Plantarum (1997) 101: 746-753.

Ogawa K K S, Adada K. Intra-and-extra-cellular localization of“cytosolic” Cu/Zn-superoxidase dismutase in spinach leaf and hypocotyls. Plant Cell Physiol (1996) 37: 790-799.

Pagano M, Tam S W, Theodoras A M, Chau V, Yew P R and Rolfe M, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science (1995) 269: 682-865.

Pan Y, Wu L J, Yu Z L. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul (2006) 49: 157-165.

Pecheur M L, Bourdon E, Paly E, Farout L, Friguet B, London J. Oxidized SOD1 alters proteasome activities in vitro and in the cortex of SOD1 overexpressing mice. FEBS Letters (2005) 17: 3613-3618.

Peters J M, Franke W W, Kleinschmidt J A. Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. The Journal of Biological Chemistry (1994) 269: 7709-18.

Tainer J A, Getzoff E D, Beem K M, Richardson J S, Richardson D C. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. Journal of Molecular Biology (1982) 160: 181-217.

Tseng M J, Liu C W and Yiu J C. Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiology and Biochemistry (2007) 45: 822-833.

Scandalios J G. Oxygen Stress and Superoxide Dismutases. Plant Physiol (1993) 101 : 7-12.

Smart C M. Gene expression during leaf senescence. New Phytologist (1994) 126: 419-448.

Tanou G, Molassiotis A, Diamantidis G. Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environmental and Experimental Botany (2009) 65: 270-281.

Yu Q, Rengel Z. Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins. Annals of Botany (1999) 183: 175-182.

Yu Q, Osborne L D, Rengel Z. Micronutrient deficiency changes activities of superoxide dismutase and ascorbate peroxidase in tobacco plants. Journal of Plant Nutrition (1998) 21: 1427-1437.

Wang B Q. 植物SOD的研究进展。河北農業科學(2008) 12: 6-9.

罗广华, 王爱国, 付爱根, 鉴别超氧化物歧化酶类型的定位染色法。生物化学与生物物理进展 (1996) 23:356-359。

何穆妃, 定性分析一個甘藷葉型的過氧化氫酶及其酵素活性調節。國立中山大學 生物科學系研究所, 碩士論文2011。

周俊呈, 甘藷SPDSS1蛋白質及蛋白酶體抑制劑MG132延緩乙烯及鹽分逆境誘導的葉片老化。國立中山大學 生物科學系研究所, 碩士論文2016。

黃琴淑, 還原態穀胱甘肽及NADPH 氧化酶抑制劑DPI減緩乙烯誘導甘藷葉片老化、H2O2 含量上升及老化相關基因表現。國立中山大學 生物科學系研究所, 碩士論文2011。

徐瑞琪,甘藷抗壞血酸過氧化酶 SPAPX 及還原態抗壞血酸延緩 NaCl 誘導的葉片老化過程。國立中山大學 生物科學系研究所,碩士論文2016。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code