Responsive image
博碩士論文 etd-0023118-150506 詳細資訊
Title page for etd-0023118-150506
論文名稱
Title
具熱敏電阻線性化校正電路之溫度對頻率轉換器與量測範圍自動切換之熱敏電阻線性化校正電路
A Temperature to Frequency Converter with Thermistor Linear Calibration and a Linearization Circuit with Automatic Temperature Range Selection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-12-19
繳交日期
Date of Submission
2018-01-23
關鍵字
Keywords
線性化、溫度偵測、熱敏電阻、感測器、溫度對頻率轉換
temperature detection, thermistor, sensor, temperature to frequency conversion, linearization
統計
Statistics
本論文已被瀏覽 5680 次,被下載 3
The thesis/dissertation has been browsed 5680 times, has been downloaded 3 times.
中文摘要
本論文包含兩個研究主題, 分別為具熱敏電阻線性化校正電路之溫度對頻率轉換器,以及量測範圍自動切換之熱敏電阻線性化校正電路,皆使用TSMC 0.50 μm CMOS High Voltage Mixed Signal Based LDMOS AI_USG Polycide 2P3M (T50UHV) 製程,以驗證設計原理。
本論文之具熱敏電阻線性化校正電路之溫度對頻率轉換器,係以先前文獻提出之熱敏電阻線性化校正電路為基礎,並加入一電壓對頻率轉換器,而不使用類比數位轉換器,可將電壓轉成數位訊號(頻率輸出),藉以降低設計的複雜度以及電路面所需面積成本。晶片量測結果為在恆溫恆濕箱溫度範圍-5◦C 40◦C 下,其輸出頻率為1.09 MHz 1.85 MHz,最大線性誤差-1.48%、平均線性誤差0.6%,溫度誤差-1.6◦C。其效能表現之中,輸出頻率範圍、溫度誤差為目前技術之最佳者。
另外,本論文針對熱敏電阻線性化校正電路進一步改良為具溫度範圍自動切換之熱敏電阻線性化校正電路,係為了解決前一章設計之熱敏電阻線性化校正電路在適用溫度範圍不足的問題。因此加入一溫度範圍控制電路,使熱敏電阻線性化校正電路能根據溫度所在範圍,自動切換至較為合適的校正電阻以及回授電阻。量測結果在溫度範圍-5◦C 120◦C 下,其輸出電壓為1.9 V 4.1 V,最大線性誤-1.4%、平均線性誤差0.47%,最大溫度誤差-1.1◦C,溫度範圍增大為原來之三倍。
Abstract
This thesis demonstrates two research topics, including a temperature to frequency converter with thermistor linear calibration and a linearization circuit with automatic temperature range selection. Both designs are realized using TSMC 0.50 μm CMOS High Voltage Mixed Signal Based LDMOS AI_USG Polycide 2P3M (T50UHV) Process to justify the design theory and expected performance.
A temperature to frequency converter with thermistor linear calibration based on the thermistor linearization circuit proposed in the literature is proposed firstly, where a voltage to frequency converter is added instead of an analog to digital converter. It converts the voltage into a digital signal (frequency output) to reduce design complexity as well as the cost of chip area. The measurement results in a thermal chamber show that the output frequency is 1.09 MHz to 1.85 MHz, the maximum linearity error -1.48%, the average linearity error 0.6%, and the temperature error -1.6◦C in the temperature range of -5◦C to 40◦C.
The thermistor linearization circuit is improved with an automatic temperature range selection to resolve the small temperature range problem in the previous design. It is featured with a temperature range selection circuit so that the thermistor linear circuit can automatically switch to a more appropriate calibration loop according to the temperature range. The measurement results of this design show that the output voltage is 1.9 V to 4.1 V, the maximum linearity error -1.4%, the average linearity error 0.47%, and the temperature error -1.1 ◦C. Most importantly, temperature range is widened to -5◦C ~ 120◦C.
目次 Table of Contents
論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
1 概論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 相關文獻與研究探討. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 常見溫度偵測方式. . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 熱敏電阻溫度感測電路. . . . . . . . . . . . . . . . . . . . . . 5
1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 具熱敏電阻線性化校正電路之溫度對頻率轉換器. . . . . . . 11
1.3.2 量測範圍自動切換之熱敏電阻線性化校正電路. . . . . . . . 11
1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 具熱敏電阻線性化校正電路之溫度對頻率轉換器. . . . . . . . . . . . . . . 13
2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 溫度對頻率轉換器系統架構. . . . . . . . . . . . . . . . . . . . . . . 13
2.3 具熱敏電阻線性化校正電路之溫度對頻率轉換器電路設計. . . . . . 14
2.3.1 熱敏電阻線性化校正電路設計. . . . . . . . . . . . . . . . . . 14
2.3.2 電壓對頻率轉換器電路設計. . . . . . . . . . . . . . . . . . . 16
2.4 晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 電路模擬結果與預計規格. . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 熱敏電阻線性化校正電路模擬結果. . . . . . . . . . . . . . . 20
2.5.2 電壓對頻率轉換器模擬結果. . . . . . . . . . . . . . . . . . . 22
2.5.3 溫度對頻率轉換器模擬結果. . . . . . . . . . . . . . . . . . . 24
2.5.4 預計規格與模擬結果比較. . . . . . . . . . . . . . . . . . . . 27
2.6 晶片量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.1 量測環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.2 量測結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.3 量測結果與模擬結果比較. . . . . . . . . . . . . . . . . . . . 33
2.7 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 量測範圍自動切換之熱敏電阻線性化校正電路. . . . . . . . . . . . . . . . 35
3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 量測範圍自動切換之熱敏電阻線性化校正電路設計. . . . . . . . . . 36
3.3.1 具開關之熱敏電阻線性化校正電路設計. . . . . . . . . . . . 36
3.3.2 溫度範圍控制電路之設計. . . . . . . . . . . . . . . . . . . . 38
3.4 晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 電路模擬結果與預計規格. . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.1 溫度範圍控制電路模擬結果. . . . . . . . . . . . . . . . . . . 45
3.5.2 量測範圍自動切換之熱敏電阻線性化校正電路模擬結果. . . 48
3.5.3 預計規格與模擬結果比較. . . . . . . . . . . . . . . . . . . . 52
3.6 晶片量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.1 量測環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2 量測結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.3 量測結果與模擬結果比較. . . . . . . . . . . . . . . . . . . . 59
3.7 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4 結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 研究成果與結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 未來研究規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
參考文獻 References
[1] 國立中山大學, 黑潮發電測試成功獨步全球. [Online]. Available: http://news.
nsysu.edu.tw/files/14-1342-155711,r2910-1.php?Lang=zh-tw.
[2] 中央氣象局, 台灣東部海域電纜式海底地震儀及海洋物理觀測系統介紹.
[Online]. Available: http://www.ncdr.nat.gov.tw/upload/epaper/073.pdf.
[3] 清流月刊, 無人水下載具(UUV)的現況與未來. [Online]. Available: https:
//www.mjib.gov.tw/FileUploads/eBooks/60a5106846e1465785e637d70bd21f30/
Section_file/ec708644bd5946ee895f8c162c468241.pdf.
[4] JAMSTEC, 無人探査機「かいこう」. [Online]. Available: http://www.jamstec.
go.jp/j/about/equipment/ships/kaiko.html.
[5] Hydroid Inc., New Generation REMUS 100 for Marine Research Applications. [Online].
Available: https://www.hydroid.com/sites/default/files/product_pages/New_
Generation_REMUS_100_ Brochure_2017_1.pdf.
[6] A123 Systems Inc., ANR26650m1-B Datasheet. [Online]. Available: http://www.
batteryspace.com/prod-specs/6610.pdf.
[7] G. Wu, C. Li, D. Jiao, Y. Liu, C. Hao, Y. Zhang, H. Yu, and M. Zhang, “State of
charge estimation for Li-Ion battery based on an improved Peukert’s equation with
temperature correction factor,” in Proc. IEEE Vehicle Power and Propulsion Conference,
pp. 17–20, Oct. 2016.
[8] R. R. Richardson, P. T. Ireland, and D. A. Howey, “Battery internal temperature
estimation by combined impedance and surface temperature measurement,” Journal
of Power Sources, vol. 265, no. 1, pp. 254–261, Nov. 2014.
[9] G. Bosson, F. Guttman, and L. M. Simmons, “Relationship between temperature and
resistance of a thermistor,” Journal of Applied Physics, vol. 21, no. 12, pp. 1267–
1268, Dec. 1950.
[10] TDK Corporation, B57861S103J40 Datasheet. [Online]. Available: http://www.
mouser.com/ds/2/400/NTC_Mini_sensors_S861-525582.pdf.
[11] A. R. Sarkar, D. Dey, and S. Munshi, “Linearization of NTC thermistor characteristic
using op-amp based inverting amplifier,” IEEE Sensor Journal, vol. 13, no. 12,
pp. 4621–4626, Jun. 2013.
[12] S. Bandyopadhyay, A. Das, A. Mukherjee, D. Dey, B. Bhattacharyya, and S. Munshi,
“A linearization scheme for thermistor-based sensing in biomedical studies,” IEEE
Sensors Journal, vol. 16, no. 3, pp. 603–609, Feb. 2016.
[13] V. N. Kumar, K. V. L. Narayana, A. Bhujangarao, and S. Sankar, “Development of
an ann-based linearization technique for the VCO thermistor circuit,” IEEE Sensors
Journal, vol. 15, no. 2, pp. 886–894, Feb. 2015.
[14] Z. P. Nenova and T. G. Nenov, “Linearization circuit of the thermistor connection,”
IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 2, pp. 441–
449, Feb. 2009.
[15] D. Sonowal and M. Bhuyan, “Linearizing thermistor characteristics by piecewise
linear interpolation in real time FPGA,” in International Conference on Advances in
Computing, Communications and Informatics, pp. 1976–1980, Aug. 2013.
[16] J. S. Steinhart and S. R. Hart, “Calibration curves for thermistors,” Deep Sea Research
and Oceanographic Abstracts, vol. 15, no. 4, pp. 497–503, Aug. 1968.
[17] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford University
Press., 2012.
[18] C.-C. Wang, T.-J. Lee, C.-C. Li, and R. Hu, “An all-MOS high-linearity voltage-tofrequency
converter chip with 520-kHz/V sensitivity,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 53, no. 8, pp. 744–747, Aug. 2006.
[19] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation. John Wiley and Sons,
Inc., 2011.
[20] EPCOS, B57164K0103 Datasheet. [Online]. Available: http://www.mouser.com/ds/
2/136/LeadedDisks__B57164__K164-81893.pdf.
[21] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill College,
2001.
[22] C.-C. Wang, Z.-Y. Hou, and J.-C. You, “A temperature to frequency converter with
linearity calibration,” in Proc. Taiwan and Japan Conference on Circuits and Systems
(TJCAS2017), p. 54, Aug. 2017.
[23] C.-T. Chiang and J.-Y. Lin, “A CMOS wind speed to frequency converter with calibration
circuits,” in 2013 IEEE International Conference on Mechatronics and Automation,
pp. 201–206, Aug. 2013.
[24] M. Attari, F. Boudjema, and M. Heniche, “Linearizing a thermistor characteristic
in the range of zero to 100 degree c with two layer artificial neural networks,” in
Instrumentation and Measurement Technology Conference, pp. 119–122, Apr. 1995.
[25] K. P. S. Rana, V. Kumar, and T. Prasad, “Enhancing linearity in thermistor signal
conditioning circuit using linear numerical search,” in International Conference on
Power Electronics, Intelligent Control and Energy Systems, pp. 1–6, Jul. 2016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code