Responsive image
博碩士論文 etd-0024117-101229 詳細資訊
Title page for etd-0024117-101229
論文名稱
Title
以淨水污泥結合高爐石高溫燒結材料對含鹽度廢水吸脫附磷酸鹽之研究
A study on phosphate absorption and desorption in saline wastewater using high temperature sintered composite material with blast furnace and water supply treatment sludge
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-11
繳交日期
Date of Submission
2017-01-24
關鍵字
Keywords
脫附、鹽度、燒結、高爐石、吸附、淨水污泥
desorption, absorption, salinity, sinter, water treatment sludge (WTA), blast furnace slag (BFS)
統計
Statistics
本論文已被瀏覽 5750 次,被下載 795
The thesis/dissertation has been browsed 5750 times, has been downloaded 795 times.
中文摘要
海洋與地表淡水環境中,若是營養鹽過度排放到水體,會使水生植物過度生長,缺氧的環境使魚群死亡,降低生物多樣性,導致水質惡化,最終出現優養化的現象,衍生更多環境問題。因此,為了保護周圍環境資源,磷從廢水被排放到生態系統之前應有效地去除。
可從淨水污泥及工業副產品高爐石著手,若能將兩者工業副產物皆有高除磷的特性善加利用,將淨水污泥及工業副產品高爐石兩種廢棄物減量,既能開闢為嶄新之再利用資源途徑,兼具改善當前的環境問題。
本研究利用直潭淨水場之淨水污泥與中鋼產出之高爐石,並添加木炭以及玉米澱粉兩種經由高溫燒結過後能提高孔隙率之材料,製成除磷新試體。燒製試體之最佳條件為:升溫速率10˚C/min,最終溫度1100˚C,持溫60 min,以提高試體的結構更加緻密完整。燒製之試體包括A、B兩種,燒失量皆為49~50 %;A試體吸水率為0.29 %,B試體吸水率為0.54 %;A試體孔隙率約為36~38 %,B試體孔隙率約為41~43 %。試體置入中山大學污水處理廠所排放之生活污水中進行吸附實驗測試,並添加海水素配置成不同鹽度,進而探討其吸附磷酸鹽能力是否會因鹽度的多寡而影響去除效果。結果顯示,鹽度愈高,吸附量會受到抑制,吸附磷酸鹽的效果愈不盡理想。脫附試驗以多顆不同混比之試體進行自來水滴濾實驗。整體而言,兩種試體脫附率的範圍在3~7%之間,以B試體的脫附率7%為最高脫附量,可能原因B試體之孔隙率較高,其脫附率也相對較高。自來水中的pH值對脫附效果較無相關性。
Abstract
The excessive discharge of nutrients into water bodies can cause aquatic plants to grow unchecked, leading to aquatic hypoxia characterized by reduced fish population, lower biodiversity, and poorer water quality and numerous other environmental problems. Thus, before phosphorus-containing wastewater is discharged into the ecosystem, the phosphorus must be removed to prevent eutrophication in water bodies.
Phosphorus can be removed from wastewater by using water treatment sludge (WTS) and blast furnace slag (BFS), both of which are industrial by-products highly capable of eliminating phosphorus. This solution may also help to reduce the amounts of both by-products.
In this study, two samples for phosphorus removal (named A and B) were prepared by doping WTS from the Jhihtan Water Purification Plant in Xindian District (a municipal district of New Taipei City, Taiwan) and BFS (produced by China Steel Corporation, a Taiwanese steel marker) with either charcoal or corn starch, then sintering these by-products at high temperatures to increase their porosities. Sample A comprised WTS, BFS, and charcoal, whereas Sample B comprised WTS, BFS, and corn starch. Both samples were optimally produced by baking the materials at a heating rate of 10 ˚C/min until a final temperature of 1100 ˚C and sustaining the temperature for 60 min. Samples thus prepared exhibited improved densities. The loss on ignition results from both samples was 49%–50%. Water absorption was 0.29% for Sample A and 0.54% for Sample B. Porosity was 36%–38% for Sample A and 41%–43% for Sample B.
An absorption test was conducted, where the samples were placed in the domestic wastewater discharged from the wastewater treatment plant at National Sun Yat-sen University in southern Taiwan, and sea water was added to blend the domestic wastewater into with different levels of salinity to investigate the effect of salinity on the phosphate absorption capacity of the samples. The results suggest that the phosphate absorption performance of the samples decreased as the salinity level increased. A desorption test was also conducted, in which samples of different material proportions were used to filter tap water through tricking. The phosphate desorption rate of both samples ranged between 3% and 7%, with the highest phosphate desorption rate observed in Sample B (7%).The result was likely because Sample B had a higher porosity. Moreover, the pH value of the tap water had no significant relationship with the phosphate desorption performance of either sample.
目次 Table of Contents
論文審定書i
誌謝ii
摘要iii
Abstractiv
目錄vi
圖次x
表次xiii
第一章緒論1
1.1研究動機 1
1.2研究目的 2
1.3研究架構 3
第二章文獻回顧 4
2.1磷資源4
2.1.1 磷循環4
2.1.2 磷之特性6
2.1.3 磷污染7
2.1.4 除磷技術與原理7
2.1.5 吸附發生之三步驟9
2.1.6 磷吸附機制10
2.1.6.1物理吸附(physical adsorption)10
2.1.6.2化學吸附(chemical adsorption)10
2.1.7 吸附等溫方程式11
2.2 淨水污泥14
2.2.1 淨水污泥來源14
2.2.2 淨水污泥之特性15
2.2.3 淨水污泥現況及再利用17
2.2.4 淨水污泥作為吸附材料之案例分析23
2.2.5 淨水污泥毒性溶出測驗(TCLP)25
2.3高爐石26
2.3.1 高爐石來源26
2.3.2 高爐石之特性28
2.3.3 高爐石現況及再利用29
2.3.4 高爐石作為吸附材料之案例30
2.3.5 高爐石毒性溶出測驗(TCLP) 32
2.4燒結處理34
2.4.1 操作條件對燒結之影響34
2.4.1.1 燒結溫度34
2.4.1.2 升溫速率35
2.4.1.3 燒結時間35
2.4.2 孔隙率36
2.5脫附37
第三章實驗材料、方法及設備38
3.1實驗材料介紹38
3.1.1 淨水污泥38
3.1.2 高爐石39
3.1.3 木炭及玉米澱粉41
3.1.4 污水處理廠放流水41
3.2實驗材料特性43
3.2.1 原材料吸附效率43
3.2.1.1配置約5 ppm之人工含磷溶液43
3.2.1.2放流水添加鹽度10 0/00及30 0/00置入1g原材料43
3.2.2 原材料脫附效率45
3.2.3 原材料燒失量46
3.2.4 原材料孔隙率47
3.3球型試體製程48
3.3.1 捏製過程48
3.3.2 燒結50
3.4 實驗藥品與設備53
3.4.1 實驗藥品53
3.4.2 主要實驗設備55
3.4.3 實驗水質分析方法57
3.4.4實驗採樣及保存59
3.5吸附試驗設計59
3.6脫附試驗設計60
第四章結果與討論61
4.1試體特性分析61
4.1.1 燒失量61
4.1.2 孔隙率64
4.2吸附試驗65
4.2.1 原材料吸附測試 65
4.2.1.1 人工含磷溶液65
4.2.1.2 放流水含磷溶液67
4.2.2 不同混合配比之吸附試驗71
4.2.2.1 單顆試體吸附測試71
4.2.2.2 多顆試體吸附測試74
4.2.3 不同鹽度放流水之試體吸附試驗76
4.2.3.1 單顆試體吸附測試76
4.2.3.2 多顆試體吸附測試81
4.3脫附試驗86
4.3.1 原材料脫附86
4.3.1.1 已吸附人工含磷溶液之原材料86
4.3.1.2 已吸附不同鹽度之放流水原材料88
4.3.2 不同混比試體脫附試驗91
4.3.2.1 已吸附磷酸鹽含量91
4.3.2.2 累積脫附量92
4.3.2.3 脫附率93
4.3.3 試體綜合小結94
4.3.3.1 試體燒結之物理特性94
4.3.3.2 吸附試驗94
4.3.3.3 脫附效率95
第五章結論與建議96
5.1結論96
5.2建議97
參考文獻98
附錄109
參考文獻 References
Arheimer, B., Torstensson, G., and Wittgren, H. B. (2004). Landscape planning to reduce coastal eutrophication: agricultural practices and constructed wetlands. Landscape and Urban Planning, 67(1-4), 205-215. doi:10.1016/s0169-2046(03)00040-9
Ashley, K., Cordell, D., and Mavinic, D. (2011). A brief history of phosphorus: From the philosopher's stone to nutrient recovery and reuse. Chemosphere, 84(6), 737-746. doi:10.1016/j.chemosphere.2011.03.001
Babatunde, A. O., and Zhao, Y. Q. (2007). Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Critical Reviews in Environmental Science and Technology, 37(2), 129-164. doi:10.1080/10643380600776239
Babatunde, A. O., Zhao, Y. Q., Yang, Y., and Kearney, P. (2008a). Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate. Chemical Engineering Journal, 136(2–3), 108-115. doi:http://dx.doi.org/10.1016/j.cej.2007.03.013
Babatunde, A. O., Zhao, Y. Q., Yang, Y., and Kearney, P. (2008b). Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate. Chemical Engineering Journal, 136(2-3), 108-115. doi:10.1016/j.cej.2007.03.013
Baker, M. J., Blowes, D. W., and Ptacek, C. J. (1998). Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems. Environmental Science and Technology, 32(15), 2308-2316. doi:10.1021/es970934w
Bohn, H. L., Strawn, D. G., and O'Connor, G. A. (2015). Soil chemistry: John Wiley and Sons, New York, USA.
Cheeseman, C. R., and Virdi, G. S. (2005). Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources Conservation and Recycling, 45(1), 18-30. doi:10.1016/j.resconrec.2004.12.006
Cieslik, B. M., Namiesnik, J., and Konieczka, P. (2015). Review of sewage sludge management: standards, regulations and analytical methods. Journal of Cleaner Production, 90, 1-15. doi:10.1016/j.jclepro.2014.11.031
Cordell, D., Drangert, J. O., and White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change-Human and Policy Dimensions, 19(2), 292-305. doi:10.1016/j.gloenvcha.2008.10.009
Föllmi, K. B. (1996). The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews, 40(1), 55-124. doi:http://dx.doi.org/10.1016/0012-8252(95)00049-6
Gon Kim, J., Hyun Kim, J., Moon, H.-S., Chon, C.-M., and Sung Ahn, J. (2002). Removal capacity of water plant alum sludge for phosphorus in aqueous solutions. Chemical Speciation and Bioavailability, 14(1-4), 67-73.
Han, C., Wang, Z., Yang, W., Wu, Q., Yang, H., and Xue, X. (2016). Effects of pH on phosphorus removal capacities of basic oxygen furnace slag. Ecological Engineering, 89, 1-6. doi:10.1016/j.ecoleng.2016.01.004
Hanrahan, G., Salmassi, T. M., Khachikian, C. S., and Foster, K. L. (2005). Reduced inorganic phosphorus in the natural environment: significance, speciation and determination. Talanta, 66(2), 435-444. doi:http://dx.doi.org/10.1016/j.talanta.2004.10.004
Hylander, L. D., Johansson, L., Renman, G., Ridderstolpe, P., and Siman, G. (1999). Phosphorus recycling from waste water by filter media used as fertilisers. Nordisk Jordbrugsforskning (Denmark).
Hylander, L. D., Kietlińska, A., Renman, G., and Simán, G. (2006). Phosphorus retention in filter materials for wastewater treatment and its subsequent suitability for plant production. Bioresource Technology, 97(7), 914-921. doi:http://dx.doi.org/10.1016/j.biortech.2005.04.026
Jenkins, D., and Hermanowicz, S. W. (1991). Principles of chemical phosphate removal. In I. P. a. N. R. f. M. Wastewater (Ed.), Principles and Practice (Edited by Sedlak R. I.), 2nd edn (pp. 91–108). New York: Lewis Publishers.
Johansson, L. (1999). Blast furnace slag as phosphorus sorbents - column studies. Science of The Total Environment, 229(1-2), 89-97. doi:10.1016/s0048-9697(99)00072-8
Johansson, L., and Gustafsson, J. P. (2000). Phosphate removal using blast furnace slags and opoka-mechanisms. Water Research, 34(1), 259-265. doi:http://dx.doi.org/10.1016/S0043-1354(99)00135-9
Johnston, A. E., and Richards, I. R. (2003). Effectiveness of different precipitated phosphates as phosphorus sources for plants. Soil Use and Management, 19(1), 45-49. doi:10.1079/sum2002162
Kim, J. G., Kim, J. H., Moon, H. S., Chon, C. M., and Ahn, J. S. (2002). Removal capacity of water plant alum sludge for phosphorus in aqueous solutions. Chemical Speciation and Bioavailability, 14, 67-73. doi:10.3184/095422902782775344
Kostura, B., Kulveitova, H., and Lesko, J. (2005). Blast furnace slags as sorbents of phosphate from water solutions. Water Res, 39(9), 1795-1802. doi:10.1016/j.watres.2005.03.010
Li, H. B., Li, Y. H., Gong, Z. Q., and Li, X. D. (2013). Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate. Ecological Engineering, 53, 39-45. doi:10.1016/j.ecoleng.2013.01.011
Li, L., Fan, M., Brown, R. C., Koziel, J. A., and van Leeuwenach, J. (2009). Production of a new wastewater treatment coagulant from fly ash with concomitant flue gas scrubbing. Journal of Hazardous Materials, 162(2-3), 1430-1437. doi:10.1016/j.jhazmat.2008.06.035
Liu, Y., and Chen, J. (2008). Phosphorus Cycle A2 - Jørgensen, Sven Erik. In B. D. Fath (Ed.), Encyclopedia of Ecology (pp. 2715-2724). Oxford: Academic Press.
Lu, G. (1994). Evolution of pore structure of high-ash char during activation. Fuel, 73(1), 145-147.
Lyckfeldt, O., and Ferreira, J. M. F. (1998). Processing of porous ceramics by ‘starch consolidation’. Journal of the European Ceramic Society, 18(2), 131-140. doi:http://dx.doi.org/10.1016/S0955-2219(97)00101-5
Manahan, and E., S. ( 1994). Environmental Chemistry. Lewis Punlishs, Boca Raton, FL. , 19.
Mann, R. A. (1997). Phosphorus adsorption and desorption characteristics of constructed wetland gravels and steelworks by-products. Australian Journal of Soil Research, 35(2), 375-384. doi:10.1071/s96041
Metcalf., and Eddy, I. (1991). Advanced wastewater treatment. In Wastewater Engineering:Treatment, Disposal, Reuse. New York: McGraw-Hill, Inc.
Miller., J. G. T., and Spoolman, S. E. (2008). Living in the Environment: Concepts, Connections, and Solutions, 16th Edition.
Morse, G. K., Brett, S. W., Guy, J. A., and Lester, J. N. (1998). Review: Phosphorus removal and recovery technologies. Science of The Total Environment, 212(1), 69-81. doi:http://dx.doi.org/10.1016/S0048-9697(97)00332-X
Nowok, J. W., Benson, S. A., Jones, M. L., and Kalmanovitch, D. P. (1990). Sintering behaviour and strength development in various coal ashes. Fuel, 69(8), 1020-1028. doi:10.1016/0016-2361(90)90014-h
Oguz, E. (2005). Thermodynamic and kinetic investigations of PO43- adsorption on blast furnace slag. Journal of Colloid and Interface Science, 281(1), 62-67. doi:10.1016/j.jcis.2004.08.074
Ozacar, M. (2003). Phosphate adsorption characteristics of alunite to be used as a cement additive. Cement and Concrete Research, 33(10), 1583-1587. doi:10.1016/s0008-8846(03)00113-3
Ozacar, M., and Sengil, I. A. (2003). Enhancing phosphate removal from wastewater by using polyelectrolytes and clay injection. Journal of Hazardous Materials, 100(1-3), 131-146. doi:10.1016/s0304-3894(03)00070-0
Paul, E., Laval, M. L., and Sperandio, M. (2001). Excess sludge production and costs due to phosphorus removal. Environmental Technology, 22(11), 1363-1371. doi:10.1080/09593332208618195
Ragheb, S. M. (2013). Phosphate removal from aqueous solution using slag and fly ash. HBRC Journal, 9(3), 270-275. doi:10.1016/j.hbrcj.2013.08.005
Razali, M., Zhao, Y., and Bruen, M. (2007). Effectiveness of a drinking-water treatment sludge in removing different phosphorus species from aqueous solution. Separation and Purification Technology, 55(3), 300-306. doi:10.1016/j.seppur.2006.12.004
Roques, H., Nugroho-Jeudy, L., and Lebugle, A. (1991). Phosphorus removal from wastewater by half-burned dolomite. Water Research, 25(8), 959-965.
Ruthven, D. M. (1984). Principles of adsorption and adsorption processes: John Wiley and Sons.
Ruttenberg, K. C. (2003). 8.13 - The Global Phosphorus Cycle A2 - Holland, Heinrich D. In K. K. Turekian (Ed.), Treatise on Geochemistry (pp. 585-643). Oxford: Pergamon.
Sakadevan, K., and Bavor, H. J. (1998). Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Research, 32(2), 393-399. doi:10.1016/s0043-1354(97)00271-6
Saktaywin, W., Tsuno, H., Nagare, H., Soyama, T., and Weerapakkaroon, J. (2005). Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Water Research, 39(5), 902-910. doi:10.1016/j.watres.2004.11.035
Skrifvars, B. J., Hupa, M., Backman, R., and Hiltunen, M. (1994). Sintering mechanisms of FBC ashes. Fuel, 73(2), 171-176. doi:10.1016/0016-2361(94)90110-4
Snoeyink, V. L., and Jenkins, D. (1980). Water chemistry: Wiley.
Stensel, H. D. (1991). Principles of biological phosphorus removal. In Phosphorus and Nitrogen Removal from Municipal Wastewater:Principles and Practice (Edited by Sedlak R. I.), 2nd edn (pp. 141–163). New York: Lewis Publishers.
Sundareshwar, P. V., and Morris, J. T. (1999). Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnology and Oceanography, 44(7), 1693-1701.
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H. (1942). The Oceans: Their physics, chemistry, and general biology (Vol. 7): Prentice-Hall New York.
Tanada, S., Kabayama, M., Kawasaki, N., Sakiyama, T., Nakamura, T., Araki, M., and Tamura, T. (2003). Removal of phosphate by aluminum oxide hydroxide.Journal of Colloid and Interface Science, 257(1), 135-140.
Tatsi, A. A., Zouboulis, A. I., Matis, K. A., and Samaras, P. (2003). Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 53(7), 737-744. doi:10.1016/s045-6535(03)00513-7
Westholm, L. J. (2010). The use of blast furnace slag for removal of phosphorus from wastewater in Sweden-a review. Water, 2(4), 826-837. doi:10.3390/w2040826
Yamada, H., Kayama, M., Saito, K., and Hara, M. (1986). A fundamental research on phosphate removal by using slag. Water Research, 20(5), 547-557. doi:http://dx.doi.org/10.1016/0043-1354(86)90018-7
Yang, Y., Tomlinson, D., Kennedy, S., and Zhao, Y. Q. (2006). Dewatered alum sludge: a potential adsorbent for phosphorus removal. Water Science and Technology, 54(5), 207. doi:10.2166/wst.2006.564
Yang, Y., Zhao, Y. Q., Babatunde, A. O., and Kearney, P. (2009). Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge. Water Science and Technology, 60(12), 3181-3188.
Yang, Y., Zhao, Y. Q., Babatunde, A. O., Wang, L., Ren, Y. X., and Han, Y. (2006). Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge. Separation and Purification Technology, 51(2), 193-200.
Zeng, L., Li, X. M., and Liu, J. D. (2004). Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38(5), 1318-1326. doi:10.1016/j.watres.2003.12.009
Zhao, D. Y., and Sengupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32(5), 1613-1625. doi:10.1016/s0043-1354(97)00371-0
Zhao, Y., Babatunde, A., Razali, M., and Harty, F. (2006). Integrating “wastes” into treatment processes: Can dewatered alum sludge be used as a substrate in reed bed treatment systems. Paper presented at the proceedings of 10th IWA international conference on wetland systems for water pollution control.
Zhao, Y. Q., Babatunde, A. O., Hu, Y. S., Kumar, J. L. G., and Zhao, X. H. (2011). Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochemistry, 46(1), 278-283. doi:10.1016/j.procbio.2010.08.023
Zou, H., and Wang, Y. (2016). Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization. Bioresource Technology, 211, 87-92.
丁文明, 黃霞. (2002). 廢水吸附法除磷的研究進展. 環境污染治理技術與設備, 3(10), 23-27.
中國鋼鐵股份有限公司. (2014). 企業社會責任報告書.
中聯資源. (2015). 企業社會責任報告書 
王櫻茂, 顏聰. (1992). 人造輕質骨材燒製及其物理化學性質之試驗研究. 營建知訊, 120, 17-29.
台灣自來水公司. (2016). 永續報告書.
余岳峰. (2000). 下水污泥焚化灰渣燒成輕質骨材特性之研究. 國立中央大學環境工程研究所碩士論文.
吳正中. (1989). 爐石海岸掩理之污染物溶出特性研究. 淡江大學水資源及環境工程學系碩士論文.
林志鴻. (2010). 淨水污泥再利用於水泥生料之研究. 國立中央大學環境工程研究所碩士論文.
林東燦. (2006). 污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究. 國立中央大學環境工程研究所碩士論文.
洪珮瑜. (2001). 淨水污泥及其燒結體對銅、鉛離子之吸附反應. 國立臺灣大學環境工程學研究所碩士論文.
洪啟昌. (2005). 次磷酸溶液處理方法之研究-化學混凝法、吸附法與氧化法. 國立成功大學化學工程研究所碩士論文.
洪福智. (2015). 以淨水污泥結合高爐石燒結材料對磷酸鹽吸脫附之研究. 國立中山大學海洋環境及工程學系碩士論文.
胡趙原. (2002). 下水污泥灰試體成型壓力對燒成輕質骨材之影響. 國立中央大學環境工程研究所碩士論文.
范國晃. (2001). 淤泥骨材燒製及拌製混凝土之研究. 國立中興大學土木工程學系碩士論文.
高偉傑. (2011). 淨水污泥餅再利用於CLSM回填材料之研究. 淡江大學水資源及環境工程學系碩士論文.
張孟弘. (2004). 利用水庫淤泥造粒燒製濾料之研究. 國立中央大學環境工程研究所碩士論文.
張信義. (2004). 煉鋼爐石去除水中砷及磷之研究. 國立屏東科技大學環境工程與科學系碩士論文.
張毓舜. (1999). 下水污泥焚化灰渣燒結特性之研究. 國立中央大學環境工程研究所碩士論文.
張維欽, 陳堯森, 郭人豪, 蘇玫心, 曾淳錚, 江世民. (2005). 廢棄鋁鹽污泥再利用吸附廢水中磷酸鹽之研究. 台灣環境資源永續發展研討會論文集, 26-37.
郭育宗. (2009). 轉爐石去除河水中磷之探討. 屏東科技大學環境工程與科學系所碩士論文.
陳宜晶. (2004). 利用添加劑提昇淨水污泥燒結之材料品質研究. 逢甲大學環境工程與科學學系碩士論文.
傅建璋. (2009). 升溫速率對石門水庫淤泥製備輕質骨材之影響. 國立成功大學資源工程研究所碩士論文.
黃龍泰. (2001). 以稻殼和花生殼製備高表面積之活性碳與其應用. 國立台灣科技大學化學工程系碩士論文.
楊志政. (2001). 下水污泥焚化灰細度變化與矽氧晶相對燒成骨材輕質化之影響. 國立中央大學環境工程研究所碩士論文.
蕭宇廷. (2012). 淨水污泥餅作為吸附材料處理含磷廢水之研究. 國立中央大學環境工程研究所碩士論文.
薛倩, 劉月敏, 崖婷婷, 孫力平, 杜金山, 胡鑫. (2015). 鹽度對人工滲濾系統中煤渣和陶粒除磷過程的影響. 環境工程學報, 9(10), 4705-4710.
謝健成. (2010). 淨水污泥再利用於水處理之研究. 逢甲大學環境工程與科學學系碩士論文.
謝寅雲. (2001). 淨水污泥/工業廢水污泥之燒結資源化研究. 國立臺灣大學環境工程研究所碩士論文.
顏慧茹. (2009). 淨水污泥燒結製備輕質化材料之可行性研究. 逢甲大學環境工程與科學所碩士論文.
程敏益. (2000). 不同化學調理搭配低溫調理對污泥脫水之影響. 國立交通大學環境工程研究所碩士論文.
孫國鼎. (2001).水庫淤泥及淨水污泥在利用製磚之研究. 國立交通大學環境工程研究所碩士論文。
康世芳、劉明仁. (2001). 淨水污泥餅再利用技術調查及應用於台北自來水事業處淨水場可行性評估,台北自來水事業處委託研究計劃研究報告書,台北。
劉又瑞. (2002). 淨水污泥混合營建廢棄土製磚及燒結人造骨材的研究. 國立交通大學環境工程研究所碩士論文.
林聖寰. (2003). 淨水污泥取代黏土作為水泥生料之研究. 國立交通大學環境工程研究所碩士論文。
賀天民, 呂喆, 楊景東, 劉漢軍, 裴力, 黃喜強, 劉志國, 蘇文輝. (2001)高孔隙率YSZ多孔陶瓷管的濕法製備及性能表徵,吉林大學學報(自然科學版),2001(1),65-70。
黃昭貴, 劉志成, 張維欽. (2005) 含磷污泥與鋁鹽污泥之共調理脫水,中華民國環境工程學會第三十屆廢水處理技術研討會。
張維欽, 陳堯森, 郭人豪, 蘇玫心, 曾淳錚, 江世民. (2005).廢棄鋁鹽污泥再利用吸附廢水中磷酸鹽之研究.台灣環境資源永續發展研討會論文集,台灣環境資源永續發展協會,26~37.
胡南澤. (2011).點土成金污泥蛻變環保綠建材-自來水淨水污泥再利用成輕質骨材,經濟部台灣自來水公司,取自http://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&menu_id=40&news_id=23035。截取日期:2016/09/09
陳信榮、張簡國禎.(2011) 轉爐石對環境相容性之探討. 轉爐石應用於瀝青混凝土鋪面研討會論文集, 高雄, 1-9.
台宇環境科技股份有限公司. (2011).檢驗報告編號 R980197D11~R1000069D11,2009.04~2011.01
石濤. (2012). 環境化學,鼎茂圖書,台北,8-18.
汪建民. (1994).陶瓷技術手冊,中華民國產業科技發展促進會. 粉末冶金協會出版
王寶貞. (1994). 水污染控制工程,科技圖書股份有限公司, 台北, 506-507
林平全. (2007). 轉爐石製程、物化特性與品質管制. 轉爐石應用於瀝青混凝土鋪面研討會, 高雄, 1-10.
房性中. (2011). 爐渣問題面面觀. 台灣省土木技師公會技師報, 新北。取自: http://www.twce.org.tw/modules/freecontent/include.php?fname=twce/pa per/745/6-1.htm。截取日期:2016/11/09
中聯資源股份有限公司. (2016). 轉爐石特性.取自: http://www.chc.com.t w/pe_p2.html。截取日期:2016/11/16
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code