Responsive image
博碩士論文 etd-0025115-205356 詳細資訊
Title page for etd-0025115-205356
論文名稱
Title
適用於人體區域網路的新式解調變技術
A New FSK Demodulation Approach for Body Area Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
178
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-11-20
繳交日期
Date of Submission
2015-01-26
關鍵字
Keywords
FSK解調變技術、通訊通道理論、人體區域網路、功率控制、同頻干擾
Communication Channel Theory, FSK Demodulation, Co-channel Interference, Power Control, Body Area Networks
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
為了提升使用者便利性,近年來消費性電子產業快速地朝向可攜式與穿戴式的商品發展,這使得原本就有限的無線電波頻帶資源更顯壅擠,密集的行動裝置使得不同系統間,彼此互相干擾的機會大增,但是抵抗干擾的解決方案往往會提高行動裝置傳送端的功率損耗,尤其是在面對同頻干擾時;然而,為了使裝置微型化、輕量化至可隨身穿戴,行動裝置的能量來源:電池,卻也是另一項限制條件。這種兩害權衡的問題,在醫療用的人體區域網路設備上更加嚴重,為了符合醫學量測的需求與法規,這類設備的體積要更小、單次充電後的使用週期要更長、最大發送功率要更低,這些條件在在都顯示穿戴型設備的傳送端沒有多餘的能量來改善干擾所造成的問題。

本研究從訊號調變/解調變的方法與無線通訊通道的特性來分析訊號干擾的成因與可能的解決方法,進而提出一種新的頻率解調變技術來協助接收端在遭遇高功率同頻干擾的同時,能分辨正確訊號的資料內容,由於分辨訊號的參考特性來自於非人為的環境因素,因此即便完全遵照統一的通訊標準協定與法規,亦不會因為干擾訊號與正確訊號擁有相似的人為訊號調變特性而使抗干擾能力大打折扣。由於解調變的機制有別以往,本研究更針對這種新的頻率解調變技術設計功率控制機制,兩相搭配的模擬實驗結果發現,當同頻干擾訊號的調變方法與目標訊號相同時,可以保證訊號干擾比( Signal-to-Interference Ratio, SIR ) 在-30dB 至20dB 之間皆擁有10% 以下的位元錯誤率( Bit Error Rate, BER ) ,同時功率控制的機制不會讓傳送端追隨干擾訊號持續提高傳送功率而耗費多餘的能源來抵抗干擾。這兩大特性協助極低發送功率的個人無線通訊系統發送端不再需要浪費大半能量來處理干擾的問題,且系統本身並不需要發送任何控制命令來抑制干擾源的發送,這使得個人裝置的獨立性更高、使用時間更長、隱私與安全性也更好。
Abstract
Nowadays the increase in the use of mobile devices has greatly raised the probability of mutual interference between different communication systems. Mechanisms that resolve mutual interference usually result in more energy consumption of the mobile devices involved, especially in the case of co-channel interferences. On the other hand, the trend of miniaturizing the mobile devices and making them light enough to be wearable restricts the size of their power sources; as the result, minimizing power consumption becomes essential for prolonging the operation of such devices. Therefore, it is important to develop an interference rejection mechanism that does not cause excessive power consumption.

Based on the characteristics of the wireless communication channel and the causes interferences, in this thesis we propose a new frequency demodulation technique and a new power control mechanism that together allow the receivers to distinguish high-power interferences from the signals intended to be received, even when the interferences have similar artificial characteristics with those of the intended signals. The proposed technique is implemented in a simulation programs. The simulation results show that, by the proposed technique, even when the co-channel interferences have the same modulation characteristics with the intended signals, the bit error rate ( BER ) can remain less than 10% if the signal-to-interference ratio ( SIR ) is between -30dB to 20dB. At the same time, the power consumption remains low and it is not necessary to increase transmitting power level to resist the interferences. By minimizing power consumption on resisting interferences, this ”lower-power interference rejection” technique allows personal mobile devices which have small power sources to have longer operational periods. In addition to power saving, the proposed technique does not require the base station to transmit power level control signals to the mobile devices ( for suppressing interferences ) . This characteristic allows the personal devices to have greater independence, longer life cycle, better privacy, and security.
目次 Table of Contents
審定書 i
誌謝 ii
中文摘要 iv
英文摘要 v
目錄 vi
圖次 x
表次 xv

第一章 緒論...........................................1
1.1 研究背景..........................................1
1.2 研究動機..........................................4
1.3 研究目的..........................................6
1.4 論文大綱與研究貢獻................................7

第二章 背景知識與文獻回顧.............................9
2.1 人體感測網路簡介..................................9
2.2 無線通訊系統的調變與解調變方法...................16
2.3 無線通訊系統的多重存取技術.......................30
2.4 通訊通道的理論模型...............................39
2.5 無線通訊系統的功率控制及其分類...................61

第三章 人體感測網路模型與功率控制演算法..............71
3.1 人體感測網路模型.................................71
3.2 功率追蹤式解調變技術.............................75
3.3 功率控制演算法...................................91

第四章 離散事件模擬與模擬程式........................97
4.1 離散事件模擬.....................................97
4.2 模擬程式........................................103

第五章 模擬實驗.....................................111
5.1 模擬實驗流程簡介................................111
5.2 實驗一:頻率調變的定功率干擾....................113
5.3 實驗二:頻率調變的變功率干擾....................120
5.4 實驗三:應用功率控制於頻率調變的定功率干擾......126
5.5 實驗四:應用功率控制於頻率調變的變功率干擾......132
5.6 實驗五:相位調變的定功率干擾....................138
5.7 實驗六:應用功率控制於相位調變的定功率干擾......144

第六章 結論與未來展望...............................151
6.1 結論............................................151
6.2 未來展望........................................153

參考文獻............................................154
參考文獻 References
[1] M. Meeker, "Internet trends," KPCB, Tech. Rep., March 2012.
[2] P. W. Cisco, "Cisco visual networking index: Global mobile data traffic forecast update, 2013 - 2018," Cisco, Tech. Rep., February 2014. [Online]. Available:http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
[3] E. Karulf. (2008, April) Body area networks (ban). [Online]. Available: http://www.cs.wustl.edu/ jain/cse574-08/ftp/ban.pdf
[4] G.-Z. Yang, Body Sensor Networks. Springer, 2006.
[5] S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, and A. Jamalipour, "Wireless body area networks: A survey," Communications Surveys Tutorials, IEEE, vol. 16, no. 3, pp. 1658–1686, Third 2014.
[6] J. Garodnick, J. Greco, and D. Schilling, "Response of an all digital phase-locked loop," Communications, IEEE Transactions on, vol. 22, no. 6, pp. 751–764, Jun 1974.
[7] H. Eissa, K. Sharaf, and H. Ragaie, "Arctan differentiated digital demodulator for fm/fsk digital receivers," in Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on, vol. 2, Aug 2002, pp. II–200–II–203 vol.2.
[8] Y. T. Chan and F. Couture, "Performance analysis of a 32-channel mfsk demodulator,"DREO Report, vol. 1, p. 1, May 1992.
[9] G. Ferland, Y. Chan, and F. Couture, "On the implementation of a 32-channel fft-based mfsk demodulator," in Electrical and Computer Engineering, 1994. Conference Proceedings. 1994 Canadian Conference on, Sep 1994, pp. 186–189 vol.1.
[10] J. M. Steber, "Psk demodulation (part 1)," WJ Communications, Apr, vol. 11, pp. 1–10, 1984.
[11] T. I. Microchip, MRF49XA, Microchip Technology Inc., 2009.
[12] 曾煜棋, 林政寬, 林致宇, and 潘孟鉉, 無線網路:通訊協定、感測網路、射頻技術與應用服務, 1st ed., 曾煜棋, Ed. 碁峰, August 2011.
[13] A. Fort, "Body area communications: Channel characterization and ultra-wideband system-level approach for low power," Ph.D. dissertation, Vrije Universiteit Brussel, November 2007.
[14] R. Polikar. The engineer’s ultimate guide to wavelet analysis : The wavelet tutorial. Dept. of Electrical and Computer Engineering at Rowan University. [Online]. Available: http://users.rowan.edu/ polikar/WAVELETS/WTtutorial.html
[15] A. M. Law and D. M. Kelton, Simulation Modeling and Analysis, 4th ed. McGraw-Hill Higher Education, 2007.
[16] IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std., June 2007.
[17] IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs), IEEE Std., 2005.
[18] IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks Specific Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std., 2003.
[19] IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area Networks, IEEE Std., Feb 2012.
[20] M. A. Musen and J. H. Bemmel, Handbook of medical informatics. MIEUR, 1999.
[21] J. B. Sliman, Y.-Q. Song, A. Koubâa, M. Frikha et al., "A three-tiered architecture for large-scale wireless hospital sensor networks," in Workshop MobiHealthInf 2009 in conjunction with BIOSTEC 2009, Porto, Portugal, Jan. 2009, p. 64.
[22] 溫志宏. 無線通道模型概論. 國立中正大學電機工程學系. [Online]. Available: http://web.ee.ccu.edu.tw/ wl/ofdm/class/class pdf/Channel model.pdf
[23] C. C. Johnson and A. Guy, "Nonionizing electromagnetic wave effects in biological materials and systems," Proceedings of the IEEE, vol. 60, no. 6, pp. 692–718, June 1972.
[24] 低功率射頻電機技術規範, NCC Std., August 2007.
[25] N. Pantazis and D. Vergados, "A survey on power control issues in wireless sensor networks," IEEE Communications Surveys Tutorials, vol. 9, no. 4, pp. 86–107, Fourth 2007.
[26] T. H. Teo, X. Qian, P. Kumar Gopalakrishnan, Y. Hwan, K. Haridas, C. Y. Pang, H.-K. Cha, and M. Je, "A 700- μ w wireless sensor node soc for continuous real-time health monitoring," Solid-State Circuits, IEEE Journal of, vol. 45, no. 11, pp. 2292– 2299, Nov 2010.
[27] 林高洲, "錯誤更正碼在寬頻通訊系統之運用與發展," 中華民國電子零件認證委員會, Tech. Rep., May, September 2006.
[28] S. Lin, J. Zhang, G. Zhou, L. Gu, J. A. Stankovic, and T. He, "Atpc: adaptive transmission power control for wireless sensor networks," in Proceedings of the 4th international conference on Embedded networked sensor systems. ACM, 2006, pp. 223–236.
[29] R. Morelos-Zaragoza, K.-W. Suh, and J. hwan Lee, "Automatic transmit power control of a digital fixed wireless link with co-channel interference," in Communications and Networking in China, 2007. CHINACOM ’07. Second International Conference on, Aug 2007, pp. 1178–1184.
[30] K. Kempner, W. Risso, and D. Syed, "The digital computer as a tool in an intensive care unit," Computer, vol. 5, no. 6, pp. 38–43, November 1972.
[31] 馮武雄, "淺談無線生醫感測網路系統," 長庚校訊, vol. 68, p. 18, February 2008.
[32] S. Mittal, J. P. Piccini, A. Fischer, J. D. Snell, N. Dalal, and N. Varma, "Increased adherence to remote monitoring is associated with reduced mortality in both pacemaker and defibrillator patients," in Heart Rhythm Society 35th Annual Scientific Swssions, vol. 1, May 2014, p. 4.
[33] L. A. Saxon, D. L. Hayes, F. R. Gilliam, P. A. Heidenreich, J. Day, M. Seth, T. E. Meyer, P. W. Jones, and J. P. Boehmer, "Long-term outcome after icd and crt implantation and influence of remote device follow-up the altitude survival study," Circulation, vol. 122, no. 23, pp. 2359–2367, 2010.
[34] S. Dubner, A. Auricchio, J. S. Steinberg, P. Vardas, P. Stone, J. Brugada, R. Piotrowicz, D. L. Hayes, P. Kirchhof, G. Breithardt et al., "Ishne/ehra expert consensus on remote monitoring of cardiovascular implantable electronic devices (cieds)," Annals of Noninvasive Electrocardiology, vol. 17, no. 1, pp. 36–56, 2012.
[35] Y.-Y. Chang, "無線人體區域感測網路之中繼節點佈建方法," Master’s thesis, 國立清華大學, 2010.
[36] R. Istepanian, E. Jovanov, and Y. Zhang, "Guest editorial introduction to the special section on m-health: Beyond seamless mobility and global wireless health-care connectivity," Information Technology in Biomedicine, IEEE Transactions on, vol. 8, no. 4, pp. 405–414, Dec 2004.
[37] A. O. Isikman, L. Cazalon, F. Chen, and P. Li. Body area networks. Chalmers University of Technology. [Online]. Available: http://www.mehrpouyan.info/Projects/Group% 206.pdf
[38] I. Khemapech, A. Miller, and I. Duncan, "A survey of transmission power control in wireless sensor networks," in Proceedings of the 8th Annual Postgraduate Symposium on the Convergence of Telecommunications, Networking and Broadcasting (PGNet’07), 2007, pp. 15–20.
[39] W. Stallings, Data and Computer Communications, 8th ed., ser. William Stallings books on computer and data communications technology. Pearson/Prentice Hall, 2009.
[40] A.E.S., "Communications receiver performance degradation handbook," ITT Corporation, Tech. Rep., August 2010.
[41] L. W. Couch, II, Digital and Analog Communication Systems (5th Ed.). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.
[42] M. Hagiwara and M. Nakagawa, "Digital signal processing type stereo fm receiver," Consumer Electronics, IEEE Transactions on, vol. CE-32, no. 1, pp. 37–43, Feb 1986.
[43] N. Abramson, "The aloha system: Another alternative for computer communications," in Proceedings of the November 17-19, 1970, Fall Joint Computer Conference, ser. AFIPS ’70 (Fall). New York, NY, USA: ACM, 1970, pp. 281–285.
[44] L. G. Roberts, "Aloha packet system with and without slots and capture," ACM SIGCOMM Computer Communication Review, vol. 5, no. 2, pp. 28–42, 1975.
[45] W. Stallings, Local and Metropolitan Area Networks, ser. The William Stallings books on computer and data communications technology. Prentice Hall, 2000.
[46] Radio Regulations Articles, ITU Std., 2012.
[47] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 1995.
[48] 陳立民, 邱國書et al., CDMA 展頻通訊原理. 五南圖書出版股份有限公司, 2002.
[49] 林福林, 顏楠源, 沈義順, and 陳曉華, 展頻通訊與CDMA, 1st ed., 林福林, Ed. 滄海書局, 2006.
[50] 程懷遠, 最新數位通訊大全: 2G, 3G, WLAN 原理與實務. 全華, 2003.
[51] U. Svasti-Xuto, Q. Wang, and V. Bhargava, "Capacity of an fh-ssma system in different fading environments," Vehicular Technology, IEEE Transactions on, vol. 47, no. 1, pp. 75–83, Feb 1998.
[52] 許書銓, "Mimo 系統在時變多重路徑瑞雷通道的效能分析," Master’s thesis, 亞東技術學院, 2009.
[53] C.-A. Yen, "適用於ofdm 系統下之通道模擬器研究與實現," Master’s thesis, 國立中央大學, 2009.
[54] A. F. Molisch, K. Balakrishnan, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, U. Schuster et al., "Ieee 802.15. 4a channel model-final report," IEEE P802, vol. 15, no. 04, p. 0662, 2004.
[55] J. S. Seybold, Introduction to RF propagation. John Wiley & Sons, 2005.
[56] 謝國旺, 胡凱翔, and 翁萬德, "改良式jakes 衰減通道模擬器之硬體設計," Journal of Technology, vol. 22, no. 1, pp. 27–38, 2007.
[57] W. C. Jakes and D. C. Cox, Eds., Microwave Mobile Communications. Wiley-IEEE Press, 1994.
[58] J. Zander, "Distributed cochannel interference control in cellular radio systems," Vehicular Technology, IEEE Transactions on, vol. 41, no. 3, pp. 305–311, Aug 1992.
[59] E. Shih, B. Calhoun, S. Cho, and A. Chandrakasan, "Energy-efficient link layer for wireless microsensor networks," in VLSI, 2001. Proceedings. IEEE Computer Society Workshop on, May 2001, pp. 16–21.
[60] S. Singh and C. S. Raghavendra, "Pamas - power aware multi-access protocol with signalling for ad hoc networks," SIGCOMM Comput. Commun. Rev., vol. 28, no. 3, pp. 5–26, Jul. 1998.
[61] D. D. Vergados, D. J. Vergados, and C. Douligeris, "A new approach for tdma scheduling in ad-hoc networks," in Personal Wireless Communications(PWC0́5), Proceedings of the 10th IFIP Conference, 2005, pp. 107–114.
[62] S.-L. Wu, Y.-C. Tseng, and J.-P. Sheu, "Intelligent medium access for mobile ad hoc networks with busy tones and power control," Selected Areas in Communications, IEEE Journal on, vol. 18, no. 9, pp. 1647–1657, Sept 2000.
[63] T. ElBatt and A. Ephremides, "Joint scheduling and power control for wireless ad hoc networks," Wireless Communications, IEEE Transactions on, vol. 3, no. 1, pp. 74–85, Jan 2004.
[64] E.-S. Jung and N. H. Vaidya, "A power control mac protocol for ad hoc networks," in Proceedings of the 8th annual international conference on Mobile computing and networking. ACM, 2002, pp. 36–47.
[65] J. Chen, S.-H. Chan, Q. Zhang, W.-W. Zhu, and J. Chen, "Pasa : power adaptation for starvation avoidance to deliver wireless multimedia," Selected Areas in Communications, IEEE Journal on, vol. 21, no. 10, pp. 1663–1673, Dec 2003.
[66] Y.-S. Chen, C.-J. Chang, and Y.-L. Hsieh, "A channel effect prediction-based power control scheme using prnn/erls for uplinks in ds-cdma cellular mobile systems," Wireless Communications, IEEE Transactions on, vol. 5, no. 1, pp. 23–27, Jan 2006.
[67] B.-K. Lee, Y.-H. Chen, and B.-S. Chen, "Robust h_{inf} power control for cdma cellular communication systems," Signal Processing, IEEE Transactions on, vol. 54, no. 10, pp. 3947–3956, Oct 2006.
[68] S. Singh, M. Woo, and C. S. Raghavendra, "Power-aware routing in mobile ad hoc networks," in Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking, ser. MobiCom ’98. New York, NY, USA: ACM, 1998, pp. 181–190.
[69] R. Shah and J. Rabaey, "Energy aware routing for low energy ad hoc sensor networks," in Wireless Communications and Networking Conference, 2002., vol. 1, Mar 2002, pp. 350–355 vol.1.
[70] S. Grandhi, R. Vijayan, D. Goodman, and J. Zander, "Centralized power control in cellular radio systems," Vehicular Technology, IEEE Transactions on, vol. 42, no. 4, pp. 466–468, Nov 1993.
[71] J.-F. Chamberland and V. Veeravalli, "Decentralized dynamic power control for cellular cdma systems," Wireless Communications, IEEE Transactions on, vol. 2, no. 3, pp. 549–559, May 2003.
[72] A. El-Osery and C. Abdallah, "Distributed power control in cdma cellular systems," Antennas and Propagation Magazine, IEEE, vol. 42, no. 4, pp. 152–159, Aug 2000.
[73] D. Qiao, S. Choi, A. Jain, and K. Shin, "Adaptive transmit power control in ieee 802.11a wireless lans," in Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th IEEE Semiannual, vol. 1, April 2003, pp. 433–437 vol.1.
[74] S. Xiao, A. Dhamdhere, V. Sivaraman, and A. Burdett, "Transmission power control in body area sensor networks for healthcare monitoring," Selected Areas in Communications, IEEE Journal on, vol. 27, no. 1, pp. 37–48, January 2009.
[75] R. Kazemi, R. Vesilo, E. Dutkiewicz, and R. Liu, "Dynamic power control in wireless body area networks using reinforcement learning with approximation," in Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, Sept 2011, pp. 2203–2208.
[76] S. Kim and D.-S. Eom, "Link-state-estimation-based transmission power control in wireless body area networks," Biomedical and Health Informatics, IEEE Journal of, vol. 18, no. 4, pp. 1294–1302, July 2014.
[77] J. Allen, "Short term spectral analysis, synthesis, and modification by discrete fourier transform," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 25, no. 3, pp. 235–238, Jun 1977.
[78] 賴盈霖, "W-cdma 功率控制專欄," 新通訊元件雜誌, vol. 49-52, pp. 139–145, 126–133, 125–131, 91–96, March-June 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.131.110.169
論文開放下載的時間是 校外不公開

Your IP address is 3.131.110.169
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code