Responsive image
博碩士論文 etd-0025116-113355 詳細資訊
Title page for etd-0025116-113355
論文名稱
Title
巨量天線多使用者系統之低複雜度半盲式通道估測
Low-Complexity Semiblind Channel Estimation in Massive MU-MIMO Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-15
繳交日期
Date of Submission
2016-01-25
關鍵字
Keywords
漸進分析、巨量天線多使用者系統、半盲式通道估測、導頻汙染、第五代行動通訊系統
Pilot contamination, Semiblind channel estimation, Massive MU-MIMO systems, Asymptotic analysis, Fifth Generation wireless systems
統計
Statistics
本論文已被瀏覽 5695 次,被下載 409
The thesis/dissertation has been browsed 5695 times, has been downloaded 409 times.
中文摘要
巨量天線多使用者系統已被視為是未來無線通訊網路的關鍵技術,因為該系統可以提供高傳輸率以及滿足使用者對穩健傳輸的需求。在該系統中,通道資訊扮演重要的腳色,且通道估測的準確度將大大的影響系統的效能。其中,由於導頻汙染(pilot contamination)的影響,在該系統中實現準確的通道估測是十分困難的。因此,在本篇論文中,我們提出一種低複雜度半盲式通道估測演算法來解決導頻汙染所造成的問題,並藉此增進通道估測的準確度。一開始我們先利用修訂冪方法(modified power method)來找出主要訊號存在的子空間,並將接收訊號投影至該空間藉此降低鄰近蜂巢使用者所造成干擾。接著,我們利用少許的導頻訊號來產生初始的通道估測值,並利用該估測值偵測出傳送訊號。最後,我們將解調出的傳送訊號當作新的導頻訊號並依序代入所提出的迭代通道估測法中,藉此更新通道估測值並進一步的降低導頻污染的影響。由於所提出的演算法並不需要使用奇異值分解來求取子空間,因此維持了低複雜度。另外,我們也分析出所提出的演算法其均方誤差與資料長度成反比。因此,增加資料長度能改善通道估測的準確度,並消除導頻汙染的影響。模擬結果顯示所提出的演算法可有效的解決導頻汙染所造成的問題,且其效能比現有的演算法更好。
Abstract
Massive multi-user multiple-input multiple-output systems have become a key technology to achieve requirements of high throughput and robust transmission for next generation mobile communications. Optimum transceiver design in such systems highly relies on accurate channel state information, while the problem of pilot contamination will severely degrade the accuracy of channel estimates. In this thesis, we propose a low-complexity semiblind channel estimation algorithm to mitigate the effects of pilot contamination. We first project the received signals onto the subspace which is suffered with less interference. To reduce computational complexity, the bases of the subspace are obtained recursively by the modified power method. By exploiting a small number of pilot symbols, we can find the initial estimate of the projected channel coefficients. Finally, we detect data symbols and refine the channel estimate alternatively to eliminate the effect of pilot contamination. The complexity of our algorithm is low because of the subspace projection and innovation process. We also analyze mean square error (MSE) of the proposed channel estimate asymptotically, and it shows that the MSE are inversely proportional to the length of data symbols. Therefore, the proposed algorithm can be enhanced by increasing data length. Simulation results demonstrate that the proposed algorithm outperforms the existing works and can alleviate the effect of pilot contamination effectively.
目次 Table of Contents
Chinese Abstract ii
Abstract iii
List of Tables vi
List of Figures vii
1 Introduction 1
1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Fifth Generation (5G) Wireless Systems 8
2.1 Key Technologies to Achieve High Data Rate . . . . . . . . . . . . . . 10
3 System Model 13
3.1 Massive MU-MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Pilot Contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Proposed Recursive Semiblind Channel Estimation Algorithm 19
4.1 Low-complexity subspace projection algorithm . . . . . . . . . . . . . 20
4.2 Initial channel estimation . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Recursive data-aided estimation algorithm . . . . . . . . . . . . . . . 32
5 Complexity and Asymptotic Analysis 41
6 Simulation Results 45
6.1 Threshold determination for proposed algorithm . . . . . . . . . . . . 46
6.2 Effects of data length for proposed algorithm . . . . . . . . . . . . . . 49
6.3 Effects of antenna numbers for proposed algorithm . . . . . . . . . . 51
6.4 Compare proposed algorithm with other methods . . . . . . . . . . . 53
7 Conclusions 61
Bibliography 62
參考文獻 References
[1] E. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “MassiveMIMOfor next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195,
Feb. 2014.
[2] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO: Benefits and challenges,” IEEE J. Sel. Topics Signal Processing vol. 8, no. 5, pp. 742–758, May. 2014.
[3] J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J.Zhang, “What will 5G be?,” IEEE J. Sel. Areas Commun., vol. 32, no. 2, pp. 1065–1082, June. 2014.
[4] S. Mumtaz, K. M. Saidul Huq, and J. Rodriguez, “Direct mobile-to-mobile communication: Paradigm for 5G” IEEE Wireless Communications, vol. 21, no. 5, pp.14–23, Oct. 2014.
[5] P. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour “Design considerations for a 5G network architecture,” IEEE Commun. Mag., vol. 52, no. 11, pp. 65–75, Nov. 2014.
[6] C. Shepard, H. Yu, and L. Zhong, “ArgosV2: A flexible many-antenna research platform,”available at http://argos.rice.edu/pubs/Shepard-MobiCom13- Demo.pdf
[7] Cisco, Visual Networking Index, Feb. 2014, white paper as Cisco.com.
[8] J. Hoydis, S. ten Brink, M. Debbah,“Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?,” IEEE J. Sel. Areas Commun., vol.31, no. 2, pp. 160–171, Feb. 2013.
[9] F. Kaltenberger, J. Haiyong, M. Guillaud, and R. Knopp, “Relative channel reciprocity calibration in MIMO/TDD systems,” in Proc. of Future Network and Mobile Summit, 2010.
[10] T. L. Marzatta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless. Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.
[11] S. Jin et al., “On massive MIMO zero-forcing transceiver using time-shifted pilots,” IEEE Trans. Vehicular. Tech., Doi. 10.1109/TVT.2015.2391192.
[12] X. Xiong et al., “QoS guaranteed user scheduling and pilot assignment
for large-scale MIMO-OFDM systems,” IEEE Trans. Vehicular. Tech., Doi.10.1109/TVT.2015.2477683.
[13] J. Zuo et al., “Multi-cell multi-user massive MIMO transmission with downlink
training and pilot contamination precoding,” IEEE Trans. Vehicular. Tech.,Doi. 10.1109/TVT.2015.2475284.
[14] F. Fernandes, A. Ashikhmin, and T. Marzetta, “Inter-cell interference in noncooperative TDD large scale antenna systems,” IEEE J. Sel. Areas Commun., vol.31, no. 22, pp. 192–201, Feb. 2013.
[15] L. You, X. Gao, X.-G. Xia, N. Ma, and Y. Peng, “Massive MIMO transmission with pilot reuse in single cell,” in Proc. the IEEE Intl. Conf. Commun., (ICC ’2014),2014.
[16] X. Zhu, Z.Wang, L. Dai, C. Qian, “Smart pilot assignment for massive MIMO,”IEEE Communications Letters, Doi. 10.1109/LCOMM.2015.2409176.
[17] X. Zhu, L. Dai, Z.Wang, “Graph coloring based pilot allocation to mitigate pilot
contamination for multi-cell massive MIMO systems,” IEEE Communications Letters, Doi. 10.1109/LCOMM.2015.2471304.
[18] S. Jin et al., “Pilot scheduling schemes for multi-cell massive multipleinputaVmultiple- output transmission,” IET Communications., Doi. 10.1049/ietcom.2014.0842.
[19] P. Zhao et al., “Location-aware pilot assignment for massive MIMO systems in heterogeneous Networks,” IEEE Trans. Vehicular. Tech., Doi.10.1109/TVT.2015.2480965.
[20] A. Hu, T. Lv, H. Gao, Y. Lu, and E. Liu, “Pilot design for large-scale multi-cell
multiuser MIMO systems,” in Proc. the IEEE Intl. Conf. Commun., (ICC ’2013),2013.
[21] H.Wang,W. Zhang, Y. Liu, Q. Xu, P. Pan, “On design of non-orthogonal pilot signals for a multi-cell massive MIMO System,” IEEE Wireless Communications Letters, vol. 4, no. 2, pp. 129–132, Apr. 2015.
[22] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to channel estimation in largescale multiple-antenna systems,” IEEE J.Sel. Areas Commun.,vol. 31, no. 2, pp. 264–273, Mar. 2013.
[23] R. Muller, L. Cottatellucci, and M. Vehkapera, “Blind pilot decontamination,”
IEEE J. Sel. Signal Processing., vol. 8, no. 5, pp. 773–786, Oct. 2014.
[24] H. Q. Ngo and E. G. Larsson, “agEVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays,” Proc. ICASSP., 2012.
[25] J. Ma, and L. Ping, “Data-aided channel estimation in large antenna systems,”IEEE Trans. Signal Processing., vol. 62, no. 12, pp. 3111–3124, Jub. 2014.
[26] Thang X. Vu, Trinh Anh Vu, Tony Q. S. Quek, “Successive pilot contamination
elimination in multiantenna multicell networks,” IEEEWireless Communications Letters, vol. 3, no. 6, pp. 617–620, Dec. 2014.
[27] J. Zhang et al., “Pilot contamination elimination for large-scale multipleantenna
aided OFDM systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp.759–772, Oct. 2014.
[28] X. Zhu et al., “Soft pilot reuse and multi-cell block diagonalization precoding
for massive MIMO systems,” IEEE Trans. Vehicular. Tech., Doi. 10.1109/TVT.2015.2445795
[29] H. Zhang et al., “On superimposed pilot for channel estimation in multi-cell multiuser MIMO uplink: Large system analysis,” IEEE Trans. Vehicular. Tech.,Doi. 10.1109/TVT.2015.2414651,
[30] D. Hu, L. He, X.Wang, “Semi-blind pilot decontamination for massive MIMO systems,” IEEE Trans. Wireless. Commun., Doi. 10.1109/TWC.2015.2475745.
[31] C.-K.Wen, S. Jin, K.-K.Wong, J.-C. Chen, and P. Ting, “Channel estimation for massive MIMO using Gaussian-mixture Bayesian learning,” IEEE Trans. Wireless.Commun., vol. 14, no. 3, pp. 1356–1368, Mar. 2015.
[32] P. Xu, J. Wang, J. Wang, F Qi, “Analysis and design of channel estimation in multicell multiuser MIMO OFDM systems,” IEEE Trans. Vehicular. Tech., vol. 64,no. 2, pp. 1–11, Feb. 2015.
[33] A. Khansefid, H. Minn, “On channel estimation for massive MIMO with pilot contamination,” IEEE Communications Letters, Doi. 10.1109/LCOMM.2015.2452912.
[34] L. Miranian, and M. Gu, “Strong rank revealing LU factorization,” Linear Algebra Appl., vol. 368, pp. 1–16, 2003.
[35] T. R. Chan, “Rank revealing QR factorizations,” Linear Algebra Appl., vol. 88,
pp. 67–82, 1987.
[36] R. D. Fierro, P. C. Hansen, and P. S. K. Hansen “UTV tools: MATLAB templates for rank revealing UTV decomposition,” Numer. Algorithm, vol. 20, pp. 165–194, 1999.
[37] T. Y. Li, and Z. Zeng, “A rank-revealing method with updating, downdating, and aplication, part II,” SIAM. J. Matrix Anal. and Appl., vol. 31, no. 2, pp. 503–525, 2009.
[38] James W. Demmel, Applied numerical linear algebra, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997
[39] S. Haykin, Adative Filter Theory, 4th ed. Prentice-Hall, New Jersey, 2002.
[40] S. Kay, Fundamentail of Statisrical Signal Processing, Volumn I: Estimation Theory, Prentice Hall, New Jersey, 1993.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code