Responsive image
博碩士論文 etd-0026115-110441 詳細資訊
Title page for etd-0026115-110441
論文名稱
Title
具圓弧式指叉轉換器設計之低插入損耗彎曲平板波感測元件開發
Development of a Low Insertion Loss Flexural Plate-wave Sensor Using Circular-arc Interdigital Transducers Design
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-19
繳交日期
Date of Submission
2015-01-26
關鍵字
Keywords
微質量感測元件、圓弧式指叉轉換器、體型微加工技術、插入損耗、彎曲平板波
circular-arc interdigital transducers, insertion loss, flexural plate-wave, microsensor, bulk micromachining
統計
Statistics
本論文已被瀏覽 5658 次,被下載 67
The thesis/dissertation has been browsed 5658 times, has been downloaded 67 times.
中文摘要
目前聲波感測器(Acoustic Sensor)已被廣泛應用於微質量感測上,包含了表面聲波(Surface Acoustic Wave, SAW)感測器、剪應力(Thickness Shear Mode, TSM)震盪器、剪力水平板波(Shear Horizontal Acoustic Plate Mode, SH-APM)感測器以及彎曲平板波(Flexural Plate Wave, FPW)感測器,傳統彎曲平板波元件低傳播速度與低操作頻率等優點,而其主要之缺點為高插入損耗(Insertion Loss)及製程良率低。

本論文首度引入圓弧式指叉轉換器(Circular-arc Interdigital Transducers, IDT)設計於FPW元件中,以改善傳統FPW元件之高插入損耗。本論文所採用的製程技術主要是體型微加工製程(Bulk Micromachining),製程步驟包含七次薄膜沉積與五次黃光微影製程。

本論文所開發的FPW元件其延遲線長度(Delay Line)固定為250 μm且IDT對數固定為15對,共分為以下5種不同的設計:(i)Type A:具圓弧式IDT且無聚焦式反射閘極(Focus-type Reflective Grating Structure, RGS)結構;(ii) Type B-D:具圓弧式IDT,以及分別有6、8、10對之RGS結構;(iii)Type E:具平行式IDT且有10對RGS結構。由量測結果顯示,以上五種設計之FPW元件插入損耗分別為:-45.634 dB、-41.651 dB、-40.202 dB、-37.070 dB、-46.865 dB;故可證明傳統平行式無法有效降低FPW元件之插入損耗,而圓弧式IDT具有較佳的能量聚集效果,以Type D 與Type E比較下,具圓弧式IDT之Type D元件可以有效降低FPW元件插入損耗達20.9%。

最後,本論文以圓弧式指叉轉換器之彎曲平板波元件進行微質量感測,當元件背部矽空腔依序蒸鍍五層厚度為1000 Å之鋁金屬,可量得其平均質量感測靈敏度與感測線性度分別為11.54 cm2/g與96.69%。
Abstract
Acoustic micro-sensors have already been applied in mass sensing including surface acoustic wave (SAW), thickness shear mode (TSM), shear horizontal acoustic plate mode (SH-APM) and flexural plate wave (FPW). The conventional FPW device has advantages of high mass sensitivity, low phase velocity and low operation frequency. However, conventional FPW devices usually present a high insertion loss and low fabrication yield.
The main contribution of this thesis is introduced a novel circular-arc interdigital transducers (IDT) into FPW device for efficiently reduce the high insertion loss of conventional FPW device. The major technology utilized in this study is bulk micromachining technology and the main fabrication steps include seven thin-film deposition and five photolithography processes.
This thesis develops a length of delay line which is fixed at 250 μm and 15-pair IDTs with five kinds of difference FPW devices: (i) Type A : circular-arc IDT and without Focus-type reflective grating structure (RGS) (ii) Type B-D : circular-arc IDT with 6/8/10-pair RGS (iii) Type E : parallel-type IDT with 10-pair RGS. Measurement results demonstrate the insertion loss of above five different FPW devices are -45.634 dB, -41.651 dB, -40.202 dB, -37.070 dB and -46.865 dB respectively. It proves that the circular-arc IDT has better energy aggregation effect than parallel design. By comparing with the measured results of type D and type E FPW device, the insertion loss of type D is less than that of type E FPW device. Therefore, the circular-arc IDT design can efficiently reduce the insertion loss of FPW device.
Finally, as the five aluminum membranes the thickness of each layer is (1000 Å) were evaporated on the bottom surface of back side cavity, the mass sensitivity and sensing linearity of the presented FPW devices are 11.54 cm2/g and 96.69 % respectively.
目次 Table of Contents
論文審定書.....................................................................i
摘要...............................................................................iii
Abstract.........................................................................iv
誌謝...............................................................................vi
目錄...............................................................................vii
圖目錄............................................................................ix
表目錄............................................................................xii
第一章 緒論....................................................................1
1.1 前言.........................................................................1
1.2 研究動機與論文架構...................................................3
1.3 文獻回顧...................................................................4
1.3.1 聲波元件簡介..........................................................4
1.3.2 在彈性介質中的波傳行為..........................................4
1.3.3 聲波感測器種類與比較.............................................6
第二章 FPW元件材料分析與理論.....................................14
2.1 FPW質量感測之理論推導...........................................14
2.1.1 FPW無液體質量負載下之相速度理論推導..........................15
2.1.2 FPW於非黏滯性液體質量負載下之平板波相速度、質量感測靈敏度以及頻率飄移量之理論推導.................16
2.1.3 FPW於黏滯性液體質量負載下相速度之理論推導................18
2.2 壓電效應簡介與壓電薄膜選擇.....................................19
2.2.1 壓電效應................................................................19
2.2.2 氧化鋅壓電薄膜晶格結構與特性................................20
2.3 氧化鋅壓電薄膜沉積方法與特性分析............................22
2.3.1 氧化鋅壓電薄膜沉積方法..........................................22
2.3.2 氧化鋅壓電薄膜沉積原理..........................................23
2.3.3 反應性射頻磁控濺鍍原理..........................................24
2.4 金屬指叉轉換器之等效電路分析...................................26
2.5 反射閘極結構理論......................................................30
2.5.1 反射閘極週期..........................................................32
2.5.2 反射閘極對數之原理.................................................32
2.5.3 反射閘極與IDT之間距離之關係..................................32
第三章 具圓弧式IDT設計之FPW元件設計與製作..................34
3.1 具圓弧式IDT設計之FPW元件光罩佈局設計....................34
3.2 具圓弧式IDT設計之FPW元件製作.................................39
第四章 實驗結果與討論....................................................48
4.1 氧化鋅壓電薄膜之材料特性..........................................48
4.2 FPW元件探針式量測平台簡介......................................51
4.3 具聚焦式反射閘極結構之FPW微質量感測器特性分析.......................53
4.4 FPW元件特性量測結果與分析......................................54
4.4.1 聚焦式反射閘極結構對FPW元件特性之影響.................................54
4.4.2 聚焦式反射閘極結構對數之FPW元件特性之影響...........................56
4.4.3 具圓弧式與平行式IDT設計之FPW元件特性比較............................57
4.4.4 矽基板之KOH蝕刻時間對FPW元件中心頻率的影響.......................58
4.4.5 KOH蝕刻矽基板厚度比較及良率討論...........................................59
第五章 結論與未來展望....................................................61
5.1 結論...........................................................................61
5.2 未來展望....................................................................63
參考文獻..........................................................................64
參考文獻 References
[1] 微機電系統技術與應用,行政院國家科學委員會精密儀器發展中心,2003。
[2] O. Tigli and M. E. Zaghloul, “Design, modeling, and characterization of a novel circular surface acoustic wave device,” IEEE Sens. J. 8(11), 1807-1815 (2008)
[3] O. Tigli and M. E. Zaghloul, “A novel circular SAW (surface acoustic wave) device in CMOS,” IEEE Sens. Conf., 474-477, Atlanta, Georgia, USA (2007)
[4] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” London Mathematical Society 17, 4-11 (1885).
[5] D. S. Ballantine and D. Stephen, “Acoustic Wave Sensor: Theory, Design, and Physico-chemical Applications,” San Diego, Academic Press, Inc. (1997).
[6] R. W. Cernosek, “An Overview of Acoustic Wave Devices for chemical & biological sensing, Biological Detection, and Materials Characterization,” Solid-State Sensor Lecture, Auburn University, Auburn, AL (2002).
[7] D. W. Galipeau, P. R. Story, K. A. Vetelino, and R. D. Mileham, “Surface acoustic wave microsensors and applications,” Smart Materials and Structures 6, 658-667 (1997).
[8] J. W. Gardner, V. K. Varadan, and O.O. Awadelkarim, “Microsensors MEMS and Smart Devices,” John Wiely & Sons, Inc., New York (2001).
[9] 余嘉銘,壓電彎曲平板波生物感測器,國立中正大學電機工程研究所碩士論文 (2003)。
[10] M. J. Velekoop, “Acoustic wave sensors and their technology,” Ultrasonics. 36, 7-14 (1998).
[11] M. E. Motamedi and R. M. White, “Acoustic Sensor in Semiconductor Sensor,” John Wiely & Sons, Inc., New York (1994).
[12] M. I. Rocha-Gaso, C. M. Iborra, A. M. Baides, and A. A. Vives, “Surface generated acoustic wave biosensors for the detection of pathogens,” Sensors 9, 5740-5769 (2009).
[13] M. S. Weinberg, B. T. Cunningham, and C. W. Clapp, “Modeling flexural plate wave device,” J. Microelectromech. Syst. 9(3), 370-379 (2000).
[14] I.-Y. Huang and M.-C. Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies,” Sens. Act. B: Chem. 132(1), 340-348 (2008).
[15] I.-Y. Huang, M.-C. Lee, C.-H Hsu, and C.-C. Wang, “Development of a flexural plate-wave (FPW) immunoglobulin-E (IgE) allergy bio-sensing microsystem,” Sens. Act. B: Chem. 162(1), 184-192 (2012).
[16] Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, and R. Whatmore, “Thin film bulk acoustic resonators and filters using ZnO and Lead Zirconium Titanate thin films,” IEEE Trans. Microw. Theory Tech. 49(4), 769-778 (2001).
[17] S. J. Kang, Y. H. Joung, D. H. Chang, and K. W. Kim, “Piezoelectric and optical properties of ZnO thin films deposited using various O2/(Ar+O2) gas ratios,” J. Mater. Sci:Mater. Electron. 18, 647-653 (2007).
[18] 魏中聖,蕭俊卿,沈弘俊,“射頻濺鍍功率對氧化鋅薄膜機械性質之影響,”國立台灣大學奈米機電中心,國立台灣大學應用力學研究所,真空科技,二十卷第一期,(2007)

[19] A. Ismail and M. J. Abdullah, “The structural and optical properties of ZnO thin films prepared at different RF sputtering power,” J. King Saud University-Sci. 25, 209-215, (2013)
[20] 歐天凡,沉積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響,國立中山大學電機工程研究所碩士論文 (2004)。
[21] Hong Xiao原著,羅正忠、張鼎張譯,「半導體製程技術導論」,學銘圖書
[22] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder, and H. J. Shaw, “Analysis of interdigital surface wave transducers by use of equivalent circuit model,” IEEE Trans Microw. Theory Tech. 17(11), 856-864 (1969).
[23] S. G. Joshi, B. D. Zaitsev, and I. E. Kuznetsova, “Reflection of plate acoustic waves produced by a periodic array of mechanical load strips or grooves,” IEEE Trans. Ultras. Ferr. Freq. Contr. 49(12), 1730-1734 (2000).
[24] C.-Y Lin, I.-Y. Huang, and J.-W. Lan, “Improvement of insertion loss and quality factor of flexural plate-wave based alpha-fetoprotein biosensor using groove-type reflective grating structures,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013017-1~8 (2013).
[25] I.-Y. Huang, C.-Y. Lin, and J.-W. Lan, “Improving thin film ZnO SAW device insertion loss by grooved reflective grating structure,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013019-1~9 (2013).
[26] 林俊甫,雙埠表面聲波濾波器的模擬與量測,國立成功大學機械工程學研究所碩士論文 (2003)。
[27] W. H. Haydl, B. Dischler, and P. Hiesinger, “Multimode SAW resonators-a method to study the optimum resonator design,” Proc. IEEE Ultrason. Symp., 287-296 (1976).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code