Responsive image
博碩士論文 etd-0026115-122359 詳細資訊
Title page for etd-0026115-122359
論文名稱
Title
黏性不可壓縮流體中之波流交互作用
Wave-Current Interaction in Viscous-incompressible Fluid
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-16
繳交日期
Date of Submission
2015-01-28
關鍵字
Keywords
剪力流、邊界層、波流交互作用、黏性不可壓縮、底床剪力
viscous-incompressible, bed shear stress, boundary layer, shear current, wave-current interaction
統計
Statistics
本論文已被瀏覽 5744 次,被下載 0
The thesis/dissertation has been browsed 5744 times, has been downloaded 0 times.
中文摘要
本文針對在靜穩大氣下與均勻等深條件下,解析黏性不可壓縮流體中之波與流交互作用之流場進行解析,相較於前人常以邊界層問題處理黏性流場,本文延續陳(1996)的方式,以線性化Navier-Stokes Eqn.解析整個流場。本研究考量自由表面處之壓力、剪力及表面張力等因素,依動力平衡原則,建構自由表面動力邊界條件。底床邊界條件,則分別考慮底床為完全滑動、完全黏著底床狀況及部分滑動的底床狀況,在線性化考量下,本文針對各種底床狀況,可求出一通解。
  解析結果顯示,隨著底床滑動程度減小,在底床附近之水平流速會由最大遞減至零,則剪力由零遞增至最大。在波流交互作用下,水平流速與剪力在底床附近之垂直分佈,於波峯及波谷處並不對稱,波流同向時波峯處的分佈變化較大,波流反向時則於波谷處的分佈變化較大。水深愈深或波浪週期愈大則超射速度越小;而剪力流愈大超射速度愈大,但對發生位置不會有明顯影響;隨著滑動程度減小,超射速度發生位置呈線性增加,但在fi大於0.2後則不再有明顯變化。
Abstract
In this paper, the flow field of interaction between wave and current in viscous-incompressible fluid was analyzed in a static and stable atmosphere with homogeneous and isobaric. Based on Chen's study (1996), with free surface dynamical boundary, equilibrium of forces, atmosphere pressure, shear stress and surface tension, solving the viscous flow fluid by boundary layer, which of the determine will continue analyzing by whole flow fluid with Navier-Stokes Equation, and which will find a general solution in three kinds of condition for the bottom: (i) perfect slip (ii) no slip and (iii) partial slip in linearization consideration.
  The results shows the velocity of flow decrease from maximum to zero in horizontal, and the shear force increase from zero to maximum near the bottom with the decrease of the degree in sliding. In the interaction of flow and wave, the vertical distribution of the velocity and shear force is not symmetric in the wave crest and trough. Particular change will be observation in the wave crest when the wave and current is in the same direction. Otherwise, the change will be also found in the wave trough when the wave and current is in the opposite. The overshoot velocity will be decrease with deeper water or larger period, and generation position will be no obvious effect, even the shear current larger and overshoot velocity faster. With the linear increase of overshoot position by decrease of the sliding, fi will be no obvious change even greater than 0.2.
目次 Table of Contents
目錄
論文審定書....................................................................................................................i
誌謝......................................................................................................................ii
中文摘要...................................................................................................................... iii
Abstract........................................................................................................................iv
目錄........................................................................................................................v
圖表目錄....................................................................................................................... vii
符號說明...................................................................................................................ix
第一章 緒論................................................................................................................1
1.1研究目的............................................................................................................1
1.2文獻回顧............................................................................................................2
1.3 本文處理方式........................................................................................................5
1.4 本文組織.....................................................................................................6
第二章 控制方程式及邊界條件.................................................................................7
2.1 流場之基本描述................................................................................................7
2.2 流場之基本控制方程......................................................................................8
2.3 流場之邊界條件.........................................................................................9
第三章 流場之解析..........................................................................................14
3.1 流場機構之描述...............................................................................................14
3.2 完全滑動之底床狀況.......................................................................................15
3.3完全黏著之底床狀況........................................................................................18
3.4非完全滑動亦非完全黏著之底床狀況...........................................................25
第四章 理論之檢核與分析........................................................................................31
4.1 流場解之檢核.................................................................................31
4.2流場的剪力及水平流速分佈.............................................................33
4.3 解析結果與分析.............................................................................36
第五章 結論與建議..................................................................................................51
5.1 結論...............................................................................................51
5.2 建議..............................................................................................52
第六章 參考文獻......................................................................................................53
參考文獻 References
第五章、參考文獻
1. 黃煌煇、林呈、林西川,1985,波浪在均勻水流流場中之特性變化 ,第八屆海洋工程研討會論文集,345-368頁。
2. 林呈、黃煌煇,1989,波動淺化過程底部邊界層流場之實驗研究 ,中華民國力學學會期刊第五卷第一期,67-76頁。
3. 陳陽益,1990,波動流體之一些真實性,第三屆基礎港灣數值(數學)模式研習會論文集,1-41頁。
4. 陳陽益、莊文傑等,1990~1994,波流交互作用之研究 ,港灣技術研究報告。
5. 張憲國、陳陽益,1994,波流交會之數值解析,港灣技術,第八期,51-75頁。
6. 黃煌煇、黃國書、李柏宏,1994,波浪作用下可透水底床之孔隙水壓及流場變化,第十六屆海洋工程研討會論文集,58-69頁。
7. 陳陽益,1996,真實流體中之規則前進波,港灣技術第十一卷第一期,57-88頁。
8. 楊炳達,1996,真實流體中之重力駐波,國立中山大學海洋環境及工程學系研究所碩士論文。
9. 游宗耀,2003,真實流體中前進坡及駐波流場的非線性解析, 國立中山大學海洋環境及工程學系研究所碩士論文。
10. 許弘莒、陳陽益、李孟學,2006,Lagrangian系統下三維波流交互作用之理論解析,第二十八屆海洋工程研討會論文集,117-122頁。
11. 林佳豪,2006,真實流體中前進波通過透水性底床之行為解析,國立中山大學海洋環境及工程學系研究所碩士論文。
12. 李政達,2008,波流場中質點運動特性之試驗研究,國立中山大學海洋環境及工程學系研究所碩士論文。
13. 李宗恆,2011,平面紊亂射流與反向非線性前進重力波及海流作用後之速度與溫度分佈之研究,國立中山大學海洋環境及工程學系研究所碩士論文。
14. 許弘莒、李孟學,2012,Lagrangian系統下非線性波與剪力流交互作用之動力 機制,第三十四屆海洋工程研討會論文集,25-30頁。
15. Baber, N.F., 1949, The Behavior of Wave on Tidal Streams, Proc . R. Soc, Lond, A. 198, No. A 1052,81-93.
16. Christoffersen, J.B., 1982, Current Depth Refraction of Dissipative Water Wave, Institute of Hydrodynamics and Hydraulic Engineering ,Technical University of Denmark, Lyngby, Denmark.
17. Dalrymple, R.A., 1973, Water Wave Models and Wave Forces with Shear Current, Technical Report No.10,Coastal Oceanography Engineering Labortory, University of Florida,Gainesville,Fla.
18. Dalrymple, R.A., 1974, Finite-Amplitude Wave on a Linear Shear Current,
Gephys Res.Vol.79,No.30,4498-4504.
19. Dalrymple, R.A., 1980, Longshore Currents with Wave-Current Interaction,
Joural of the Waterway, Port, Coastal and Ocean Division,Vol,106,No. ww3,414-420.
20. Harrison, W.J., 1908, The influence of viscosity and capillarity on waves of finite amplitude, Proc.Lond.Math.Soc.Ser.2,107-121.
21. Hough, S.S., 1896, On the Influence of Viscosity on Wave and Currents, Proc. Lond. Math. Soc. Ser.1,28,264-288.
22. Longuet-Higgins, M.S., and Stewart, R.W., 1960, Changes in the Form of Short Gravity Wave on Long Wave and Tidal Currents, J. Fluid Mech, Cambridge, England, Vol. 8, No.4,565-583.
23. Longuet-Higgins, M.S., 1969, Action of a Variable Stress at the Surface of Water Waves, Phys. Fluids 12,737-740.
24. Peregrine, D.H., 1976, Interaction of Water Waves and Currents, Advance in Applied Mechanics,Vol.16,Academic Press, New York,pp.9-117.
25. Phillips, O.M., 1977, The dynamics of the upper ocean, Cambridge University Press, London. 2th edition.
26. Stokes, G.G., 1845, On the Theories of the Internal Friction of Fluid in Motion, and of the Equilibrium and Motion of Elastic Solids, Trans. Camb. Phil. Soc.8,.
287-305.

27. Stewart, R.W., 1967, Mechanics of the Air-sea Interface, Phys. Fluids. Suppl.10, 47-54.
28. Thomas. G.P., 1981, Wave-current interactions : an experimental and numerical study. Part 1. Linear Wave , J. Fluid Mech. ,Vol.110.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.156.80
論文開放下載的時間是 校外不公開

Your IP address is 18.190.156.80
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code