Responsive image
博碩士論文 etd-0026116-151712 詳細資訊
Title page for etd-0026116-151712
論文名稱
Title
實現Hector SLAM方法之定位使用里程計擴增型卡曼濾波器
Implementation of Odometry with EKF for Localization of Hector SLAM Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
48
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-23
繳交日期
Date of Submission
2016-01-26
關鍵字
Keywords
路徑規畫、卡漫濾波器、行動機器人、長廊、即時定位與地圖繪製、回歸曲線
corridor, SLAM, autonomous robot, Extended Kalman Filter, path planning, regression
統計
Statistics
本論文已被瀏覽 5780 次,被下載 2224
The thesis/dissertation has been browsed 5780 times, has been downloaded 2224 times.
中文摘要
近年來,行動機器人導航已應用於無人地面車輛(UGV)、無人表面車輛(USV)、無人機(UAV)。地圖為室內行動機器人導航必要的前提。而在2D空間中即時定位與繪製地圖(SLAM)為一最佳化問題。機器人操作系統(ROS)中已存在許多雷射2D SLAM技術, 適用於不同的情境。對於大型地圖雷射繪製,最俱挑戰性的問題是雷射資訊缺少可以辨認的特徵標誌,特別在走廊中,會造成長度不正確的地圖繪製結果。在機器人導航時,則有可能會發生碰撞。本篇論文提出搭配使用卡慢濾波器的里程計預測應用於掃描匹配,以及回歸線子節點的最佳路徑規畫。將雷射掃描匹配結合經由延伸卡漫濾波器預測之里程計結果。在這樣的方式下,雷射掃描匹配的過程將可以跳離資訊不足的局部極小值,並同時對於里程計資訊有效地做修正。透過迭代修正里程計資訊,匹配結果將會優於過度相信雷射掃描資訊或者里程計資訊。最佳路徑規畫利用a*理論之路徑經由回歸線減少子節點,確保機器人再轉彎時會謹慎而行,在直線時可以快速通過。如此一來,在大型室內場景中行動機器人便可藉由低價雷射測距裝置繪製地圖。將以模擬以及同狀況之室內實驗數據驗證所提出之方法。
Abstract
In recent years, autonomous robot navigation in indoor environment has successfully been used on unmanned ground vehicles (UGV), unmanned surface vehicles (USV) and unmanned aerial vehicle (UAV). Map is a prerequisite for indoor autonomous robot navigation system. Simultaneous localization and mapping (SLAM) in 2D space is an optimization problem. There has bunch of laser-based 2D SLAM techniques available in Robot Operating System (ROS), and they are fit in different scenario. For large-scale indoor laser scan mapping, a challenging problem is scan information lack of distinguishable landmarks, thus cause the improper mapping result especially in corridor environment. Collision may happen during the autonomous robot navigation. This paper presents a scan matching algorithm with odometer prediction using Extended Kalman Filter (EKF) and an optimal path planning with regression subgoal. The scan matching process will be able to out of local minima, and has an effective correction in the odometry information. By iterating odometer correction in each step, the matching result will be much better than one only believe in scan or odometry. Optimal path planning utilize the a* algorithm with regression method to refined the subgoal amount, ensure the robot will move carefully in the corner and speed up in straight line. Therefore, low-cost laser range finder can be apply to autonomous robot for large-scale indoor environment SLAM. Both simulated and large-scale indoor experimental data under the same conditions are used to verify the effectiveness of the proposed techniques.
目次 Table of Contents
論文審定書 i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF FIGURES vi
LIST OF TABLES vii
LIST OF AlGORITHMS vii
LIST OF SYMBOLS viii
I. INTRODUCTION 1
1.1 Motivation 1
1.2 Objective 3
1.3 Organization of thesis 5
II. BACKGROUND 6
2.1 Related work 6
2.2 Hector SLAM 9
2.3 Extended Kalman Filter 13
2.4 A* Search Algorithm 15
2.5 Robot Configuration 17
2.5.1 Robot Specification 17
2.5.2 Kinematic of wheeled robot 18
III. PROPOSED METHOD 20
3.1 Proposed Scheme Overview 20
3.2 Odometer EKF with Scan Matching 21
3.3 Path Planning with Subgoal 26
IV. EXPERIMENT RESULT 28
4.1 Environment Setup 28
4.2 Experiment Result 30
V. CONCLUSION AND FUTURE WORK 35
5.1 Conclusion 35
5.2 Future Work 36
REFERENCES 38
參考文獻 References
[1] J. E. Guivant and E. M. Nebot, “Optimization of the Simultaneous Localization and Map-Building Algorithms for Real-Time Implementation, ” in IEEE Trans. on Robotics and Automation, vol. 17, no. 3, pp. 242-257, 2001.
[2] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges, ” in Proc. of the Sixteenth Int. Joint Conf. on Artificial Intelligence, pp. 1151-1156, 2003.
[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, “Principles of Robot Motion: Theory, Algorithms, and Implementations. ” MIT Press, 2005.
[4] I. Ashokaraj, P. Silson, and A. Tsourdos. “Application of an extended Kalman flter to multiple low cost navigation sensors in wheeled mobile robots.” Sensors, 2:1660-1664, 2002.
[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA, USA: MIT Press, 2005.
[6] J. Jung and H. Myung, “Indoor localization using particle filter and map-based NLOS ranging model,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Shanghai, China, May 2011, pp. 5185–5190.
[7] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.
[8] S. Kohlbrecher, J. Meyer, O. Von Stryk, and U. Klingauf, “A flexible and scalable SLAM system with full 3D motion estimation,” in Proc. Int. Symp. Safety, Security and Rescue Robot,” Nov. 2011, pp. 155–160.
[9] E. Pedrosa, N. Lau, and A. Pereira, “Online SLAM based on a fast scanmatching algorithm,” in Progress in Artificial Intelligence, ser. Lecture Notes in Computer Sci., L. Correia, L. P. Reis, and J. Cascalho, Eds. Berlin, Germany: Springer-Verlag, 2013, vol. 8154, , pp. 295–306.
[10] J. M. Santos, M. Couceiro, D. Portugal, and R. P. Rocha, “Fusing sonars and LRF data to perform SLAM in reduced visibility scenarios,” in Proc. 14th Int. Conf. Auton. Robot Syst. Competitions, Espinho, Portugal, May 14–15, 2014, pp. 116–121.
[11] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored solution to the simultaneous localization and mapping problem,” in Proc. AAAI Nat. Conf. Artif. Intell., 2002, pp. 593–598.
[12] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard, “Robust map optimization using dynamic covariance scaling,” in Proc. Int. Conf. Robot. Autom., Karlsruhe, Germany, May 6–10, 2013, pp. 62–69.
[13] E. W. Dijkstra, “A note on two pmblem in comexion with gaphs, ” ; Journal: Numerische Mathematik. Vol 1, Issue 1 , pp 269-271;
[14] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems, Science and Cybernetics, vol. SSC-4, no. 2, pp. 100–107, 1968.
[15] H. Johannsson, M. Kaess, M. Fallon, and J. J. Leonard, “Temporally scalable visual SLAM using a reduced pose graph,” in RSS Workshop on Long-term Operation of Autonomous Robotic Systems in Changing Environments, 2012.
[16] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDonald. “Real-time large-scale dense RGB-D SLAM with volumetric fusion.” Robotics Research, December 2014.
[17] H. Lim, J. Lim, and H. J. Kim, “Real-Time 6-DOF Monocular Visual SLAM in a Large-Scale Environment,” in International Conference on Robotics and Automation (ICRA), 2014, pp. 1532–1539.
[18] H. Strasdat, A.J. Davidson, J.M.M. Montiel, K. Konolige, “Double Window Optimization for Constant Time Visual SLAM,” IEEE International Conference on Computer Vision pp. 2352-2359, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code