Responsive image
博碩士論文 etd-0026116-174014 詳細資訊
Title page for etd-0026116-174014
論文名稱
Title
利用FPGA實現鎖相迴路鎖頻演算法於超音波噴塗系統
FPGA-Based Phase-Locked-Loop Frequency-Locking Algorithm for Ultrasonic Spray Coating System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-05
繳交日期
Date of Submission
2016-01-28
關鍵字
Keywords
FPGA、超音波換能器、鎖相迴路
FPGA, ultrasonic transducer, phase-locked-loop
統計
Statistics
本論文已被瀏覽 5728 次,被下載 521
The thesis/dissertation has been browsed 5728 times, has been downloaded 521 times.
中文摘要
本論文將設計的鎖相迴路鎖頻演算法應用於超音波噴塗系統,為因應不同超音波換能器,在此所允許的驅動頻率為20至80千赫。換能器在共振與反共振點,電壓電流的相位差為零,利用數位鎖相迴路技術能保持與輸入訊號頻率及輸入相位一致的特性,來自動鎖頻。希望所規劃的演算法,可自動使超音波換能器驅動於共振頻率或反共振頻率,並抑制其它頻率的諧振。所設計的鎖頻與偵測演算法將利用可程式規劃邏輯陣列晶片(Field Programmable Gate Array,FPGA) 來實現。
Abstract
A phase-locked-loop frequency-locking algorithm implemented on an FPGA is presented for an ultrasonic spray coating system. The algorithm generates a sine wave for driving the ultrasonic transducer and ensures the frequency of the sine wave to automatically follow the transducer resonance (or anti-resonance) frequency, thereby maximizing the conversion efficiency from electrical power to vibration power. By the observation, the transducer's impedance becomes purely resistive at its resonance (or anti-resonance). So a digital phase locked loop is employed to track the transducer resonance (or anti-resonance) by adjusting the driving frequency to where the driving voltage and current are in phase. The targeted driving frequencies range from 20 kHz to 80 kHz. The experiments performed on different transducers in the ultrasonic spray coating system confirm the effectiveness of the algorithm.
目次 Table of Contents
審定書 i
致 謝 ii
摘 要 iii
Abstract iv
目 錄 v
圖目錄 vii
表目錄 ix
第 一 章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文貢獻 5
第 二 章 超音波噴塗系統 6
2.1 超音波換能器 7
2.2 超音波換能器驅動於共振點與反共振點的特性 8
第 三 章 鎖相迴路基本操作原理 10
3.1 鎖相迴路簡介 10
3.2 鎖相迴路電路架構 10
3.2.1相位頻率偵測器 11
3.2.2充電泵與迴路濾波器 12
3.2.3電壓控制振盪器 13
第 四 章 鎖頻迴路應用於超音波噴塗系統 14
4.1 鎖相迴路應用於AB類驅動電路 14
4.1.1數位鎖頻演算法 16
4.2.2FPGA程式規劃 16
4.2鎖相迴路應用於D類驅動電路 22
第 五 章 量測結果 33
5.1 系統實作架構 33
5.1.1超音波AB類驅動系統實作架構 33
5.1.2超音波D類驅動系統實作架構 36
5.2 鎖頻效果量測 38
5.2.1將鎖相迴路用於AB類驅動電路的量測結果 38
5.2.2將鎖相迴路用於D類驅動電路的量測結果 40
第 六 章 結論 43
參考文獻 44
參考文獻 References
[1] 余祥華、賴姵穎、謝逸飛,適用不同阻抗特性之功率可調超音波驅動器開發期末報告,經濟部,2014。
[2] 謝耀南、李訓谷、陳忠詰、林貝坤、楊智博,節能隔熱塗佈技術及應用研討會講義,財團法人精密機械研究發展中心,2013。
[3] 鄭振東,超音波工程,全華圖書,1999。
[4] B. Mortimer, T. du Bruyn, J. Davies, and J. Tapson, “High power resonant tracking amplifier using admittance locking,” Ultrasonics, 39, pp. 257-261, 2001.
[5] J. Aldrich, S. Sherrit, X. Bao, Y. Bar-Cohen, M. Badescu, and Z. Chang, “Extremum-seeking control for an ultrasonic/sonic driller/corer (USDC) driven at high-power,” Proc. of SPIE, Modeling, Signal Processing, and Control for Smart Structures, 2006.
[6] V.I. Babitsky, V.K. Astashev, and A.N. Kalashnikov, “Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications,” Ultrasonics, vol. 42, pp.29-35, 2004.
[7] S. Voronina and V. Babitsky, “Autoresonant control strategies of loaded ultrasonic transducer for machining applications,” Journal of Sound and Vibration, vol.313, pp. 395-417, 2008.
[8] C.W. Ha, J.C. Gong, S.C. Shin, and B.O. Min, “Frequency-control-type piezo actuator driving circuit and method of driving the same,” U.S. Patent no. 7471029, 2008.
[9] L.J. Smith, “Use of phase-locked-loop control for driving ultrasonic transducers,” NASA Technical Note D-3567, Aug. 1966.
[10] J. Twiefel, M. Klubal, C. Paiz, S. Mojrzisch, and H. Kruger, “Digital signal processing for an adaptive phase-locked loop controller,” Proc. of SPIE, Modeling, Signal Processing, and Control for Smart Structures, Apr. 2008.
[11] S. Mishiro and S. Hamada, “Method of and apparatus for driving an ultrasonic transducer including a phase locked loop and a sweep circuit,” U.S. Patent no. 4275363, 1981.
[12] C. Kauczor and N. Frohleke, “Inverter topologies for ultrasonic piezoelectric transducers with high mechanical Q-factor,” IEEE 35th Power Electronics Specialists Conference, vol. 4, pp. 2736-2741, 2004.
[13] W. Littmann, T. Hemsel, C. Kauczor, J. Wallaschek, and M. Sinha, “Load-adaptive Phase-Controller for resonant driven piezoelectric Devices,” Proc. of WCU, pp. 547-550, 2003.
[14] 曾明鴻,量化控制與順滑模態調變應用之應用,國立中山大學電機工程學系博士論文,2014。
[15] 謝逸飛,具功率控制及負載補償的SEPIC轉換器設計,國立中山大學電機工程學系碩士論文,2015。
[16] S. Hirose, M. Aoyagi, Y. Tomikawa, S. Takahashi, and K. Uchino, “High power characteristics at antiresonance frequency of piezoelectric transducers,” Ultrasonics, 34, pp. 213-217, 1996.
[17] K. Uchino, J.H. Zheng, Y.H. Chen, X.H. Du, J. Ryu, T. Gao, S. Ural, S. Priya, and S. Hirose, “Loss mechanisms and high power piezoelectrics,” Journal of Materials Science, 41, pp. 217-228, 2006.
[18] L. Svilainis and G. Motiejunas, “Power amplifier for ultrasonic transducer excitation,” Journal of Ultragarsas, vol. 1, pp. 30-36, 2006.
[19] M. Prokic, Piezoelectric transducers modeling and characterization, MPI, 2004.
[20] 何中庸,PLL頻率合成與鎖相電路設計,全華圖書,2001。
[21] 宋國明,PLL電路設計及應用,全華圖書,2006。
[22] 陳文華,鎖相迴路(PLL)原理與應用,全華圖書,1980。
[23] Y. Peng, J. Xu and Y. Li, “Modeling and simulation of an improved PLL-controlled circuit for series resonant inverter,” in Proc. IEEE International Conference on Electrical Machines and System, pp. 1786-1788, 2008.
[24] A. Tangel, M. Yakut , E. Afacan, U. Güvenç, and H. Şengül, “An FPGA- Based multiple-output PWM pulse generator for ultrasonic cleaning machines,” in Proc. IEEE International Conference on Applied Electronics, pp. 1-4, 2010.
[25] Y. Wang, M.J. Draper, S.M. Denley, F.V.P. Robinson, and P.R. Shepherd, “Control scheme evaluation for class-D amplifiers in a power-ultrasonic system,” Proc. 6th IET International Conference on Power Electronics, Machines and Drives, 2012.
[26] N. Ghasemi, Improving ultrasound excitation systems using a flexible power supply with adjustable voltage and frequency to drive piezoelectric transducers, Ph.D. dissertation, Queensland University of Technology, Australia, 2012.
[27] R. Li, N. Frohleke, and J. Bocker, “LLCC-PWM inverter for driving high-power piezoelectric actuators,” Proc. 13th International Power Electronics and Motion Control Conference, pp. 159-164, 2008.
[28] K. Agbosson, J. Dion, S. Carignan, M. Abdelkrim, and A. Choriti, “Class D amplifier for a power piezoelectric load,” IEEE Transaction on Ultrasonics, Ferroelectics, and Frequency Control, vol. 47, no. 4, pp. 1036-1041, 2000.
[29] H. S. Patel and R. G. Hoft, “Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters Part I Harmonic Elimination,” IEEE Transaction on Industry Application, vol. IA-9, no. 3, pp. 310-317, 1973.
[30] 王星翰,具強健性之重複控制器應用於直流至交流轉換器,國立中山大學電機工程學系碩士論文,2012。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code