Responsive image
博碩士論文 etd-0027114-125059 詳細資訊
Title page for etd-0027114-125059
論文名稱
Title
戶外直立式光生物反應器日照衰減之研究
Study on light attenuation for outdoor vertical photobioreactor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-15
繳交日期
Date of Submission
2014-01-27
關鍵字
Keywords
直立式光生物反應器、菲涅耳方程式、比爾-朗伯定律、陰影遮蔽率、戶外養殖
Outdoor photobioreactor culture, Fresnel equations, Beer–Lambert law, Shading ratio, Vertical photobioreactor
統計
Statistics
本論文已被瀏覽 5711 次,被下載 552
The thesis/dissertation has been browsed 5711 times, has been downloaded 552 times.
中文摘要
藻類相較於陸生植物具高生產率的特性,因此在生質燃料的料源中普遍被看好。本研究就太陽能量的觀點出發,探討戶外微藻養殖時,直立式光生物反應器吸收光能之途徑,並建立數值模式來評估直立式光生物反應器的太陽輻射能接收之季節平均光強度及最佳排列方式。本文以高雄為例,推算每日的太陽高度角、方位角及太陽輻射量,再配合斯涅爾定律與菲涅耳方程式得到太陽光的光線軌跡與反射率等計算陽光進入桶內之輻射能;而藻液內光強度之衰減可藉由比爾-朗伯定律計算得到,至於大規模生產時,直立式光生物反應器桶體彼此間太陽陰影之遮蔽影響,則以數學模型來推測。
研究結果發現:直立式光生物反應器整年平均的反射損失約為10.9%;春、秋季的太陽輻射擷取量最大,冬天次之,夏天最低,主要太陽光從上方往下照,一方面反射大另一方面直立桶側面照射較小的緣故雖然它的日照強。若以直徑50公分的直立式光生物反應器為例,藻液的平均光強度的峰值約在500(μmol∙m-2∙s-1)左右,而冬至整日藻液平均光強度的變化最少,夏至的變化最大。而多組光生物反應器間的相對距離對陰影遮蔽率的影響,東-西方向上的間距影響程度較南北向大,因此建議東西向間距要寬,以桶高之80%為準,南北向可以適度縮減。
Abstract
Compared to terrestrial plants algae with high productivity characteristics, they are optimistically considered as a potential candidate to be biomass fuels. Based on the solar energy point of view, this study is to investigate the path of energy absorption by the microalgae vertical photobioreactor at outdoor culture, and establishes a numerical model to estimate the average received seasonal light intensity and the optimal arrangement for a set of vertical photobioreactors at open field. Taking Kaohsiung as an example, the projected daily Solar altitude, Solar azimuth and Solar radiation, coupled with the loss of Snell's law and Fresnel equation is used to obtain the actual light intensity penetrating into the wall of container. The light attenuation in the culture medium is estimated according to Bill Lambert law. This study also established a model to explore the shadow effect created by other nearby photobioreactors when a large scale production of microalgae implemented.
The results are as followings: The vertical photobioreactor reflection losses throughout the year averaged about 10.9%; during spring and autumn it captures the largest amount of solar radiation, then winter, and summer is minimum, since during summer time the sun is moving upright overhead causing the light reflects more and less penetrates into the container. Taking diameter 50 cm vertical photobioreactor for example, the average light intensity in the medium of algae in about 500 (μmol∙m-2∙s-1), while the winter solstice day average light intensity algae solution changes at least, the greatest change in the summer solstice. The shadow effect study shows that the arrangement of the east-west direction spacing has more impact than north-south, and their EW gap of spacing between each barrel should be at least 80% height, while NS direction could be moderately reduced.
目次 Table of Contents
目錄
摘要......................................................................................i
Abstract..............................................................................ii
目錄....................................................................................iii
圖次....................................................................................vi
表次....................................................................................xi
第一章 緒論........................................................................1
1.1 研究動機......................................................................1
1.2 研究目的......................................................................2
1.3 本文組織......................................................................3
第二章 文獻回顧................................................................4
2.1 藻類之基本介紹..........................................................4
2.2 培養方式......................................................................5
2.2.1 光源...........................................................................5
(1)光波長效應....................................................................5
(2)光照強度........................................................................7
(3)光衰減效應....................................................................8
2.2.2 二氧化碳濃度...........................................................9
2.2.3 溫度...........................................................................9
2.2.4 營養鹽.......................................................................10
2.3 培養系統......................................................................10
2.3.1 開放式藻類培養系統..............................................10
2.3.2 密閉式藻類培養系統..............................................12
2.4 太陽日照相關理論探討.............................................14
2.4.1 天文因素..................................................................15
2.4.2 大氣因素..................................................................18
2.4.3 地表因素..................................................................21
第三章 材料與方法...........................................................22
3.1 直立式光生物反應器.................................................22
3.1.1 戶外受光情形概述..................................................23
3.1.2 光徑計算..................................................................27
3.1.3 光生物反應器上的太陽光能量損失情形..............35
3.1.4 光能輸入效率..........................................................42
3.1.5 陰影遮蔽計算..........................................................44
3.1.6 光衰減分析..............................................................48
3.1.7 藻液平均受光強度..................................................53
3.2案例研究......................................................................56
3.2.1相關參數設定...........................................................56
3.2.2單組光生物反應器之效能探討...............................58
3.2.4多組光生物反應器之效能探討...............................61
第四章 結論與建議...........................................................72
4.1結論...............................................................................72
4.2建議...............................................................................75
參考文獻.............................................................................77
附錄A 程式碼(MATLAB)....................................................83
太陽光光線軌跡模擬程式(圖3.1.8)..................................84
直立式光生物反應器透射(反射)率計算程式...................87
藻液平均光強度計算程式(圖3.1.23)................................91
單組光生物反應器的太陽輻射接收量計算程式..............94
多組光生物反應器的太陽輻射接收量計算程式..............103
附錄B 實際透射率比較 ......................................................114


圖次
圖2.1 光合作用效率與光照強度關係圖...................................................................7
圖2.3.1 開放式藻類培養系統.....................................................................................11
圖2.3.2(a) 發酵槽.............................................................................................................13
圖2.3.2 (b) 管狀光生化反應器.........................................................................................13
圖2.3.2 (c) 板狀光生化反應器.........................................................................................13
圖2.4.1 地球與太陽的相對位置.................................................................................15
圖2.4.2 地平座標系.....................................................................................................16
圖2.4.3 傾斜面上的太陽輻射量.................................................................................18
圖2.4.4 大氣質量示意圖.............................................................................................19
圖3.1.1 戶外受光示意圖.............................................................................................23
圖3.1.2 光生物反應器上方空間內表面遮光與液面晃動狀況.................................24
圖3.1.3 光生物反應器(PBR)及太陽高度角..............................................................25
圖3.1.4 波長400到750nm之間B. braunii、Chlorella sp.和C. littorale的折射率...26
圖3.1.5 折射光與反射光之間的關係.........................................................................27
圖3.1.6 圓柱式光生物反應器受太陽光照情形示意圖.............................................29
圖3.1.7 光生物反應器之入射光與折射光情形(上視圖)..........................................31
圖3.1.8(a) 外徑50cm 及厚度0.5cm時高度角0°時的光徑情形.................................33
圖3.1.8(b) 外徑50cm 及厚度0.5cm時高度角30°時的光徑情形...............................33
圖3.1.8(c) 外徑50cm 及厚度0.5cm時高度角60°時的光徑情形................................34
圖3.1.8(d) 外徑50cm 及厚度0.5cm時高度角90°時的光徑情形................................34
圖3.1.9(a) 光線由疏介質進入密介質時入射角與反射率關係.................................…36
圖3.1.9(b) 光線由密介質進入疏介質時入射角與反射率關係….............................…36
圖3.1.10(a) 透射率分布圖:第二介面的透射率(T_1)…………..................................…..38
圖3.1.10(b) 透射率分布圖:第二介面的透射率(T_2).......................................................38
圖3.1.11 透射率函數(T)與θ_s和 的關係……….................................................……39
圖3.1.12(a) 入射角(θ_1)在不同太陽高度角(θ_s)與α時的計算值(外徑50cm、厚度0.5cm).............................................................................................................40
圖3.1.12(b) 入射角(θ_3)在不同太陽高度角(θ_s)與 時的計算值(外徑50cm、厚度0.5cm)……................................................................................................….40
圖3.1.13 太陽光入射光生物反應器的位置(上視圖)…..............................................42
圖3.1.14 不同太陽高度角時入射光生物反應器的總入射效率….......................…..43
圖3.1.15 光線追蹤法在光生物反應器的應用……….........................................……44
圖3.1.16(a) 光生物反應器投影至地面後與太陽方位角的關係.................................…45
圖3.1.16(b) 光生物反應器投影至地面後與太陽方位角的關係….................................45
圖3.1.16(c) 光生物反應器投影至地面後與太陽方位角的關係.................................…46
圖3.1.17 國立中山大學海洋科學院漁業養殖試驗場(N 22° 37',E 120°15')…........48
圖 3.1.18 光感測器於PBR系統內支架上…….......................................................….50
圖3.1.19 養殖時間與濃度的關係.................................................................................51
圖3.1.20 不同位置的光強測量值.................................................................................51
圖3.1.21 光衰減係數(A)與濃度(c)的關係...................................................................52
圖3.1.22 圓內平均取點.................................................................................................54
圖3.1.23 外徑50cm時光衰減係數與藻液的平均衰減情形……...............................55
圖3.2.1(a) 春分、夏至、秋分及冬至四天的光強(w/m2)變化.......................................58
圖3.2.1(b) 春分、夏至、秋分及冬至四天的光強(μmol∙m^(-2)∙s^(-1))變化.................59
圖3.2.2 單組光生物反應器全年光能輸入情形.........................................................60
圖3.2.3 多組光生物反應器棋盤式擺放之示意圖.....................................................62
圖3.2.4(a) 春分當日不同時間點的光遮蔽情形.............................................................63
圖3.2.4(b) 夏至當日不同時間點的光遮蔽情形.............................................................63
圖3.2.4(c) 秋分當日不同時間點的光遮蔽情形.............................................................64
圖3.2.4(d) 冬至當日不同時間點的光遮蔽情形.............................................................64
圖3.2.5 一年之中各組光生物反應器受陰影的遮蔽損失(以無遮蔽時的輸入光能為基準)....................................................................................................................................65
圖3.2.6(a) Y軸與正北方夾角(θ:0°~360°)改變時每組光生物反應器藻液的平均接收光能(W∙hr/
參考文獻 References
1. 何洪林,於貴瑞,牛棟,(2003),複雜地形條件下的太陽資源輻射計算方法研究,Resources Science, Vol. 25 ,No. 1
2. 李永富,孟范平,李祥蕾,馬冬冬,(2013),光照對光生物反應器中微藻高密度光自養培養的影響,中國生物工程雜誌 ,2013,33(2):103-11
3. 李順晴,邱盈峰,童進義,彭志豪,(2012),高雄地區光電照明系統的特性分析,高雄師大學報 2012, 32, 75-100
4. 張世傑,(2009),太陽能技術在建築物應用之研究,碩士論文,國立雲林科技大學營建與物業管理研究所
5. 張原華,(2008),台灣地區日射量特性之研究,碩士論文,環球技術學院環境資源管理系
6. 陳琦玲,林正鈁,劉滄棽,(1994),台灣地區平地日射量之估算分析,中華農業研究,43卷,1期,頁77-92。
7. 陳逸倫,(2001) ,電腦模擬建築物自然採光與外部遮陽節約能源綜合評估之研究,碩士論文,淡江大學建築系碩士班
8. 陶政慷,(2005),三維地理資訊系統在都市建築日照之應用-以陰影遮蔽及太陽輻射效能分析為例,碩士論文,國立中山大學海洋環境及工程研究所
9. 彭彥凱,(2008),不同型式光纖與集光器搭配之效率測試,碩士論文,國立中央大學能源工程研究所
10. 程信雄,(2006),以碳酸鈉與碳酸氫鈉為碳源於連續式光生化反應器培養周氏扁藻,碩士論文,大葉大學環境工程學系碩士班
11. 黃振昌,宋易倫,(2003),Penman-Monteith方程式日射-日照關係地域性參數之建立與評估,「農水利科技研究發展」九十一年度成果發表討論會。屏東恆春
12. 溫志湧,謝祥暉,(2007),高效能導光板之微結構排列設計與分析,Journal of Science and Engineering Technology, Vol. 3, No. 3, pp. 67-79 (2007)
13. 經濟部能源局:2012年能源產業技術白皮書,台北:經濟部能源局
14. 鄭任軒,(2011),戶外大規模微藻養殖之可行性研究,碩士論文,國立中山大學海洋環境及工程研究所
15. Béchet Q., Shilton A., Guieysse B., (2013). Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnology Advances. Volume 31, Issue 8, Pages 1648–1663
16. Brindley C., Fernández F.G., Fernández-Sevilla J.M., (2011). Analysis of light regime in continuous light distributions in photobioreactors. Bioresource Technology . Volume 102, Issue 3, 3138–3148.
17. Camacho F.G., Gómeza A.C., Fernándeza F.G.A., Sevillaa J.F., Grimaa E. M., (1999). Use of concentric-tube airlift photobioreactors for microalgal outdoor mass cultures. Enzyme and Microbial Technology. Volume 24, Issues 3–4 , Pages 164–172.
18. Chisti Y., (2008). Biodiesel from microalgae beats bioethanol. Trends Biotechnol, pp. 126–131
19. Cuaresmaa M., Janssena M., Vílchezb C., Wijffelsa R. H., (2011). Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresource Technology. Volume 102, Issue 8, April 2011, Pages 5129–5137.
20. Hsieh C.H., Wu W.T., (2009). A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochemical Engineering Journal, Volume 46, Issue 3, 1 November 2009, Pages 300–305.
21. Hu R., Gan Z., Luo X., Zheng H. , Liu S., (2013), Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses. Optik - International Journal for Light and Electron Optics. Volume 124, Issue 19, Pages 3895–3897.
22. Hu, Q., (2004). Environmental effects on cell composition.Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science: 85-88.
23. Huang, C.C., Hung, J.J., Peng, S.H., Chen, C.N., (2012). Cultivation of a thermo-tolerant microalga in an outdoor photobioreactor: influences of CO2 and nitrogen sources on the accelerated growth. Bioresource Technology . 112, 228-233.
24. Kumar K., Sirasale A., Das D., (2013). Use of image analysis tool for the development of light distribution pattern inside the photobioreactor for the algal cultivation. Bioresource Technology ,Volume 143, 88–95.
25. Langhans R.W. & Tibbitts T.W., (1997), Plant Growth Chamber Handbook. North Central Regional Research Publication No. 340.
26. Lee E., Heng R.L., Pilon L., (2013). Spectral optical properties of selected photosynthetic microalgae producing biofuels. Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 114, January 2013, Pages 122–135.
27. Marshall J.S., Sala K., (2011). A stochastic Lagrangian approach for simulating the effect of turbulent mixing on algae growth rate in a photobioreactor. Chemical Engineering Science. Volume 66, Issue 3, 384–392
28. Maryam A.Q., Nitin R.M., Sahar T., Sara A.R., Tahir A.B., (2012). A Review of Effect of Light on Microalgae Growth. Proceedings of the World Congress on Engineering 2012. Vol IWCE 2012, London, U.K.
29. Masojidek J., Koblizek M., Torzillo G., (2004). Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Photosynthesis in microalgae, Blackwell Science: 20-33.
30. Mata T.M., Martins A.A., Caetano N.S., (2010). Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev, pp. 217–232
31. Mirón A. S., Gómez A. C., Camacho F. G., Grima E.M., Chisti Y., (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology. Volume 70, Issues 1–3, Pages 249–270
32. Molina E., Fernández J., Acién F.G., Chisti Y., (2001). Tubular photobioreactor design for algal cultures. Biochemical Engineering: Trends and Potentials. Volume 92, Issue 2, 28 December 2001, Pages 113–131
33. Morel A., Bricaud A., (1986). Inherent optical properties of algal cells including picoplankton: theoretical and experimental results. Can Bull Fisher Aquat Sci, pp. 521–560.
34. Murphy C.C., Allen D.T., (2011). Energy–water nexus for mass cultivation of algae. Environ Sci Technol, pp. 5861–5868
35. Ogbonna J.C., Yoshizawa, H. , Tanaka H., (2000). Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J. Appl. Phycol. 12:277–84.
36. Ono E., Cuello J.L., (2004). Design parameters of solar concentrating systems for CO2-mitigating algal photobioreactors . Energy. Volume 29, Issues 9–10, Pages 1651–1657
37. Pilon L., Berberoğlu H., Kandilian R., (2011). Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae. Journal of Quantitative Spectroscopy and Radiative Transfer ,Volume 112, Issue 17, Pages 2639–2660.
38. Quinn J., Winter L., Bradley T., (2011). Microalgae bulk growth model with application to industrial scale systems. Bioresource Technology, Volume 102, Issue 8, April 2011, Pages 5083–5092.
39. Sato T., Yamada D., Hirabayashi S., (2010). Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect. Energy Conversion and Management. Volume 51, Issue 6, Pages 1196–1201
40. Singh A., Olsen S.I., (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy, pp. 3548–3555
41. Sobczuk, T.M., Camacho, F.G., Rubio, F.C., Fernandez, F.G.A. & Grima, E.M., (1999). Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering, 67: 465-475.
42. Su W.W., Li J., Xu N.S., (2003). State and parameter estimation of microalgal photobioreactor cultures based on local irradiance measurement. Journal of Biotechnology. Volume 105, Issues 1–2, 9 October 2003, Pages 165–178.
43. Suh I.S., Lee S.B., (2002). A Light Distribution Model for an Internally Radiating Photobioreactor. Biotechnology and bioengineering, Vol. 82, No. 2
44. Tian W. X., Chiu W. K. S., (2006). Radiative absorption in an infinitely long hollow cylinder with Fresnel surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 98, Issue 2, Pages 249–263.
45. Yeh N., (2010). Analysis of spectrum distribution and optical losses under Fresnel lenses. Renewable and Sustainable Energy Reviews. Volume 14, Issue 9, Pages 2926–2935
46. Yun Y.S., Park J.M., (2001). Attenuation of monochromatic and polychromatic lights in Chlorella vulgaris suspensions. Applied Microbiology and Biotechnology, Volume 55, Issue 6, Pages 765-770
47. Zijffers J.W. F, Salim S., Janssen M., Tramper J., Wijffels R.H., (2008). Capturing sunlight into a photobioreactor: Ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chemical Engineering Journal, Volume 145, Issue 2, 15 December 2008, Pages 316–327.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code