Responsive image
博碩士論文 etd-0027115-113955 詳細資訊
Title page for etd-0027115-113955
論文名稱
Title
半滲透膜被動式採樣器應用於海洋環境中生物可利用性多環芳香烴之量測研究
The study of semipermeable membrane device for measuring the bioavailable PAHs in marine environment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-19
繳交日期
Date of Submission
2015-02-12
關鍵字
Keywords
台灣海峽、現地採樣速率、生物可利用性、高雄港、半滲透膜採樣裝置
Taiwan Strait, Bioavailability, Kaohsiung Harbor, SPMD, In situ sampling rate
統計
Statistics
本論文已被瀏覽 5740 次,被下載 33
The thesis/dissertation has been browsed 5740 times, has been downloaded 33 times.
中文摘要
採用主動式XAD-2樹脂吸附及被動式半滲透膜採樣裝置(Semipermeable membrane device, SPMD) 搭配確效參考化合物(Performance reference compounds, PRCs),測量河口水中生物可利用性多環芳香烴(Polycyclic aromatic hydrocarbons, PAHs)濃度。由XAD-2樹脂分析結果(Cw)顯示,表水和底水之總PAHs濃度分別為6.63和9.58 ng L−1;採用5個PRCs進行三次多項式權重回歸,取得最適之現地採樣速率(Sampling rate, Rs, L d−1),進而估算河口水中之生物可利用性PAHs濃度 (CSPMD):表水5.87 ng L−1及底水9.15 ng L−1;表水為湍流使其Rs值較高,底水較少湍流,Rs值主要以擴散為主,於高分子量PHAs呈下降趨勢。將CSPMD與Cw進行比較,二者在濃度分佈、環境指紋特徵來源及毒性當量結果相近;表水之PAHs為石油來源,而底水PAHs為燃燒性來源。
被動式半滲透膜裝置(SPMD)之現地採樣速率(Rs)與流率及溫度之關係進行研究,採用PRCs進行三次多項式權重回歸,取得現地之最適Rs值,進而估算海水中之生物可利用性PAHs濃度,並建置研究區域內的SPMDs設備經驗公式。Rs值未隨現地環境條件不同而有所改變(流速範圍5.3至40.5 cm sec–1及溫度範圍9.8至25.2°C),其結果與文獻上實驗室研究結果相異,該差異主要源自SPMD裝置之網籠效應,及各研究之流率和溫度範圍不同所致。使用現地條件下建置的經驗公式,未來不需添加PRC即可計算Rs值,並可用於長期海洋環境監測。由SPMD於台灣海峽兩岸佈署之生物可利用性PAHs結果顯示,東岸濃度介於0.281至0.611 ng L–1;西岸濃度介於0.438至1.10 ng L–1;兩岸之生物可利用性PAHs來源及毒性差異,主要為兩岸能源使用不同所致。
Abstract
Bioavailable polycyclic aromatic hydrocarbon (PAH) concentrations in the estuarine water of Kaohsiung Harbor were measured using XAD-2 resin and semipermeable membrane devices (SPMDs) calibrated with performance reference compounds (PRCs). The sum of the PAH concentrations from XAD-2 resin (Cw) in the surface and bottom water samples was 6.63 and 9.58 ng L–1, respectively. The variation in PAHs was higher in surface water. Cubic polynomial regressions using the sampling rate for five PRCs (Rs-PRC) provided estimated in situ sampling rates (Rs). The turbulent condition in the surface water was important in enhancing Rs; however, diffusion was relevant to the bottom water, which was less turbulent and showed decreasing Rs at high MW PAHs. The sum of the dissolved PAH concentrations estimated with the SPMDs (CSPMD) was 5.87 and 9.15 ng L–1 in the surface and bottom water samples, respectively. The surface and bottom water PAHs were derived from different sources.
The dependence of the in situ Rs of SPMDs passive sampler with the flow rate and temperature was also investigated. The in situ Rs values of SPMDs were obtained by using PRCs with weighted polynomial regression and were used to estimate the bioavailable PAH concentrations in the seawater. The empirical equation of the Rs value in the study area under the SPMDs equipment was established. The in situ Rs values were not found to vary with the flow rate (ranged 5.3 to 40.5 cm sec–1) and temperature (ranged 9.8 to 25.2°C). This field study is different from the literature reported laboratory study. The difference can be explained by cage effect and the different ranges of flow rate and temperature. This infers that PRCs could be exempted by using the established empirical equation under similar field conditions. Thus, use of SPMD empirical equations could benefit routine deployment in monitoring marine environment. Results of the SPMD deployment across the Taiwan Strait show that the sum of the bioavailable PAH concentrations ranged from 0.281 to 0.611 ng L–1 in the eastern side of Taiwan Strait and from 0.438 to 1.10 ng L–1 the western side. Distinct sources and toxicity of these bioavailable PAHs across the Taiwan Strait were observed and mainly resulted from different energy consumption.
目次 Table of Contents
審定書…………………………………………………………………… i
謝誌………………………………………………………………………ii
摘要…………………………………………………………………….. iv
Abstract…………………………………………………………………vi
Table of Contents……………………………………………………viii
List of Figures…………………………………………………………x
List of Tables………………………………………………………… xiii
Chapter 1 Review of the SPMD to estimate the bioavailable PAHs in
marine environment…………………………………………………….1
1.1. Bioavailable PAHs in marine environment…………………..1
1.2. Theory of SPMD……………………………………………….3
1.2.1. Models for SPMD-water exchange……………………………3
1.2.2. Rs sampling rate……………………………………………7
1.3. Objectives………………………………………………………9
Chapter 2 Measuring bioavailable PAHs in estuarine water using
semipermeable membrane devices with performance reference
compounds……………………………………………………………11
2.1. Introduction…………………………………………………11
2.2. Materials and methods………………………………………13
2.2.1. Chemicals………………………………………………. 13
2.2.2. Sampling…………………………………………………14
2.2.3. Analysis and sample processing……………………………16
2.2.4. Quantification and instrumental analysis……………………18
2.3. Results and discussion………………………………………20
2.3.1. Variation of PAHs in the water samples………………………20
2.3.2. PRC estimate of the field sampling rate constant……………..23
2.3.3. Comparison of PAH results from PRC-based SPMD and XAD-2..30
2.3.4. Principal component analysis and toxicity ……………………36
Chapter 3 The effects of flow rate and temperature on SPMD
measurements of the bioavailable PAHs in seawater………………41
3.1. Introduction…………………………………………………41
3.2. Materials and methods………………………………………43
3.2.1. Chemicals………………………………………………43
3.2.2. Sampling………………………………………………44
3.2.3. Analysis and sample processing……………………………46
3.2.4. Quantification and instrumental analysis…………………47
3.3. Result and discussion………………………………………49
3.3.1. PRCs estimated sampling rate………………………………49
3.3.2. Environmental parameters on sampling rate…………………53
3.3.3. Field empirical equation of the Rs value……………………57
3.3.4. The bioavailable PAH concentrations CSPMD…………………60
3.3.5. Principal component analysis………………………………63
Chapter 4 Conclusions and suggestions………………...…………67
4.1.Conclusions……………………………………………………67
4.2. Suggestions for future works………………………………69
References……………………………………………………………70
Appendix……………………………………………………………77
Curriculum vitae……………………………………………………….83
參考文獻 References
References
Benner, B.A. Gordon, G.E. Wise, S.A. Mobil sources of atmospheric polycyclic aromatic-hydrocarbons - a roadway tunnel study. Environ Sci Technol 1989;23:1269-1278.
Berrojalbiz, N. Dachs, J. Ojeda, M.J. Valle, M.C. Castro-Jimenez, J. Wollgast, J., et al. Biogeochemical and physical controls on concentrations of polycyclic aromatic hydrocarbons in water and plankton of the Mediterranean and Black Seas. Global Biogeochemical Cycles 2011;25.
Booij, K. Hofmans, H.E. Fischer, C.V. Van Weerlee, E.M. Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ Sci Technol 2003;37:361-366.
Booij, K. Sleiderink, H.M. Smedes, F. Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environ Toxicol Chem 1998;17:1236-1245.
Booij, K. Smedes, F. An improved method for estimating in situ sampling rates of nonpolar passive samplers. Environ Sci Technol 2010;44:6789-6794.
Booij, K. van Bommel, R. Mets, A. Dekker, R. Little effect of excessive biofouling on the uptake of organic contaminants by semipermeable membrane devices. Chemosphere 2006;65:2485-2492.
Budzinski, H. Jones, I. Bellocq, J. Pierard, C. Garrigues, P. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 1997;58:85-97.
Chang, W.-T. Fang, M.-D. Lee, C.-L. Brimblecombe, P. Measuring bioavailable PAHs in estuarine water using semipermeable membrane devices with performance reference compounds. Mar Pollut Bull 2014;89:376-383.
Couillard, C.M. Lee, K. Legare, B. King, T.L. Effect of dispersant on the composition of the water-accommodated fraction of crude oil and its toxicity to larval marine fish. Environ Toxicol Chem 2005;24:1496-1504.
CWBT. Central Weather Bureau Taiwan [on line] Available: http://www.cwb.gov.tw/V7/climate/marine_stat/wtmp.htm [accessed 2011] (in Chinese). 2011.
Djedjibegovic, J. Marjanovic, A. Sober, M. Skrbo, A. Sinanovic, K. Larssen, T., et al. Levels of persistent organic pollutants in the Neretva River (Bosnia and Herzegovina) determined by deployment of semipermeable membrane devices (SPMD). J Environ Sci Health Part B-Pestic Contam Agric Wastes 2010;45:128-136.
EIA. U.S. Energy Information Administration. Available: http://www.eia.gov/. 2014.
Ellis, G.S. Huckins, J.N. Rostad, C.E. Schmitt, C.J. Petty, J.D. Maccarthy, P. Evaluation lipid-containing semipermeable-membrane devices for monitoring organochlorine contaminants in the upper Mississippi river. Environ Toxicol Chem 1995;14:1875-1884.
Environment Canada Toxic ~substances in aquatic environment. Available: http://www.ec.gc.ca/eau-water/default.asp?lang=En&n=06F1403C-1.
Fang, M.D. Hsieh, P.C. Ko, F.C. Baker, J.E. Lee, C.L. Sources and distribution of polycyclic aromatic hydrocarbons in the sediments of Kaoping river and submarine canyon system, Taiwan. Mar Pollut Bull 2007;54:1179-1189.
Fang, M.D. Lee, C.L. Jiang, J.J. Ko, F.C. Baker, J.E. Diffusive exchange of PAHs across the air-water interface of the Kaohsiung Harbor lagoon, Taiwan. J Environ Manage 2012;110:179-187.
Flynn, G.L. Yalkowsky, S.H. Correlation and prediction of mass transport across membranes I: Influence of alkyl chain length on flux-determining properties of barrier and diffusant. J Pharm Sci 1972;61:838-852.
Gigliotti, C.L. Brunciak, P.A. Dachs, J. Glenn, T.R. Nelson, E.D. Totten, L.A., et al. Air-water exchange of polycyclic aromatic hydrocarbons in the New York-New Jersey, Usa, Harbor Estuary. Environ Toxicol Chem 2002;21:235-244.
Grabic, R. Jurcikova, J. Tomsejova, S. Ocelka, T. Halirova, J. Hypr, D., et al. Passive sampling methods for monitoring endocrine disruptors in the Svratka and Svitava rivers in the Czech Republic. Environ Toxicol Chem 2010;29:550-555.
Hamelink, J. Landrum, P.F. Bergman, H. Benson, W.H. Bioavailability : Physical, chemical, and biological interactions. p 93-108; 1994
Huang, H.C. Lee, C.L. Lai, C.H. Fang, M.D. Lai, I.C. Transboundary movement of polycyclic aromatic hydrocarbons (PAHs) in the Kuroshio Sphere of the western Pacific Ocean. Atmos Environ 2012;54:470-479.
Huckins, J.N. Petty, J.D. Booij, K. Monitors of organic chemicals in the environment : semipermeable membrane devices. New York: Springer; 2006
Huckins, J.N. Petty, J.D. Lebo, J.A. Almeida, F.V. Booij, K. Alvarez, D.A., et al. Development of the Permeability/Performance Reference Compound Approach for In Situ Calibration of Semipermeable Membrane Devices. Environ Sci Technol 2002a;36:85-91.
Huckins, J.N. Petty, J.D. Lebo, J.A. Almeida, F.V. Booij, K. Alvarez, D.A., et al. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. 2002b
Huckins, J.N. Prest, H.F. Petty, J.D. Lebo, J.A. Hodgins, M.M. Clark, R.C., et al. Overview and comparison of lipid-containing semipermeable membrane devices and oysters (Crassostrea gigas) for assessing organic chemical exposure. Environ Toxicol Chem 2004;23:1617-1628.
Jálová, V. Jarošová, B. Bláha, L. Giesy, J.P. Ocelka, T. Grabic, R., et al. Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters. Environment International 2013;59:372-383.
Jiang, J.J. Lee, C.L. Fang, M.D. Liu, J.T. Polycyclic aromatic hydrocarbons in coastal sediments of southwest Taiwan: An appraisal of diagnostic ratios in source recognition. Mar Pollut Bull 2009;58:752-760.
Lai, I.C. Lee, C.L. Zeng, K.Y. Huang, H.C. Seasonal variation of atmospheric polycyclic aromatic hydrocarbons along the Kaohsiung coast. J Environ Manage 2011;92:2029-2037.
Larsen, R.K. Baker, J.E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environ Sci Technol 2003;37:1873-1881.
Lohmann, R. Dapsis, M. Morgan, E.J. Dekany, V. Luey, P.J. Determining air-water exchange, spatial and temporal trends of freely dissolved PAHs in an urban estuary using passive polyethylene samplers. Environ Sci Technol 2011;45:2655-2662.
Louch, J. Allen, G. Erickson, C. Wilson, G. Schmedding, D. Interpreting Results from Field Deployments of Semipermeable Membrane Devices. Environ Sci Technol 2003;37:1202-1207.
Luellen, D.R. Shea, D. Calibration and field verification of semipermeable membrane devices for measuring polycyclic aromatic hydrocarbons in water. Environ Sci Technol 2002;36:1791-1797.
Marrucci, A. Marras, B. Campisi, S.S. Schintu, M. Using SPMDs to monitor the seawater concentrations of PAHs and PCBs in marine protected areas (Western Mediterranean). Mar Pollut Bull 2013;75:69-75.
Nisbet, I.C.T. LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 1992;16:290-300.
O'Brien, D. Komarova, T. Mueller, J.F. Determination of deployment specific chemical uptake rates for SPMD and PDMS using a passive flow monitor. Mar Pollut Bull 2012;64:1005-1011.
Oris, J.T. Hall, A.T. Tylka, J.D. Humic acids reduce the photo-induced toxicity of anthracene to fish and daphnia. Environ Toxicol Chem 1990;9:575-583.
Richardson, B.J. Tse, E.S.C. De Luca-Abbott, S.B. Martin, M. Lam, P.K.S. Uptake and depuration of PAHs and chlorinated pesticides by semi-permeable membrane devices (SPMDs) and green-lipped mussels (Perna viridis). Mar Pollut Bull 2005;51:975-993.
Su, C.-H. Liaw, C.-T. Oceanographical observation data – Annual report 2011 – Kaohsiung Harbor, Volume I. Taiwan: Institute of transportation, ministry of transportation and communications; 2013
Vrana, B. Schuurmann, G. Calibrating the uptake kinetics of semipermeable membrane devices in water: Impact of hydrodynamics. Environ Sci Technol 2002;36:290-296.
Yılmaz, A. Karacık, B. Henkelmann, B. Pfister, G. Schramm, K.W. Yakan, S.D., et al. Use of passive samplers in pollution monitoring: A numerical approach for marinas. Environment International 2014;73:85-93.
ZunZun.com. Online curve and surface fitting. Available: http://zunzun.com 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code