Responsive image
博碩士論文 etd-0027115-125516 詳細資訊
Title page for etd-0027115-125516
論文名稱
Title
單模光纖干涉儀應用於近場微透鏡光纖光場及波前之量測
Direct Near-Field Mode Field and Wavefront Measurements of Lensed Fiber Employing a Single-Mode Fiber Interferometer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-16
繳交日期
Date of Submission
2015-01-27
關鍵字
Keywords
單模光纖干涉儀、相位量測、模態匹配、近場量測、微透鏡光纖
mode match, phase measurement, SMF interferometer, lensed fiber, near-field measurement
統計
Statistics
本論文已被瀏覽 5752 次,被下載 0
The thesis/dissertation has been browsed 5752 times, has been downloaded 0 times.
中文摘要
光纖通訊常以半導體雷射作為發光元件,並以光纖作為傳輸途徑,而半導體雷射與光纖間常因存在模態不匹配的問題,導致二者在耦合時效果低落、耦光效率(Coupling efficiency)不佳。微透鏡光纖是在單模光纖端面作研磨加工,使光纖本身具有透鏡的效果,除了可大幅降低使用雷射耦光模組的成本外,亦可省去透鏡與光纖間對準(Alignment)之麻煩。
雷射與光纖耦合之高耦光效率要求,係二者之模態匹配,一般模態匹配為二者之光點(Spot size)大小與波前(Wavefront)相同。在光場量測中,遠場量測部份藉由CCD進行,可量測到微透鏡光纖的遠場呈直立橢圓的光場場型,隨距離拉遠其橢圓光場也漸漸變大;近場量測部份則利用探針光纖掃描經微透鏡光纖出來之光能量在不同位置的分佈,可實際看出微透鏡光纖確實有一聚焦的效果,場型在近場處由橫立橢圓變為圓,再轉為直立橢圓,並搭配高斯光束聚焦理論驗證量測結果。
在波前量測中,利用單模光纖干涉儀產生之干涉條紋分析不同位置的相對相位分佈,藉由量測不同平面的相對相位分佈,可以觀察經過微透鏡光纖後,光在空間中傳播的波前變化情形,實際量測發現經過微透鏡光纖後,光為曲面波傳播,並存在一透鏡聚焦的特性,同時運用高斯光束經透鏡理論驗證實際量測結果。
  本研究提供一確實的方法直接量測微透鏡光纖在空間中之光場以及波前的分佈情形,可充分了解所設計之微透鏡光纖模態特性,實驗證實其可與980nm雷射近場模態相匹配,即雷射與微透鏡光纖波前呈曲面波形分佈,而二者光場於近場4um呈橫立橢圓,達到模態匹配(Mode matching),進而提高耦光效率,對未來雷射與光纖間的光學設計上極具有產業利用性。
Abstract
Microlensed fiber is a kind of fiber that has a lens on its tip by using automatic grinding and fusing process on single-mode fibers (SMFs). It thus not only saves the cost on purchasing lenses but also has no need to worry about the alignment process between the lenses and the fibers. One of the major insertion losses between the laser diodes and SMFs or integrated optical waveguide is mode mismatching. Generally, optical mode match includes matching the spot size and wavefront between two components. This study proposes a technique to measure both the spot size and the wavefront distributions of the asymmetrically lensed fiber in free space. Through observing both the mode field and wavefront variation of the asymmetrically lensed fiber in free space and comparing them with the 980-nm high- power pumping laser diode, we found the best matching condition between the lensed fiber and the laser.
In the mode field measurement, a direct measurement of the mode field distribution of the output beam of the asymmetrically lensed fiber from the immediate vicinity to the outside was proposed and demonstrated by employing fiber-probe scanning. The results show that the spot sizes (mode fields) of the lensed fiber and the 980-nm laser diode were in good agreement with each other that the similar mode field distributions between microlens and laser were the same.
In the wavefront measurement, a method for direct measurement of the wavefront distribution of the asymmetrically lensed fiber from the immediate vicinity to the outside of the output beam by employing SMF based interferometer was proposed and demonstrated. From the result, the wavefront radius curvatures of the asymmetrically lensed fiber and the 980-nm laser diode were in good agreement with each other that the similar curved wavefront distributions between microlens and laser were mode matching. The theoretical Gaussian beam calculated results were compared to the measured results as a proof.
This study provides a complete method for measurements of both the spot size and the wavefront. These results may provide practical information for the design of micro-optic components for efficient coupling between SMFs and the light source.
目次 Table of Contents
中文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 文獻回顧 3
1.3.1雙曲面光纖微透鏡研製原理 3
1.3.2 雙曲面光纖微透鏡曲率設計 7
1.4 論文架構 8
第二章 理論基礎 9
2.1 單模光纖干涉儀原理 9
2.2 傅立葉分析 10
2.3 擬合方法 12
2.3.1 最小平方法 12
2.3.2 R square定義 14
2.4 高斯光束傳播理論 15
2.4.1 高斯光束定義 15
2.3.2 高斯光束經透鏡傳播 18
2.5 模態耦合理論 20
2.5.1 模態匹配 20
2.5.2 光纖與雷射間之耦合 21
第三章 微透鏡光纖光場量測 27
3.1 遠場光場量測 31
3.1.1 遠場光場量測架構 31
3.1.2 遠場光場量測結果與分析 34
3.2 近場光場量測 35
3.2.1 近場光場量測架構 35
3.2.2 近場光場量測結果與分析 37
第四章 微透鏡光纖波前量測 47
4.1 單模光纖干涉儀相位波前量測架構 47
4.2 微透鏡光纖短軸波前量測結果與分析 54
4.2.1 微透鏡光纖短軸1~10um波前分佈 54
4.2.2 微透鏡光纖短軸15~30um波前分佈 57
4.2.3微透鏡光纖短軸40~100um波前分佈 58
4.2.4微透鏡光纖短軸120~200um波前分佈 60
4.2.5微透鏡光纖短軸250~400um波前分佈 61
4.3 微透鏡光纖長軸波前量測結果與分析 63
4.3.1 微透鏡光纖長軸1~10um波前分佈 63
4.3.2 微透鏡光纖長軸15~30um波前分佈 65
第五章 結果與討論 68
參考文獻 71
參考文獻 References
[1] E. Desurvire, J. R. Simpson, and P. C. Becker, “High-Gain Erbium-Doped Traveling-Wave Fiber Amplifier,” Optics Letters, vol. 12, pp. 888-890, 1987.
[2] S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and Characterization of Low-Loss Optical Fibers Containing Rare-Earth Ions,” Journal of Lightwave Technology, vol. LT-4, pp. 870-876, 1986.
[3] W. J. Miniscalco, “Erbium-Doped Glasses for Fiber Amplifiers at 1500 nm,” Journal of Lightwave Technology, vol. 9, pp. 234-250, 1991.
[4] M. Yamada, M. Shimizu, T. Takeshita, M. Okayasu, M. Horiguchi, S. Uehara, and E. Sugita, “Er3+-Doped Fiber Amplifier Pumped by 0.98 µm Laser Diodes,” IEEE Photonics Technology Letters, vol. 1, pp. 422-424, 1989.
[5] M. Yamada, M. Shimizu, M. Okayasu, T. Takeshita, M. Horiguchi, S. Uehara, Y. Tachikawa, and E. Sugita, “Noise Characteristics of Er3+-Doped Fiber Amplifiers Pumped by 0.98 and 1.48 µm Laser Diodes,” IEEE Photonics Technology Letters, vol. 2, pp. 205-207, 1990.
[6] Y. Fu, N. K. A. Bryan, and O. N. Shing “Integrated Micro-Cylindrical Lens with Laser Diode for Single-Mode Fiber Coupling,” IEEE Photonics Technology Letters, vol. 12, pp. 1213-1215, 2000.
[7] R. E. Smith, C. T. Sullivan, G. A. Vawter, G. R. Hadley, J. R. Wendt, M. B. Snipes, and J. F. Klem, “Reduced Coupling Loss Using a Tapered Adiabatic-Following Fiber Coupler,” IEEE Photonics Technology Letters, vol. 8, pp. 1052-1054, 1996.
[8] S. Y. Huang, C. E. Gaebe, K. A. Miller, G. T. Wiand, and T. S. Stakelon, “High Coupling Optical Design for Laser Diodes with Large Aspect Ratio,” IEEE Transactions on Advanced Packaging, vol. 23, pp. 165-169, 2000.
[9] H. M. Presby and C. R. Giles, “Asymmetric Fiber Microlenses for Efficient Coupling to Elliptical Laser Beams,” IEEE Photonics Technology Letters, vol. 5, pp. 184-186, 1993.
[10] V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Yang, “Efficient Power Coupling from A 980-nm, Broad-Area Laser to A Single-Mode Fiber Using A Wedge-Shaped Fiber Endface,” Journal of Lightwave Technology, vol. 8, pp. 1313-1318, 1990.
[11] C. A. Edwards, H. M. Presby, and C. Dragone, “Ideal Microlens for Laser to Fiber Coupling,” Journal of Lightwave Technology, vol. 11, pp. 252-257, 1993.
[12] H. Yoda and K. Shiraishi, “A New Scheme of Lensed Fiber Employing A Wedge-Shaped Graded-Index Fiber Tip for the Coupling Between High-Power Laser Diodes and Single-Mode Fiber,” Journal of Lightwave Technology, vol. 19, pp. 1910-1917, 2001.
[13] H. Yoda and K. Shiraishi, “Cascaded GI-fiber Chips with A Wedge- Shaped End for the Coupling between An SMF and A High-Power LD with Large Astigmatism,” Journal of Lightwave Technology, vol. 20, pp. 1545-1548, 2002.
[14] Y. Irie, J. Miyokawa, A. Mugino and T. Shimizu, “Over 200 mW 980 nm Pump Laser Diode Module Using Optimized High-Coupling Lensed Fiber,” in Tech. Dig. OFC/IOOC'99, San Diego, CA, pp. 238-240, 1999.
[15] S. M. Yeh, Y. K. Lu, S. Y. Huang, H. H. Lin, C. H. Hsieh, and W.H.Cheng, “A Novel Scheme of Lensed Fiber Employing A Quadrangular- Pyramid-Shaped fiber Endface for Coupling between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, vol. 22, pp. 1374-1379, 2004.
[16] S. M. Yeh, S. Y. Huang, and Wood-Hi Cheng, “A New Scheme of Conical-Wedge-Shaped Fiber Endface for Coupling between High-Power Laser Diodes and Single-mode Fibers,” Journal of Lightwave Technology, vol. 23, pp. 1781-1786, 2005.
[17] Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric Elliptic-Cone-Shaped Microlens for Efficient Coupling to High-Power Laser Diodes,” Optics Express, vol. 14, pp. 1434-1442, 2006.
[18] 林啟中, “非軸對稱橢圓錐光纖透鏡之研製與特性,” 碩士論文, 2007.
[19] 林詠弦, “雙曲線光纖微透鏡曲率半徑熔燒製程及提高耦光效率之研究,” 碩士論文, 2011.
[20] Y. C. Huang, W.H. Hsieh, Y. C. Hsu, M. T. Sheen, Y.S. Lin, J. L. Chen, Y. C. Tsai, and W. H. Cheng, “New Scheme of Hyperboloid Microlens for High-Average and High-Yield Coupling High-Power Lasers to Single-Mode Fibers,” Journal of Lightwave Technology, vol. 31, No.11, 2013.
[21] 劉育達, “非對稱型光纖端面研磨機構設計之研究,” 碩士論文, 中山大學機械與機電工程學系, 2006.
[22] M. liyama, T. Kamiya, and H. Yanai, “Optical Field Mapping Using Single-Mode Optical Fibers,” Appl. Opt., vol. 17, pp. 1965-1917, June 1978.
[23] Joseph W. Goodman, “Introduction to Fourier Optics,” McGraw-Hill Inc., 1995.
[24] James S. Walker, “Fast Fourier transforms,” 2nd ed., Boca Raton, Fla. : CRC Press, 1996.
[25] Adof W. Lohmann, “Wavefront Reconstruction for Incoherent Object,” J. Opt. Soc. Am., 55:1555, 1965.
[26] Draper, N.R., Smith, H. “Applied Regression Analysis,” Wiley-Interscience., ISBN 0-471-17082-8., 1998.
[27] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” New York, NY, John Wiley and Sons, pp. 81-83, 1991.
[28] 呂昱寬, “波前量測應用於雷射與光纖耦合之研究,” 博士論文,國立中山大學光電工程研究所, 2008.
[29] Joseph T. Verdeyen, “Laser Electronics,” Third Edition, ISBN-13-978-0137066667., 1995.
[30] S. Teich, Fundamentals of Photonics, Canada, Wiley Interscience, Ch. 1-2, 1991.
[31] 劉育達, “雙變曲率光纖微透鏡之研究,” 博士論文, 國立中山大學光電工程研究所, 2011.
[32] Y. D. Liu, Y. C. Tsai, L. J. Wang, Y. K. Lu, M. C. Hsieh, S. M. Yeh, and W. H. Cheng, “New Scheme of Double-Variable-Curvature Microlens for Efficient Coupling High-Power Lasers to Single-Mode Fibers,” Journal of Lightwave Technology, vol. 29, pp. 898-904, 2011.
[33] 王儷瑾, “雙變曲率光纖微透鏡曲率半徑及偏心量影響耦光效率之研究,” 碩士論文, 2011.
[34] Y. K. Lu, Pochi Yeh and W. H Cheng, “Direct Near-Field Phase Measurement of Laser Diodes Employing a Single-Mode Fiber Interferometer,” Optics Letters, vol. 35, No.21, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.91.203.238
論文開放下載的時間是 校外不公開

Your IP address is 3.91.203.238
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code