Responsive image
博碩士論文 etd-0027115-154427 詳細資訊
Title page for etd-0027115-154427
論文名稱
Title
Lysophosphatidic acid 受器活化對降低鼠腦缺血性中風體積之訊息傳遞探討
Signal Transduction Mechanisms Responsible for the Protective Effects of Lysophosphatidic Acid Receptor Activation that Reduces the Ischemic Infarct Volume in Rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-08-29
繳交日期
Date of Submission
2015-01-27
關鍵字
Keywords
細胞訊息傳導路徑、缺血性中風、lysophosphatidic acid接受器、細胞凋亡
ischemic stroke, apoptosis, lysophosphatidic acid receptor, signal transduction
統計
Statistics
本論文已被瀏覽 5709 次,被下載 125
The thesis/dissertation has been browsed 5709 times, has been downloaded 125 times.
中文摘要
Lysophosphatidic acids (LPAs) 為一具有訊息傳導特性的簡單的磷脂質。當其接受器 (LPA receptor;LPAR) 被經內生性或外生性受體 (ligands) 活化後,可以引發多種細胞內訊息傳遞路徑以調控細胞的生理功能。於中樞神經系統 (CNS) 中,LPAR的活化可引發細胞凋亡或促進細胞存活等二相互牴觸之生理反應。我們於之前的研究已經指出,活化因永久性中大腦動脈梗塞 (permanent middle cerebral artery occlusion;pMACO) 所導致缺血性中風的大鼠腦內LPA接受器,可降低腦損傷體積,並提高動物於中風24小時後的存活率。然而,介導此LPA接受器活化而形成的保護作用的細胞內訊息傳遞機制,目前尚未被釐清。
於本研究中,我們以之前建立的大鼠腦缺血性中風模式為基礎,並以LPA接受器之同效劑VPC31143 (VPC) 作為治療藥劑,於雄性Sprague-Dawley大鼠接受pMACO手術30分鐘後,以腹腔注射方式投以0.8 mg/kg之VPC作為治療藥劑。在pMCAO手術後4、8、與24小時,以Garcia score評量表評估pMCAO組與pMCAO後接受VPC治療之大鼠 (pMCAO+VPC組) 的運動與感覺功能,並計算大鼠之中風腦體積 (infarct volume) 與中風腦體積比 (infarct brain volume ratio),並萃取半球腦片之蛋白質,以西方墨點法來研究經LPA接受器活化的細胞訊息傳遞相關蛋白的表現,並探討LPA接受器可能的保護機制。
實驗結果顯示,LPA接受器經VPC活化後,可減輕由pMCAO造成大鼠的運動與感覺功能的損失,並降低腦中風梗塞的腦體積比。從西方墨點法的分析中,我們發現經由VPC的治療,可降低caspase 3、caspase 8、caspase 9、磷酸化的 p-38 MAPK等促進細胞凋亡的訊息蛋白質於在中風腦組織內的表現。VPC的治療亦同時增加了PI3K、Akt、p-42/44 MAPK等拮抗細胞凋亡的訊息蛋白的磷酸化,並同時增加了粒線體蛋白Bad的磷酸化。此結果顯示,中風鼠腦內的LPA接受器的活化,可活化PI3K及其下游的Akt、MAPK及其他訊息通路傳遞,並增加粒線體內抗凋亡蛋白質的表現,以減低中風後腦組織的細胞凋亡的反應,而達到保護腦組織的目的。
Abstract
Lysophosphatidic acids (LPAs) belong to a class of simple phospholipids that bears signal transduction property. Upon activation by endogenous or exogenous ligands, LPA receptor (LPAR) could evoke various signal transduction cascades that regulate a wide variety of cellular physiology. In the central nervous system (CNS), activation of LPAR could either trigger the signals for apoptosis or evoke the signal transductions that promote the cell survival. In our previous studies, we have morphometrically and functionally demonstrated the protective effects of VPC31143, an LPAR agonist, against the effects of permanent middle cerebral artery occlusion (pMACO) in a rat model of ischemic stroke. Nevertheless, the intracellular signal transduction mechanisms responsible for such protective effects have yet to be revealed.
In this study we utilized the previously established rat model of ischemic stroke as the study foundation. Male Sprague-Dawley rats were intraperitoneally injected with 0.8 mg/kg of VPC as the therapeutic agent 30 minutes after pMCAO surgery. The motor and sensory functions of rats receiving VPC treatment (pMCAO+VPC group) and those without drug treatment (pMCAO group) were evaluated using Garcia score system at 4, 8, and 24 hrs after the pMCAO surgery. The infarct brain volume and infarct brain volume ratio of these rats were measured and calculated. The regulation of signal transduction proteins VPC-mediated LPAR activation in the ischemic rat brain hemisphere were studied with Western blot and compared to those in the ischemic hemisphere in the absence of VPC.
The study results showed that LPAR activation by VPC attenuated the loss in sensory and motor functions, while concurrently reduced the infarcted brain volume ratio. The Western blot results showed that VPC treatment reduced the expression of pro-apoptotic signal proteins such as caspase 3, caspase 8, caspase 9, and phosphorylated p-38 MAPK in the ischemic hemisphere. VPC treatment also up-regulated the expression of the anti-apoptotic proteins such as PI3K, Akt, and p-42/44 MAPK in the ischemic brain, and also increased the expression of phosphorylated Bad, a mitochondrial protein critical to the integrity of this organelle. Together, the results indicated that actication of LPAR with VPC would trigger the signal pathway of PI3K as well as its downstream signal protein Akt and MAPKs, as well as other signal transduction cascades, and concurrently increase the anti-apoptotic protein expression in mitochondria. Together, these cellular mechanisms could reduce the extent of apoptosis in the ischemic brain tissues and accomplished the goal of brain protection.
目次 Table of Contents
論文審定書… i
致謝………… ii
中文摘要…… iii
英文摘要…… iv
目錄………… vi
圖目錄……… vii
前言………… 1
材料與方法… 7
結果與討論… 13
結論………… 23
參考文獻…… 24
圖…………… 29
附錄………… 57
參考文獻 References
1. 邱弘毅, 腦中風之現況與流行病學特徵. 腦中風會訊, 2008. 15(3): p. 2-4.
2. Akpan, N. and C.M. Troy, Caspase inhibitors: prospective therapies for stroke. The Neuroscientist, 2013. 19(2): p. 129-136.
3. Lin, T.N., et al., Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke, 1993. 24(1): p. 117-21.
4. Kahle, K.T., et al., Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology, Vol. 24. 2009. 257-265.
5. Elmore, S., Apoptosis: A review of programmed cell death. Toxicologic Pathology, 2007. 35(4): p. 495-516.
6. Doyle, K. P., et al, Mechanisms of ischemic brain damage. Neuropharmacology, 2008. 55(3): p. 310-318.
7. Broughton, B.R.S., et al, Apoptotic mechanisms after cerebral ischemia. Stroke, 2009. 40(5): p. e331-e339.
8. Graham, S.H. and J. Chen, Programmed cell death in cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism, 2001. 21(2): p. 99-109.
9. Tsujimoto, Y., Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes to Cells, 1998. 3(11): p. 697-707.
10. 譚健民, 粒線體與細胞凋亡. 生物醫學, 2009. 第二卷(第三期): p. 250-268.
11. Gross, A., et al, BCL-2 family members and the mitochondria in apoptosis. Genes & Development, 1999. 13(15): p. 1899-1911.
12. Miller, D.K., Activation of apoptosis and its inhibition. Annals of the New York Academy of Sciences, 1999. 886(1): p. 132-157.
13. Zarubin, T. and J. Han, Activation and signaling of the p38 MAP kinase pathway. Cell Research, 2005. 15(1): p. 11-18.
14. Xu, W., et al., Astragaloside IV ameliorates renal fibrosis via the inhibition of MAPKs and anti-apoptosis in vivo and in vitro. Journal of Pharmacology and Experimental Therapeutics, 2014.
15. Liang, K., et al., Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. Journal of the Neurological Sciences, 2014. 344(1–2): 100-104
16. Zhu, Y., et al., A-769662 protects osteoblasts from hydrogen dioxide-induced apoptosis through activating of AMP-activated protein kinase (AMPK). International Journal of Molecular Sciences, 2014. 15(6): p. 11190-11203.
17. Hasegawa, Y., et al., Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke, 2010. 41(2): p. 368-374.
18. de Vries, B., et al., Lysophosphatidic acid prevents renal ischemia-reperfusion injury by inhibition of apoptosis and complement activation. The American Journal of Pathology, 2003. 163(1): p. 47-56.
19. Choi, J.W., et al., LPA receptors: subtypes and biological actions. Annual Review of Pharmacology and Toxicology, 2010. 50(1): p. 157-186.
20. Anliker, B. and J. Chun, Lysophospholipid G protein-coupled receptors. Journal of Biological Chemistry, 2004. 279(20): p. 20555-20558.
21. Mutoh, T. and J. Chun, Lysophospholipid activation of G protein-coupled receptors. Lipids in Health and Disease, 2008, p. 269-297.
22. Rao, T.S., et al., Pharmacological characterization of lysophospholipid receptor signal transduction pathways in rat cerebrocortical astrocytes. Brain Research, 2003. 990(1–2): p. 182-194.
23. Weiner, J.A. and J. Chun, Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proceedings of the National Academy of Sciences, 1999. 96(9): p. 5233-5238.
24. Herr, D.R. and J. Chun, Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Current Drug Targets, 2007. 8(1): p. 155-167.
25. Noguchi, K., et al., Lysophosphatidic acid (LPA) and its receptors. Current Opinion in Pharmacology, 2009. 9(1): p. 15-23.
26. Pagès, C., et al., Lysophosphatidic acid synthesis and release. Prostaglandins & Other Lipid Mediators, 2001. 64(1–4): p. 1-10.
27. Fueller, M., et al., Activation of human monocytic cells by lysophosphatidic acid and sphingosine-1-phosphate. Cellular Signalling, 2003. 15(4): p. 367-375.
28. Smyth, S.S., et al., Fibrinogen binding to purified platelet glycoprotein IIb-IIIa (integrin alpha IIb beta 3) is modulated by lipids. Journal of Biological Chemistry, 1992. 267(22): p. 15568-15577.
29. N. Haserück, et al., The plaque lipid lysophosphatidic acid stimulates platelet activation and platelet-monocyte aggregate formation in whole blood: involvement of P2Y1 and P2Y12 receptors. Blood, Vol. 103. 2004. 2585-2592.
30. Hu, Y.-L., et al., Dual mechanisms for lysophosphatidic acid stimulation of human ovarian carcinoma cells. Journal of the National Cancer Institute, 2003. 95(10): p. 733-740.
31. So, J., et al., Lysophosphatidic acid enhances epithelial ovarian carcinoma invasion through the increased expression of interleukin-8. Gynecologic Oncology, 2004. 95(2): p. 314-322.
32. Brusevold, I., et al., Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells. BMC Cancer, 2014. 14(1): p. 432.
33. Yang, M., et al., G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the β-catenin pathway. Proceedings of the National Academy of Sciences, 2005. 102(17): p. 6027-6032.
34. Yung, Y.C., et al., LPA receptor signaling: pharmacology, physiology, and pathophysiology. Journal of Lipid Research, 2014. 55(7): p. 1192-1214.
35. Meyer zu Heringdorf, D. and K.H. Jakobs, Lysophospholipid receptors: Signalling, pharmacology and regulation by lysophospholipid metabolism. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2007. 1768(4): p. 923-940.
36. Lin, M.-E., et al., Lysophosphatidic acid (LPA) receptors: Signaling properties and disease relevance. Prostaglandins & Other Lipid Mediators, 2010. 91(3–4): p. 130-138.
37. Contos, J.J.A., et al., Lysophosphatidic acid receptors. Molecular Pharmacology, 2000. 58(6): p. 1188-1196.
38. 蔡秉儒, 由lysophosphatidic acid受器活化導致大鼠大腦中風體積之減少. 中山大學生物科學所碩士論文, 2011.
39. Spratt, N.J., et al., Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. Journal of Neuroscience Methods, 2006. 155(2): p. 285-290.
40. Kitagawa, K., et al., Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice evaluation of the patency of the posterior communicating artery. Journal of Cerebral Blood Flow & Metabolism, 1998. 18(5): p. 570-9.
41. Garcia, J.H., et al., Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation. Stroke, 1995. 26(4): p. 627-635.
42. Ballabh, P., et al., The blood–brain barrier: an overview: Structure, regulation, and clinical implications. Neurobiology of Disease, 2004. 16(1): 1-13.
43. Huang, J., et al., Inflammation in stroke and focal cerebral ischemia. Surgical Neurology, 2006. 66(3): p. 232-245.
44. Kehlen, A., et al., IL-1β- and IL-4-induced down-regulation of autotaxin mRNA and PC-1 in fibroblast-like synoviocytes of patients with rheumatoid arthritis (RA). Clinical & Experimental Immunology, 2001. 123(1): p. 147-154.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code