Responsive image
博碩士論文 etd-0027115-161310 詳細資訊
Title page for etd-0027115-161310
論文名稱
Title
導電凝膠劑在溶液中的相行為及電子轉移性質之模擬研究
A Computational Study of Gel Behavior and Electron Transfer Properties of Conductive Gelator in Solution
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-23
繳交日期
Date of Submission
2015-01-27
關鍵字
Keywords
量子力學、分子動力學、電子轉移、相行為、導電凝膠
quantum mechanics, molecular dynamics, conductive gel, gel behavior, electron transfer
統計
Statistics
本論文已被瀏覽 5800 次,被下載 44
The thesis/dissertation has been browsed 5800 times, has been downloaded 44 times.
中文摘要
本研究利用電腦模擬研究含二茂鐵小分子導電凝膠劑 ferrocenyl-dicholesteryl N-formamidoformamide (Fc-LS2) 及 ferrocenyl cholesteryl N-formanidoformamide (Fc-LS) 在溶液中的相行為及電子轉移性質。利用分子動力模擬將 Fc-LS2 及 Fc-LS 分別放入甲醇與丙醇及甲醇與戊醇中,模擬凝膠劑分子在溶液中的的構象變化及相轉變情形。結果顯示,Fc-LS2 分子在丙醇溶液中及 Fc-LS 分子在戊醇溶液中均會形成凝膠,而 Fc-LS2 及Fc-LS 在甲醇溶液中則會形成聚集沉澱。溶劑的擴散係數說明了 Fc-LS2/1-propanol 及 Fc-LS/1-pentanol 具有凝膠的行為,而在Fc-LS2/methanol 及 Fc-LS/methanol 中則是像液體。此外,結合分子動力學及量子力學來計算凝膠系統的電子轉移性質。結果指出形成凝膠的體系有較大的電子轉移性質,凝膠分子間與溶液之間的氫鍵均會改善電子轉移特性。最後,此模擬方法有助於改善小分子導電凝膠劑發展,並對於模擬凝膠體系提供一個新的方向。
Abstract
Molecular dynamics (MD) simulations were carried out to investigate the conformations of ferrocenyl-dicholesteryl N-formamidoformamide (Fc-LS2) and ferrocenyl cholesteryl N-formanidoformamide (Fc-LS) gelator in solvent of methanol 1-propanol, and 1-pentanol. Fc-LS2 and Fc-LS comprises ferrocene and cholesteryl units linked by a biocompatible N-formamidoformamide peptide unit. Our results showed that Fc-LS2 and Fc-LS formed a gel with 1-propanol and 1-pentanol respectively but not with methanol. Calculation of diffusion coefficients showed that the Fc-LS2/1-propanol and Fc-LS/1-pentanol system behave like a gel over a wide range of temperatures, while the Fc-LS2/methanol and Fc-LS/methanol system behaves more like a liquid.
Electron transfer properties of the Fc-LS2/methanol, Fc-LS2/1-propanol, Fc-LS/methanol and Fc-LS/1-pentanol systems were also investigated by quantum mechanical (QM) calculations. The results indicated that the electron transfer integrals of the Fc-LS2/1-propanol and Fc-LS/1-pentanol system are larger than those of the Fc-LS2/methanol and Fc-LS/methanol system. The amino acid linkages contribute to improved charge-transport properties. This suggests that the former is a favorable system for electron transport. Finally, our study demonstrated that the combination of MD and QM represents an effective approach to investigate conductive-gel systems.
目次 Table of Contents
Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents vi
List of Figures ix
List of Tables xiii

Chapter 1. Introduction 1
1.1 Low Molecular-Mass Organic Gelators 2
1.2 Conductive Gels 4
1.3 Cholesteryl-Ferrocenyl-Amino Acid Gelators 6
Chapter 2. Computer Simulation Methods 8
2.1 Molecular Dynamics Simulation 9
2.1.1 Equations of Motion and Verlet Leapfrog Integration 9
2.1.2 Force Field 10
2.1.3 Thermodynamic Ensembles 12
2.1.4 Periodic Boundary Condition 13
2.1.5 Mean Square Displacement, Diffusion Coefficient, and Radial Distribution Function 15
2.2 Quantum Mechanics Calculation 17
2.2.1 Density Functional Theory 18
2.2.2 Semi-Empirical Methods 19
Chapter 3. Conformational Properties of Gelators in Solvents 21
3.1 Introduction 21
3.2 Simulation Method 23
3.3 The Initial Structures of Fc-LS2 and Fc-LS Gelators 26
3.4 Molecular Dynamics Simulation for Fc-LS2 Gelator Systems 27
3.4.1 The End-to-End Distance and Angle Distribution of Fc-LS2 Molecules 30
3.4.2 The Intermolecular Relationship of Fc-LS2 Gelators 32
3.4.3 The Intermolecular Relationship of Fc-LS2 Gelators and Solvents 34
3.5 Molecular Dynamics Simulation for Fc-LS Gelator Systems 37
3.5.1 The Intermolecular Relationship of Fc-LS Gelators 40
3.5.2 The Intermolecular Relationship of Fc-LS Gelators and solvents 42
3.6 Conclusion 44
Chapter 4. Gel Behavior in the Gelator/Solvent System 46
4.1 Introduction 46
4.2 Simulation Method 47
4.3 Percentage of Solvent in Gelator System 48
4.4 Mobility of Solvent in Different Systems 50
4.5 Phase Behavior of Fc-LS2 and Fc-LS Systems 52
4.6 Conclusion 58
Chapter 5. Electron Transfer Properties of Fc-LS2 and Fc-LS systems 59
5.1 Introduction 59
5.2 Simulation Method 60
5.3 Electron Transfer Theory 61
5.3.1 Einstein Relation 61
5.3.2 Marcus Theory 62
5.3.3 Transfer Integral 64
5.4 Charge Transfer Properties of Fc-LS2 and Fc-LS systems 67
5.4.1 Electron Transfer Integral of Fc-LS2 System 69
5.4.2 Electron Transfer Integral of Fc-LS System 72
5.5 Conclusion 74
Chapter 6. Summary 76
References 78
參考文獻 References
References
(1) Flory, P. J. Introductory lecture. Faraday Discussions of the Chemical Society 1974, 57, 7-18.
(2) Gelbart, W. M.; BenShaul, A. The 'new' science of 'complex fluids'. Journal of Physical Chemistry 1996, 100, 13169-13189.
(3) Terech, P.; Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chemical Reviews 1997, 97, 3133-3159.
(4) George, M.; Weiss, R. G. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Accounts of Chemical Research 2006, 39, 489-497.
(5) Wang, R.; Geiger, C.; Chen, L. H.; Swanson, B.; Whitten, D. G. Direct observation of sol-gel conversion: The role of the solvent in organogel formation. Journal of the American Chemical Society 2000, 122, 2399-2400.
(6) Morris, K. L.; Chen, L.; Raeburn, J.; Sellick, O. R.; Cotanda, P.; Paul, A.; Griffiths, P. C.; King, S. M.; O'Reilly, R. K.; Serpell, L. C.; Adams, D. J. Chemically programmed self-sorting of gelator networks. Nature Communications 2013, 4.
(7) Haines, S. R.; Harrison, R. G. Novel resorcinarene-based ph-triggered gelator. Chemical Communications 2002, 2846-2847.
(8) George, M.; Weiss, R. G. Primary alkyl amines as latent gelators and their organogel adducts with neutral triatomic molecules. Langmuir 2003, 19, 1017-1025.
(9) Patel, A. R.; Remijn, C.; Heussen, P. C. M.; den Adel, R.; Velikov, K. P. Novel low-molecular-weight-gelator-based microcapsules with controllable morphology and temperature responsiveness. Chemphyschem 2013, 14, 305-310.
(10) Tong, X.; Zhao, Y.; An, B.-K.; Park, S. Y. Fluorescent liquid-crystal gels with electrically switchable photoluminescence. Advanced Functional Materials 2006, 16, 1799-1804.
(11) Jadhav, S. R.; Chiou, B.-S.; Wood, D. F.; DeGrande-Hoffman, G.; Glenn, G. M.; John, G. Molecular gels-based controlled release devices for pheromones. Soft Matter 2011, 7, 864-867.
(12) van Bommel, K. J. C.; van der Pol, C.; Muizebelt, I.; Friggeri, A.; Heeres, A.; Meetsma, A.; Feringa, B. L.; van Esch, J. Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture. Angewandte Chemie-International Edition 2004, 43, 1663-1667.
(13) van Bommel, K. J. C.; Stuart, M. C. A.; Feringa, B. L.; van Esch, J. Two-stage enzyme mediated drug release from lmwg hydrogels. Organic & Biomolecular Chemistry 2005, 3, 2917-2920.
(14) Diring, S.; Camerel, F.; Donnio, B.; Dintzer, T.; Toffanin, S.; Capelli, R.; Muccini, M.; Ziessel, R. Luminescent ethynyl-pyrene liquid crystals and gels for optoelectronic devices. Journal of the American Chemical Society 2009, 131, 18177-18185.
(15) Rajamalli, P.; Prasad, E. Low molecular weight fluorescent organogel for fluoride ion detection. Organic Letters 2011, 13, 3714-3717.
(16) Sangeetha, N. M.; Maitra, U. Supramolecular gels: Functions and uses. Chemical Society Reviews 2005, 34, 821-836.
(17) Chen, J.; McNeil, A. J. Analyte-triggered gelation: Initiating self-assembly via oxidation-induced planarization. Journal of the American Chemical Society 2008, 130, 16496-+.
(18) King, K. N.; McNeil, A. J. Streamlined approach to a new gelator: Inspiration from solid-state interactions for a mercury-induced gelation. Chemical Communications 2010, 46, 3511-3513.
(19) Lin, Y. C.; Weiss, R. G. A novel gelator of organic liquids and the properties of its gels. Macromolecules 1987, 20, 414-417.
(20) Lin, Y. C.; Kachar, B.; Weiss, R. G. Novel family of gelators of organic fluids and the structure of their gels. Journal of the American Chemical Society 1989, 111, 5542-5551.
(21) Song, X. D.; Geiger, C.; Farahat, M.; Perlstein, J.; Whitten, D. G. Aggregation of stilbene derivatized fatty acids and phospholipids in monolayers and vesicles. Journal of the American Chemical Society 1997, 119, 12481-12491.
(22) Llusar, M.; Sanchez, C. Inorganic and hybrid nanofibrous materials templated with organogelators. Chemistry of Materials 2008, 20, 782-820.
(23) Kawano, S.; Fujita, N.; Shinkai, S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. Journal of the American Chemical Society 2004, 126, 8592-8593.
(24) Xue, M.; Liu, K.; Peng, J.; Zhang, Q.; Fang, Y. Novel dimeric cholesteryl-based a(ls)(2) low-molecular-mass gelators with a benzene ring in the linker. Journal of Colloid and Interface Science 2008, 327, 94-101.
(25) Lu, L. D.; Cocker, T. M.; Bachman, R. E.; Weiss, R. G. Gelation of organic liquids by some 5 alpha-cholestan-3 beta-yl n-(2-aryl)carbamates and 3 beta-cholesteryl 4-(2-anthrylamino)butanoates. How important are h-bonding interactions in the gel and neat assemblies of aza aromatic-linker-steroid gelators? Langmuir 2000, 16, 20-34.
(26) Zinic, M.; Vogtle, F.; Fages, F. In Low molecular mass gelators: Design, self-assembly, function; Fages, F., Ed. 2005; Vol. 256, p 39-76.
(27) Kerres, J. A. Development of ionomer membranes for fuel cells. Journal of Membrane Science 2001, 185, 3-27.
(28) Otero, T. F.; Sansinena, J. M. Soft and wet conducting polymers for artificial muscles. Advanced Materials 1998, 10, 491-+.
(29) Moriyama, M.; Mizoshita, N.; Yokota, T.; Kishimoto, K.; Kato, T. Photoresponsive anisotropic soft solids: Liquid-crystalline physical gels based on a chiral photochromic gelator. Advanced Materials 2003, 15, 1335-+.
(30) Samha, H.; Dearmond, M. K. Multilayer sol-gel films using the langmuir-blodgett deposition method. Langmuir 1993, 9, 1927-1929.
(31) Arya, A.; Krull, U. J.; Thompson, M.; Wong, H. E. Langmuir-blodgett deposition of lipid films on hydrogel as a basis for biosensor development. Analytica Chimica Acta 1985, 173, 331-336.
(32) Gupta, G.; Rathod, S. B.; Staggs, K. W.; Ista, L. K.; Oucherif, K. A.; Atanassov, P. B.; Tartis, M. S.; Montano, G. A.; Lopez, G. P. Cvd for the facile synthesis of hybrid nanobiomaterials integrating functional supramolecular assemblies. Langmuir 2009, 25, 13322-13327.
(33) Ding, L.; Fang, Y.; Blanchard, G. J. Probing the effects of cholesterol on pyrene-functionalized interfacial adlayers. Langmuir 2007, 23, 11042-11050.
(34) Jung, J. H.; John, G.; Masuda, M.; Yoshida, K.; Shinkai, S.; Shimizu, T. Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure. Langmuir 2001, 17, 7229-7232.
(35) Gronwald, O.; Snip, E.; Shinkai, S. Gelators for organic liquids based on self-assembly: A new facet of supramolecular and combinatorial chemistry. Current Opinion in Colloid & Interface Science 2002, 7, 148-156.
(36) Smalley, J. F.; Feldberg, S. W.; Chidsey, C. E. D.; Linford, M. R.; Newton, M. D.; Liu, Y. P. The kinetics of electron-transfer through ferrocene-terminated alkanethiol monolayers on gold. Journal of Physical Chemistry 1995, 99, 13141-13149.
(37) Dai, L. X.; Tu, T.; You, S. L.; Deng, W. P.; Hou, X. L. Asymmetric catalysis with chiral ferrocene ligands. Accounts of Chemical Research 2003, 36, 659-667.
(38) Krishnan, A.; Pal, S. K.; Nandakumar, P.; Samuelson, A. G.; Das, P. K. Ferrocenyl donor-organic acceptor complexes for second order nonlinear optics. Chemical Physics 2001, 265, 313-322.
(39) Ihara, T.; Maruo, Y.; Takenaka, S.; Takagi, M. Ferrocene-oligonucleotide conjugates for electrochemical probing of DNA. Nucleic Acids Research 1996, 24, 4273-4280.
(40) Izutsu, K. In Electrochemistry in nonaqueous solutions; Wiley-VCH Verlag GmbH & Co. KGaA: 2003.
(41) Perez, L.; Garcia-Martinez, J. C.; Diez-Barra, E.; Atienzar, P.; Garcia, H.; Rodriguez-Lopez, J.; Langa, F. Electron transfer in nonpolar solvents in fullerodendrimers with peripheral ferrocene units. Chemistry-a European Journal 2006, 12, 5149-5157.
(42) Walker, G. C.; Akesson, E.; Johnson, A. E.; Levinger, N. E.; Barbara, P. F. Interplay of solvent motion and vibrational-excitation in electron-transfer kinetics - experiment and theory. Journal of Physical Chemistry 1992, 96, 3728-3736.
(43) Kavarnos, G. J.; Turro, N. J. Photosensitization by reversible electron-transfer - theories, experimental-evidence, and examples. Chemical Reviews 1986, 86, 401-449.
(44) Masuda, Y.; Shimizu, C. Solvent effect on intramolecular electron transfer rates of mixed-valence biferrocene monocation derivatives. Journal of Physical Chemistry A 2006, 110, 7019-7027.
(45) Xu, H.; Song, J.; Tian, T.; Feng, R. Estimation of organogel formation and influence of solvent viscosity and molecular size on gel properties and aggregate structures. Soft Matter 2012, 8, 3478-3486.
(46) Liu, J.; Yan, J.; Yuan, X.; Liu, K.; Peng, J.; Fang, Y. A novel low-molecular-mass gelator with a redox active ferrocenyl group: Tuning gel formation by oxidation. Journal of Colloid and Interface Science 2008, 318, 397-404.
(47) Peng, J.; Liu, K.; Liu, J.; Zhang, Q.; Feng, X.; Fang, Y. New dicholesteryl-based gelators: Chirality and spacer length effect. Langmuir 2008, 24, 2992-3000.
(48) Li, Y.; Liu, K.; Liu, J.; Peng, J.; Feng, X.; Fang, Y. Amino acid derivatives of cholesterol as "latent" organogelators with hydrogen chloride as a protonation reagent. Langmuir 2006, 22, 7016-7020.
(49) Yan, J.; Lin, J.; Sun, Y.; Jing, P.; He, P.; Gao, D.; Fang, Y. Oligo(fcdc-co-choldea) with ferrocene in the main chain and cholesterol as a pendant group-preparation and unusual properties. Journal of Physical Chemistry B 2010, 114, 13116-13120.
(50) Dong, R.; Yan, J.; Ma, H.; Fang, Y.; Hao, J. Dimensional architecture of ferrocenyl-based oligomer honeycomb-patterned films: From monolayer to multilayer. Langmuir 2011, 27, 9052-9056.
(51) Jerala, R.; Almeida, P. F. F.; Biltonen, R. L. Simulation of the gel-fluid transition in a membrane composed of lipids with two connected acyl chains: Application of a dimer-move step. Biophysical Journal 1996, 71, 609-615.
(52) Verlet, L. Computer experiments on classical fluids .2. Equilibrium correlation functions. Physical Review 1968, 165, 201-&.
(53) Sun, H. Compass: An ab initio force-field optimized for condensed-phase applications - overview with details on alkane and benzene compounds. Journal of Physical Chemistry B 1998, 102, 7338-7364.
(54) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. Charmm - a program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 1983, 4, 187-217.
(55) Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: The gromos force-field parameter sets 53a5 and 53a6. Journal of Computational Chemistry 2004, 25, 1656-1676.
(56) Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. Journal of Computational Chemistry 2004, 25, 1157-1174.
(57) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. Journal of the American Chemical Society 1992, 114, 10024-10035.
(58) Luo, Z.; Jiang, J. Ph-sensitive drug loading/releasing in amphiphilic copolymer pae-peg: Integrating molecular dynamics and dissipative particle dynamics simulations. Journal of Controlled Release 2012, 162, 185-193.
(59) Mark, P.; Nilsson, L. Structure and dynamics of the tip3p, spc, and spc/e water models at 298 k. Journal of Physical Chemistry A 2001, 105, 9954-9960.
(60) Rissanou, A. N.; Harmandaris, V. Dynamics of various polymer-graphene interfacial systems through atomistic molecular dynamics simulations. Soft Matter 2014, 10, 2876-2888.
(61) Pande, V. S.; Rokhsar, D. S. Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein g. Proceedings of the National Academy of Sciences of the United States of America 1999, 96, 9062-9067.
(62) Lerbret, A.; Bordat, P.; Affouard, F.; Descamps, M.; Migliardo, F. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. Journal of Physical Chemistry B 2005, 109, 11046-11057.
(63) Gill, P. M. W.; Johnson, B. G.; Pople, J. A.; Frisch, M. J. The performance of the becke-lee-yang-parr (b-lyp) density functional theory with various basis-sets. Chemical Physics Letters 1992, 197, 499-505.
(64) Parr, R. G. Density functional theory. Annual Review of Physical Chemistry 1983, 34, 631-656.
(65) Chuang, P.-H.; Gu, Q.; Tseng, Y.-H.; Chen, C.-L. Estimation of electron transfer properties of ferrocenyl-dicholesteryl-peptide in liquid and gel. Journal of Colloid and Interface Science 2014, 417, 310-316.
(66) Reichardt, C. Solvents and solvent effects in organic chemistry; Wiley-VCH, 2003.
(67) Karaborni, S.; Vanos, N. M.; Esselink, K.; Hilbers, P. A. J. Molecular-dynamics simulations of oil solubilization in surfactant solutions. Langmuir 1993, 9, 1175-1178.
(68) Han, S. S.; Goddard, W. A. Metal-organic frameworks provide large negative thermal expansion behavior. Journal of Physical Chemistry C 2007, 111, 15185-15191.
(69) Frankland, S. J. V.; Caglar, A.; Brenner, D. W.; Griebel, M. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. Journal of Physical Chemistry B 2002, 106, 3046-3048.
(70) Allen, M. P. T., D. J. Computer simulations of liquids; Oxford Science: Oxford, 1987.
(71) Albota, M.; Beljonne, D.; Bredas, J. L.; Ehrlich, J. E.; Fu, J. Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam, C.; Webb, W. W.; Wu, X. L.; Xu, C. Design of organic molecules with large two-photon absorption cross sections. Science 1998, 281, 1653-1656.
(72) Sproviero, E. M.; Gascon, J. A.; McEvoy, J. P.; Brudvig, G. W.; Batista, V. S. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem ii. Journal of the American Chemical Society 2008, 130, 3428-3442.
(73) Andruniow, T.; Ferre, N.; Olivucci, M. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 17908-17913.
(74) Stewart, J. J. P. Optimization of parameters for semiempirical methods v: Modification of nddo approximations and application to 70 elements. Journal of Molecular Modeling 2007, 13, 1173-1213.
(75) Lan, Y.-K.; Huang, C.-I. A theoretical study of the charge transfer behavior of the highly regioregular poly-3-hexylthiophene in the ordered state. Journal of Physical Chemistry B 2008, 112, 14857-14862.
(76) Lan, Y.-K.; Huang, C.-I. Charge mobility and transport behavior in the ordered and disordered states of the regioregular poly(3-hexylthiophene). Journal of Physical Chemistry B 2009, 113, 14555-14564.
(77) Einstein, A. ber die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik 1905, 322, 549-560.
(78) von Smoluchowski, M. Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Annalen der Physik 1906, 326, 756-780.
(79) Deng, W. Q.; Goddard, W. A. Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. Journal of Physical Chemistry B 2004, 108, 8614-8621.
(80) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Bredas, J.-L. Charge transport in organic semiconductors. Chemical Reviews 2007, 107, 926-952.
(81) Marcus, R. A. Electron-transfer reactions in chemistry - theory and experiment. Reviews of Modern Physics 1993, 65, 599-610.
(82) Marcus, R. A. Chemical + electrochemical electron-transfer theory. Annual Review of Physical Chemistry 1964, 15, 155-&.
(83) Bredas, J. L.; Calbert, J. P.; da Silva, D. A.; Cornil, J. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, 5804-5809.
(84) Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture. Chemical Reviews 2004, 104, 4971-5003.
(85) Valeev, E. F.; Coropceanu, V.; da Silva Filho, D. A.; Salman, S.; Bredas, J.-L. Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. Journal of the American Chemical Society 2006, 128, 9882-9886.
(86) Chen, H. Y.; Chao, I. Effect of perfluorination on the charge-transport properties of organic semiconductors: Density functional theory study of perfluorinated pentacene and sexithiophene. Chemical Physics Letters 2005, 401, 539-545.
(87) Yang, G.; Si, Y.; Geng, Y.; Yu, F.; Wu, Q.; Su, Z. Charge transport and electronic properties of n-heteroquinones: Quadruple weak hydrogen bonds and strong pi-pi stacking interactions. Theoretical Chemistry Accounts 2011, 128, 257-264.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code