Responsive image
博碩士論文 etd-0027118-205804 詳細資訊
Title page for etd-0027118-205804
論文名稱
Title
具部分功率調節之電源轉換電路
Power Source Conversion Circuits with Partial Power Regulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-22
繳交日期
Date of Submission
2018-01-29
關鍵字
Keywords
高電能轉換效率、最大功率追蹤、太陽能系統、雙頻脈衝寬度調變、LED照明驅動電路、部分功率調節、電源轉換電路、多相脈衝寬度調變控制
partial power regulation, maximum power point tracking, multi-phase pulse-width modulation, power source conversion circuit, PV system, double-frequency pulse-width modulation, high power conversion efficiency, light-emitting diode driver
統計
Statistics
本論文已被瀏覽 5678 次,被下載 4
The thesis/dissertation has been browsed 5678 times, has been downloaded 4 times.
中文摘要
本論文根據部分功率能量調節之觀念設計電源轉換電路,僅轉換少部分功率,調節電源轉換電路之輸出電壓或電流。部分功率調節器所處理的功率可串聯或並聯於主輸入電源以共同供應負載。串聯型部分功率調節器為電壓調節型之電力轉換器,輸出電壓的極性可與主輸入電源相同或相反極性,以提高或降低電力轉換器輸出端之電壓。另一方面,電流調節型之電源轉換電路係由並聯型部分功率調節器汲取或匯出電流以調節輸出電流。具部分功率調節之電源轉換電路,因大部分之負載功率直接由輸入電源供應,僅轉換少部分功率以調節負載之電壓或電流,可有效提升整體電能轉換效率。
本文提出兩種具串聯型部分功率調節之LED照明驅動電路,採用返馳式轉換器分別實現昇壓與降壓功能。其中,三原色LED組成之白光LED燈驅動電路採用多輸出返馳式轉換器,包含三組昇壓型部分功率調節器,以多相脈衝寬度調變控制,個別調節三原色LED串列電流。降壓型可調光之LED照明驅動電路則採用具部分功率調節之降壓型電力轉換器,可用單一主動開關,搭配雙頻脈衝寬度調變,線性或脈寬調節LED之電流。
並聯型部分功率調節器可應用於串聯太陽能板發電系統,執行分散式架構最大功率追蹤。系統可設定直接輸出之太陽能板串聯電流,再由每片太陽能板配置之雙向返馳式轉換器,汲取或匯入太陽能板之電流,使所有太陽能板於遮陰狀況不同時,皆操作在最大功率點,並使電能轉換損耗最小。因此,串聯型太陽能板系統可輸出最大的功率,達到太陽能發電之最大利用率。
本研究經實驗結果證實,具部分功率調節之電源轉換電路的電能轉換效率高於傳統架構之電源轉換器。此外,電源轉換電路具有較小的電壓電流應力,使產品可達到體積小、重量輕和低成本的需求。
Abstract
Based on the concept of partial power regulation, power source conversion circuits can be designed to process a fractional power to outputs for voltage or current adaptation. The partial power regulator (PPR) for processing a part of the supplied power can be connected in series or in parallel with the main power source. A series-connected PPR serves as a voltage regulator, which can be either the same or reverse polarity with the main voltage source to provide a step-up or step-down voltage at output terminal. On the other hand, a current regulator as the parallel-connected PPR can add or detract a current to adapt a higher or lower current. A power source conversion circuit with a PPR for processing only a small part of the input power, delivers the most power directly to the load, and thus can have a high overall power conversion efficiency.
Two power source conversion circuits with series-connected PPRs are derived for driving LED lamps. Both step-up and step-down voltage regulations are realized by flyback converters. A driver circuit with three PPRs is designed for a white light lamp with three red-green-blue (RGB) LED strings. By multi-phase pulse-width modulation (PWM), LED currents can be controlled precisely and independently. Another LED driver with a series-connected PPR for step-down voltage regulation is accomplished by single active power switch with double-frequency PWM.
In a solar power system, a circuit structure with the parallel-connected PPRs is implemented for utilizing the maximum power from the photovoltaic (PV) panels connected in series. By operating all PV panels at their maximum power points (MPPs) even under partial shaded conditions with unequally illumination, the attached bi-directional flyback converters add a current into or detract a current from the generated MPP currents forming an identical series current. By delicately selecting an adequate series current, the power conversion losses can be minimized. As a result, the maximum generated power from series PV panels can be obtained.
The experimental results carried out on laboratory circuits have demonstrated that the overall power conversion efficiencies of the power source conversion circuits with PPRs are much higher than those of the conventional ones. In addition, the power source conversion circuits with PPRs are advantageous of smaller voltage and current stresses on circuit components, leading to products of smaller size, lighter weight and lower cost.
目次 Table of Contents
中文審定書 i
英文審定書 ii
誌謝 iii
摘要 iv
Abstract vi
Table of Contents viii
List of Figures xi
List of Tables xv
Chapter 1 Introduction 1
1-1 Background 1
1-2 Literature Review 3
1-3 Research Objectives and Dissertation Organizations 8
Chapter 2 Partial Power Regulation 10
2-1 Concept of Partial Power Regulation 10
2-2 Series-Connected Partial Power Regulator 12
2-3 Parallel-Connected Partial Power Regulator 13
2-4 Applications of Power Source Conversion Circuits with PPRs 14
Chapter 3 Step-Up LED Driver with Series-Connected PPR 16
3-1 Circuit Configuration 16
3-2 Circuit Structure 18
3-3 Circuit Operation 19
3-4 Power Efficiency Estimation 22
3-5 Circuit Analysis 24
3-6 Ripple-Frequency Model 27
3-7 Design Criterion 33
3-8 Dimming Control Scheme 34
3-9 Experimental Verification I:
A Step-Up Dimmable LED Driver 36
3-10 Experimental Verification II:
A Driving Circuit for RGB White-Light LED Lamp 42
Chapter 4 Step-Down LED Driver with Series-Connected PPR 55
4-1 Circuit Configuration 55
4-2 Circuit Structure 57
4-3 Circuit Operation 58
4-4 Power Efficiency Estimation 61
4-5 Circuit Analysis 62
4-6 Experimental Verification:
A Step-Down Dimmable LED Driver 64
Chapter 5 MPPT for PV System with Parallel-Connected PPRs 73
5-1 Partial Power Regulators for Maximum Power Point Tracking 73
5-2 Circuit Structure 73
5-3 Circuit Operation 75
5-4 Power Utilization Optimization of PV System 79
5-5 Experimental Verification:
The MPPT with Parallel-Connected PPRs in PV System 83
Chapter 6 Conclusions and Future Perspective 93
REFERENCES 97
PUBLICATIONS 104
參考文獻 References
[1] Y. Gu, Z. Lu, Z. Qian, X. Gu, and L. Hang, “A Novel ZVS Resonant Reset Dual Switch Forward DC-DC Converter,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 96-103, Jan. 2007.
[2] N. Lakshminarasamma and V. Ramanarayanan, “A Family of Auxiliary Switch ZVS-PWM DC-DC Converters with Coupled Inductor,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2008-2017, Sep. 2007.
[3] H. Mao, O. Abdel-Rahman, and I. Batarseh, “Zero-Voltage-Switching DC-DC Converters with Synchronous Rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 369-378, Jan. 2008.
[4] P. Giacomini, J. Scholtz, and M. Mezaroba, “Step-Up/Step-Down DC-DC ZVS PWM Converter with Active Clamping,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3635-3643, Oct. 2008.
[5] M. Ilic and D. Maksimovic, “Interleaved Zero-Current-Transition Buck Converter,” IEEE Trans. Ind. Appl., vol. 43, no 6, pp. 1619-1627, Nov./Dec. 2007.
[6] H. Mao, L. Yao, C. Wang, and I. Batarseh, “Analysis of Inductor Current Sharing in Nonisolated and Isolated Multiphase DC-DC Converters,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3379-3388, Dec. 2007.
[7] Y. K. Lo, T. S. Kao, and J. Y. Lin, “Analysis and Design of an Interleaved Active-Clamping Forward Converter,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2323-2332, Aug. 2007.
[8] R. Ramos, D. Biel, E. Fossas, and F. Guinjoan, “Interleaving Quasi-Sliding-Mode Control of Parallel-Connected Buck-Based Inverters,” IEEE Trans. Ind. Electron., vol. 55, no. 11, pp. 3865-3873, Nov. 2008.
[9] B. R. Lin and C. L. Huang, “Interleaved ZVS Converter with Ripple-Current Cancellation,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1576-1585, Apr. 2008.
[10] E. D. Jodar, J. A. Villarejo, F. Soto, and J. S. Muro, “Effect of the Output Impedance in Multiphase Active Clamp Buck Converters,” IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3231-3238, Sep. 2008.
[11] C. S. Moo, Y. J. Chen, H. L. Cheng, and Y. C. Hsieh, “Twin-Buck Converter with Zero-Voltage Transition,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2366-2371, June 2011.
[12] M. Mahdavi and H. Torkkhah, “A New High Efficiency High Power Factor ZVT Bridgeless PFC Converter,” in Proc. IEEE AE, Sep. 2016, pp. 161-164.
[13] M. Ahmed, C. Fei, F. C. Lee, and Q. Li, “High-Efficiency High-Power-Density 48/1V Sigma Converter Voltage Regulator Module,” in Proc. IEEE APEC, Mar. 2017, pp. 2207-2212.
[14] S. Yin, K. J. Tseng, C. F. Tong, R. Simanjorang, Y. Liu, A. Nawawi, and A. K. Gupta, “Evaluation of Power Loss and Efficiency for 50 kW SiC High Power Density Converter,” in Proc. IEEE ACEPT, Oct. 2016, pp. 1-6.
[15] C. Fei, F. C. Lee, and Q. Li, “High-Efficiency High-Power-Density LLC Converter With an Integrated Planar Matrix Transformer for High-Output Current Applications,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9072-9082, Nov. 2017.
[16] M. Domb, “High Power Density, High Efficiency 380 V to 52 V LLC Converter Utilizing E-Mode GaN Switches,” in Proc. PCIM Europe, May 2016, pp. 1-7.
[17] S. Ujita, “A Fully Integrated GaN-Based Power IC Including Gate Drivers for High-Efficiency DC-DC Converters,” in Proc. IEEE VLSI-Circuits, Sep. 2016, pp. 1-2.
[18] O. Khan, W. Xiao, and H. H. Zeineldin, “Gallium-Nitride-Based Submodule Integrated Converters for High-Efficiency Distributed Maximum Power Point Tracking PV Applications,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 966-975, Feb. 2016.
[19] R. Wang, J. Sabate, X. Liu, and K. Mainali, “High Efficiency Power Converter with SiC Power MOSFETs for Pulsed Power Applications,” in Proc. IEEE ECCE, Oct. 2017, pp. 925-930.
[20] M. Nymand and M. A. E. Andersen, “High-Efficiency Isolated Boost DC-DC Converter for High-Power Low-Voltage Fuel-Cell Applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 505-514, Feb. 2010.
[21] Electromagnetic Compatibility (EMC) - Part 3-2: Limits for Harmonic Current Emissions, IEC 61000-3-2: 2005, Nov. 2005.
[22] C. Olalla, D. Clement, M. Rodriguez, and D. Maksimovic, “Architectures and Control of Submodule Integrated DC-DC Converters for Photovoltaic Applications,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2980-2997, June 2013.
[23] Y. Riffonneau, S. Bacha, F. Barruel, and S. Ploix, “Optimal Power Flow Management for Grid Connected PV Systems with Batteries,” IEEE Trans. Sustain. Energy, vol. 2, no. 3, pp. 309-320, July 2011.
[24] M. O. Badawy and Y. Sozer, “Power Flow Management of a Grid Tied PV-Battery System for Electric Vehicles Charging,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1347-1357, Mar./Apr. 2017.
[25] P. S. Shenoy, K. A. Kim, and P. T. Krein, “Comparative Analysis of Differential Power Conversion Architectures and Controls for Solar Photovoltaics,” in Proc. IEEE COMPEL, June 2012, pp. 1-7.
[26] E. C. W. D. Jong, I. W. Hofsajer, and J. A. Ferreira, “A New Approach to Low Conversion Ratio DC-DC Converters,” in Proc. IEEE PESC, June 2002, pp. 431-436, vol. 2.
[27] A. Fernandez, J. Sebastian, M. M. Hernando, and D. G. Lamar, “Power Factor Correction with a Partial Power Processing Converter,” in Proc. IEEE APEC, Mar. 2005, pp. 1723-1729, vol. 3.
[28] C. S. Moo, Y. J. Chen, and W. C. Yang, “An Efficient Driver for Dimmable LED Lighting,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4613-4618, Nov. 2012.
[29] C. S. Moo, Y. J. Chen, Y. J. Li, and H. C. Yen, “A Dimmable LED Driver with Partial Power Eegulation,” in Proc. IEEE IECON, Nov. 2015, pp. 672-677.
[30] J. Zhao, K. Yeates, and Y. Han, “Analysis of High Efficiency DC/DC Converter Processing Partial Input/Output Power,” in Proc. IEEE COMPEL, Oct. 2013, pp. 1-8.
[31] H. Zhou, J. Zhao, and Y. Han, “PV Balancers: Concept, Architectures, and Realization,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3479-3487, July 2015.
[32] M. S. Agamy, M. Harfman-Todorovic, A. Elasser, S. Chi, R. Steigerwald, J. A. Sabate, A. J. McCann, L. Zhang, and F. J. Muller, “An Efficient Partial Power Processing DC/DC Converter for Distributed PV Architectures,” in IEEE Trans. Power Electron., vol. 29, no. 2, pp. 674-686, Feb. 2014.
[33] J. Zhao, K. Yeates, and Y. Han, “Analysis of High Efficiency DC/DC Converter Processing Partial Input/Output Power,” in Proc. IEEE COMPEL, June 2013, pp. 1-8.
[34] M. de Rooij, J. Glaser, and R. Steigerwald, “High efficiency photovoltaic inverter,” U.S. Patent US2009/0323379 A1, Jun. 27, 2008.
[35] R. Steigerwald, M. Agamy, M. Harfman-Todorovic, A. Elasser, and J. Sabate, “DC to DC Power Converters and Methods for Controlling the same,” U.S. Patent US2012/0051095 A1, June 29, 2011.
[36] T. Suntio and A. Kuperman, “Comments on “An Efficient Partial Power Processing DC/DC Converter for Distributed PV Architectures”,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2372-2372, Apr. 2015.
[37] C. Schaef and J. T. Stauth, “Multilevel Power Point Tracking for Partial Power Processing Photovoltaic Converters,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 4, pp. 859-869, Dec. 2014.
[38] S. Qin, S. T. Cady, A. D. D. García, and R. C. N. P. Podgurski, “A Distributed Approach to Maximum Power Point Tracking for Photovoltaic Submodule Differential Power Processing,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2024-2040, Apr. 2015.
[39] M. Kasper, D. Bortis, and J. W. Kolar, “Classification and Comparative Evaluation of PV Panel-Integrated DC-DC Converter Concepts,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2511-2526, May 2014.
[40] J. G. Kassakian, M. F. Schlecht, and G. C. Verghese, “High-Frequency Switching dc/dc Converters,” in Principles of Power Electronics, ADDISON WESLEY, ch. 6, pp. 103-133, 1991.
[41] K. H. Loo, Y. M. Lai, S. C. Tan, and C. K. Tse, “On the Color Stability of Phosphor-Converted White LEDs under DC, PWM, and Bilevel Drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 974-984, Feb. 2012.
[42] W. K. Lun, K. H. Loo, and S. C. Tan, “Bilevel Current Driving Technique for LEDs,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2920-2932, Dec. 2009.
[43] J. R. R. Zientarski, M. L. d. S. Martins, J. R. Pinheiro, and H. L. Hey, “Series-Connected Partial-Power Converters Applied to PV Systems: A Design Approach Based on Step-up/down Voltage Regulation Range,” IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1-1, Oct. 2017.
[44] P. S. Shenoy and P. T. Krein, “Differential Power Processing for DC Systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1795-1806, Apr. 2013.
[45] P. S. Shenoy, K. A. Kim, B. B. Johnson, and P. T. Krein, “Differential Power Processing for Increased Energy Production and Reliability of Photovoltaic Systems,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2968-2979, June 2013.
[46] K. A. Kim, P. S. Shenoy, and P. T. Krein, “Converter Rating Analysis for Photovoltaic Differential Power Processing Systems,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1987-1997, Apr. 2015.
[47] M. Uno and A. Kukita, “Current Sensorless Equalization Strategy for a Single-Switch Voltage Equalizer Using Multistacked Buck-Boost Converters for Photovoltaic Modules Under Partial Shading,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 420-429, Jan./Feb. 2017.
[48] Y. Levron, D. R. Clement, B. Choi, C. Olalla, and D. Maksimovic, “Control of Submodule Integrated Converters in the Isolated-Port Differential Power-Processing Photovoltaic Architecture,” IEEE Trans. Emerg. Sel. Topics Power Electron, vol. 2, no. 4, pp. 821-832, Dec. 2014.
[49] R. Bell and R. C. N. Pilawa-Podgurski, “Decoupled and Distributed Maximum Power Point Tracking of Series-Connected Photovoltaic Submodules Using Differential Power Processing,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 3, no. 4, pp. 881-891, Dec. 2015.
[50] C. Olalla, C. Deline, D. Clement, Y. Levron, M. Rodriguez, and D. Maksimovic, “Performance of Power-Limited Differential Power Processing Architectures in Mismatched PV Systems,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 618-631, Feb. 2015.
[51] S. Qin, C. B. Barth, and R. C. N. P. Podgurski, “Enhancing Microinverter Energy Capture With Submodule Differential Power Processing,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3575-3585, May 2016.
[52] Y. T. Jeon, H. Lee, K. A. Kim, and J. H. Park, “Least Power Point Tracking Method for Photovoltaic Differential Power Processing Systems,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1941-1951, Mar. 2017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code