Responsive image
博碩士論文 etd-0028115-162950 詳細資訊
Title page for etd-0028115-162950
論文名稱
Title
全向移動式載具之強健軌跡控制器設計
Robust Tracking Controller Design for an Omnidirectional Mobile Vehicle
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-10-02
繳交日期
Date of Submission
2015-01-28
關鍵字
Keywords
參數估測、強健適應性控制、順滑模式控制、全向輪、移動式機器人
Omnidirectional wheel, Sliding mode control, Robust adaptive control, Parameter estimation, Mobile Robot
統計
Statistics
本論文已被瀏覽 5921 次,被下載 0
The thesis/dissertation has been browsed 5921 times, has been downloaded 0 times.
中文摘要
本文提出一全向移動式載具路徑追蹤控制器之設計,使其具有軌跡追蹤之能力。全向移動式載具裝有三組配有全向輪的驅動器,載具能於任意方向的移動且不改變本體的姿態。本研究所設計之控制器是以強健適應性順滑模式控制器為基礎,此控制器具有抵抗系統參數之不確定性及外在的干擾的優點。
此外,為了能讓載具增加對周圍視野的範圍,將全向攝影機系統應用於載具上,以達到目標物追尋的功能。將影像資料經由影像處理方式鎖定目標物之特徵,並找出目標物後,進而計算出目標物位於空間中的位置。搭配強健適應性順滑模式控制器來控制載具進行追尋目標且保持所設定之距離,並克服系統所存在的不確定性及干擾。
最後由實驗驗證其可行性及效能,實驗分別為三種不同的追蹤軌跡路徑,方形、 “ ”形、圓形路徑及目標物追蹤的任務。 將本文所提出的強健適應性順滑模式控制器與傳統順滑模式控制器做為比較,由實驗結果得知,本文所提出的控制方法的可行性及效能比傳統順滑模式控制器所表現的更為優秀。
Abstract
This dissertation presents a robust trajectory tracking control scheme for the omnidirectional mobile vehicle (OMV) to provide autonomous tracking capability. The OMV is equipped with three omnidirectional wheels, which allow the vehicle freely changes its moving direction regardless of the steering constraint. All the tracking control algorithms are developed on the basis of a robust adaptive sliding mode controller (ASMC) framework. The trajectory tracking performance of OMV is therefore ensured by utilizing the ASMC approach, which copes with system uncertainties and unknown external disturbances.
Besides, in order to let the mobile vehicle own a complete sight around its environment, the vehicle is also supplied with an omnidirectional camera system. For the purpose of object tracking missions, the corresponding image processing techniques for the omnidirectional images are also established to extract the characteristic features of the target object. Through analysis of the image information, the position of the target object can be located in three-dimensional space. Based on this information, the proposed ASMC method is able to calculate suitable control efforts for those three omnidirectional wheels to drive the mobile vehicle towards the target object within a predetermined distance while overcoming possible uncertainties and disturbances.
Actual tracking experiments including the trajectory tracking and the object tracking are conducted on an experimental omnidirectional mobile vehicle. Three different paths, a square path, an eight shape path, and a circular path, are investigated for trajectory tracking tasks. Comparison of tracking performance using the conventional SMC and the presented ASMC is also made. Experimental results demonstrate the feasibility and effectiveness of the proposed tracking control scheme. Furthermore, the superiority of the presented control method than the SMC is also verified.
目次 Table of Contents
VERIFICATION LETTER FROM THE ORAL EXAMINATION COMMITTEE i
ACKNOWLEDGEMENT ii
ABSTRACT(CHINESE) iii
ABSTRACT(ENGLISH) iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES x
NOMENCLATURE XI
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND AND MOTIVATION 1
1.2 LITERATURE SURVEY 2
1.3 DISSERTATION ORGANIZATION 7
CHAPTER 2 THE OMNIDIRECTIONAL MOBILE VEHICLE (OMV) SYSTEM 9
2.1 INTRODUCTION 9
2.2 THE OMNIDIRECTIONAL MOBILE VEHICLE 10
2.2.1 Mechatronic Analysis 11
2.2.2 Control Torque Analysis 14
2.3 THE OMNIDIRECTIONAL VISION SYSTEM 15
2.3.1. Optics of Hyper Omni-Vision 17
2.3.2. Image Processing 21
CHAPTER 3 CONTROLLER DESIGN AND STABILITY ANALYSIS 25
3.1 INTRODUCTION 25
3.2 SLIDING MODE CONTROL 26
3.2.1 Robust Sliding Mode Controller Design 26
3.2.2 Trajectory Control for the OMV System 31
3.3 ADAPTIVE SLIDING MODE CONTROLLER DESIGN (ASMC) 35
3.4 COMPARATIVE STUDIES 39
CHAPTER 4 TRACKING EXPERIMENTS 46
4.1 EXPERIMENTAL SETUP 46
4.2 EXPERIMENTAL RESULTS 48
4.2.1 Path Tracking 49
4.2.2 Object Tracking 55
CHAPTER 5 CONCLUSIONS 59
5.1 CONTRIBUTIONS 59
5.2 FUTURE WORK 60
REFERENCES 61
參考文獻 References
REFERENCES
[1] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot using neural networks,” IEEE Trans. Neural Netw., Vol. 9, pp. 589–600, Jul. 1998.
[2] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” in Proc. IEEE Conf. Robot. Autom., 1990, pp.384–389.
[3] G. Walsh, D. Tilbury, S. Sastry, R. Murrary, and J. P. Laumond, “Stabilization of trajectories for systems with nonholonomci constraints,” IEEE Trans. Autom. Control, Vol. 39, pp. 216–222, Jan. 1994.
[4] J. Borenstein, H. R. Everett, and L. Feng, Sensors and Methods for Mobile Robot Positioning, University of Michigan, 1996.
[5] A. Isidori, Nonlinear Control Systems—An Introduction. New York: Springer- Verlag, 1989.
[6] H. Ouyang, J. Wang, and L. Huang, " Robust output feedback stabilization for uncertain systems" IEE Proc.-Control Theory Application, Vol. 150, No. 5, September 2003.
[7] T. Fukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Trans. Robot. Autom., Vol. 16, pp. 609–615, Oct. 2000.
[8] K. Glover and D. McFarlane, “Robust stabilization of normalized comprise factor plant descriptions with H-infinity bounded uncertainty,” IEEE Trans. Autom. Control, Vol. 34, No. 8, pp. 821–830, Aug. 1989.
[9] D. McFarlane and K. Glover, “A loop shaping design procedure using H-infinity synthesis,” IEEE Trans. Autom. Control, Vol. 37, No. 6, pp.759–769, Jun. 1992.
[10] S. Lin and A. A. Goldenberg, “Neural-network control of mobile manipulators,” IEEE Trans. Neural Netw., Vol. 12, No. 5, pp. 1121–1133 Sep. 2001.
[11] H. Hu and P. Y. Woo, “Fuzzy supervisory sliding-mode and neural network control for robotic manipulators,” IEEE Trans. Ind. Electron. Vol. 53, No. 3, pp. 929–940, Jun. 2006.
[12] D. Xu, D. Zhao, J. Yi, and X. Tan, “Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach,” IEEE Trans. Syst. Man Cybern. B Cybern. Vol. 39, No. 3, pp. 788–799, Jun. 2009.
[13] R. Holmberg and O. Khatib, “Development and control of a holonomic mobile robot for mobile manipulation tasks,” Int. J. Robot. Res., Vol. 19, No. 11, pp. 1066–1074, 2000.
[14] C.Y. Su, Y. Stepanenko, and T.P. Leung, “Combined adaptive and variable structure control for constrained robots,” Automatica, Vol. 31, No. 3, pp. 483–488, Mar. 1995.
[15] W.S. Yu, “H∞ tracking-based adaptive fuzzy-neural control for MIMO uncertain robotic systems with time delays,” Fuzzy Sets and Syst., Vol. 146, pp.375-401, 2004.
[16] H.C. Huang and C.C. Tsai, “Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates,” J Intell. Robot Syst., Vol. 51, pp. 439–460, 2008.
[17] M. Zeinali and L. Notash, “Fuzzy logic-based inverse dynamic modelling of robot manipulators,” Transactions of the Canadian Society for Mechanical Engineering, Vol. 34, No. 1, pp. 137–150, 2010.
[18] M. Yue and B.Y. Liu, “Design of adaptive sliding mode control for spherical robot based on MR fluid actuator,” Journal of Vibroengineering, Vol. 14, No. 1, pp. 196–204, 2012.
[19] C.H. Lin and C.P. Lin, “Integral back-stepping control for a PMLSM using adaptive RNNUO,” International Journal of Engineering and Technology Innovation, Vol. 1, No. 1, pp. 53–64, 2011.
[20] D.K. Chwa, ”Sliding mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Trans. Control Syst. Technol. Vol. 12, No. 4, pp. 637–644, 2004.
[21] K.D. Do, Z.P. Jiang, and J. Pan, “A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots,” IEEE Trans. Robot Autom., Vol. 20, No. 3, pp. 589–594, 2004.
[22] C.C. Tsai and T.S. Wang, “Nonlinear control of an omnidirectional mobile robot,” Proc. 8th Intl. Conf. Autom Technol., pp. 727–732, 2005.
[23] T. Kalmár-Nagy, R. D’andrea, and P. Ganguly, “Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle,” Robot. Auto. Syst. Vol. 46, pp. 47–64, 2004.
[24] J.M. Yang and J.H. Kim, “Sliding mode control for trajectory tracking of nonholonomic Wheeled Mobile Robots,” IEEE Trans. Robot Autom., Vol. 15, pp.578-587, 1999.
[25] S. Djebrani, A. Benali, and G. Poisson, “Input-state linearisation of an omni-directional mobile robot,” IEEE International Symposion on Industrial Electronics, pp.1889-1894, 2010.
[26] P. Dupont, V. Hayward, B. Armstrong, and F. “Altpeter, Single state elastoplastic friction models,” IEEE Trans. on Autom. Control, Vol. 47, No. 5, pp. 787-792, 2002.
[27] D. Wang and C.B. Low, “Modeling and analysis of skidding and slipping in wheeled mobile robots control design perspective,” IEEE Trans. Robot Autom., Vol. 24, No. 3, pp. 676-687, 2008.
[28] R.L. William, B.E. Carter, P. Gallina, and G. Rosati, “Dynamic model with slip for wheeled omnidirectional robots,” IEEE Trans. Robot Autom., Vol. 18, No. 3, pp. 285-293, 2002.
[29] R. Balakrishna and A. Ghosal, “Modeling of slip for wheeled mobile robots,” IEEE Trans. Robot Autom., Vol. 11, No. 1, pp. 126-132, 2004.
[30] M. Wada and H.H. Asada, “Design and control of a variable footprint mechanism for holonomic omnidirectional vehicles and it’s application to wheelchairs,” IEEE Trans. Robot Autom., Vol. 15, No. 6, pp. 978-989, 1999.
[31] Y. Liu, X. Wu, J.J. Zhu, and J. Lew, “Omni-directional mobile robot controller design by trajectory linearization,” Robotics and Autonomous Systems, Vol. 56, pp. 461–479, 2008.
[32] K. Watanabe, Y. Shiraishi, S.G. Tzafestas, J. Tang, and T. Fufuda, “Feedback control of an omnidirectional autonomous platform for mobile service robots,” Journal of Intelligent and Robotic Systems, Vol. 22, pp. 315–330, 1998.
[33] J. Wu, R.L. Williams II, and J. Lew, “Velocity and acceleration cones for kinematic and dynamic constraints on omnidirectional mobile robots,” Journal of Dynamic Systems, Measurement, and Control, Vol. 128, pp. 788-799, 2006.
[34] I.E. Paromtchik, H. Asama, T. lhjii, and I. Endo, “A control system for an omnidirectional mobile robot,” Proc. of the 1999 IEEE Conf. on Control Applications, Kohala Coast, Hawaii, USA, pp. 1123-1128, 1999.
[35] K.S. Byun, S.J. Kim, and J.-B. Song, “Design of a four-wheeled omnidirectional mobile robot with variable wheel arrangement mechanism,” Proc. of the 2002 IEEE Conf. on Robotics and Automation, Washington, DC., USA, pp. 720-725, 2002.
[36] J.A. Cooney, W.L. Xu, and G. “Bright, “Visual dead-reckoning for motion control of a mecanum-wheeled mobile robot,” Mechatronics, Vol. 14, No. 6, pp. 623-637, 2004.
[37] L. Freda and G. Oriolo, “Vision-based interception of a moving target with a nonholonomic mobile robot,” Robotics and Autonomous Systems, Vol. 55, No. 6, pp. 419-432, 2007.
[38] G.E. Smid, K.C. Cheok, R.E. Karlson, and G. Hudas, “Unified intelligent motion planning for omni-directional vehicles,” Proc. of the 2004 IEEE Intelligent Vehicles Symposium, Parma, Italy, pp. 14-17, 2004.
[39] H.C. Huang and C.C. Tsai, “Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates,” Journal Intelligent Robot System, Vol.51, pp.439-460, 2008.
[40] M.L. Corradini and G. Orlando, “Control of mobile robots with uncertainties in the dynamic model: a discrete time sliding mode approach with experimental results,” Control Engineering Practice, Vol. 10, pp. 23-34, 2002
[41] Z. Hu, Z. Li, R. Bicker, and C. Marshall, “Robust output tracking control of nonholonomic mobile robots via higher order sliding mode,” Nonlinear Studies, Vol. 11, No.1, pp. 23-34, 2004.
[42] L. Delahoche, C. Pegard, B. Marhic, and P.V. andasseur, “A navigation system based on an omnidirectional vision sensor”, Proc. Intl. conference on Intelligent Robotics and Systems, pp. 718-724, 1997.
[43] Y. Onoe SI, K. Yamazawa, N. Yokoya, and H. Takemula, “Visual surveillance and monitoring system using an omnidirectional video camera”, Proc. IEEE Intl. Conference on Pattern Recognition, 1998, pp. 88-592.
[44] L. Hong, P. Wenkai, and Z. Hongbin, “Motion Detection for Multiple Moving Targets by Using an Omnidirectional Camera,” Proc. IEEE Intl. Conference on Robotics, Intelligent Systems and Signal Processing, Vol. 1, pp. 422-426, 2003.
[45] Y. Yagi, Y. Nishizawa, and M. Yachida, “Map-based navigation for a mobile robot with omnidirectional image sensor copies,” IEEE Trans. Robot Autom., Vol. 11, No. 5, pp. 634–648, 1995.
[46] K. Yamazawa and N. Yokoya, “Detecting moving objects from omnidirectional dynamic images based on adaptive background subtraction,” Proc. IEEE Intl. Conference on Image Processing, Vol. 3, pp. 953-956, 2003.
[47] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330-1334, 2000.
[48] A.S. Liu and C.C. Cheng, Intelligent Hand-Eye Coordination Control on Ball Bouncing, M.S. Thesis, NSYSU. Taiwan, 2011.
[49] K. Watanabe, Y. Shiraishi, S.G. Tzafestas, J. Tang, and T. Fufuda, “Feedback control of an omnidirectional autonomous platform for mobile service robots,” Journal of Intelligent and Robotic Systems, Vol. 22, pp.315–330, 1998.
[50] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330-1334, 2000.
[51] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[52] B. Yoo and W. Ham, “Adaptive fuzzy sliding mode control of nonlinear system,” IEEE Trans. on fuzzy systems, Vol. 6, No. 2, pp. 315-321, 1998.
[53] S. V. Emelyanov, Variable Structure Control Systems. Moscow, Russian, U.S.S.R. Nauka, 1967.
[54] A. F. Fillippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, Dordrecht, Boston, London, 1988.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.5.68
論文開放下載的時間是 校外不公開

Your IP address is 3.17.5.68
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code