Responsive image
博碩士論文 etd-0028115-192820 詳細資訊
Title page for etd-0028115-192820
論文名稱
Title
CO2與溫度變化對浮游藻及附著藻的影響-中觀生態缸實驗
The effect of CO2 and temperature change on phytoplankton and benthic algae - a mesocosm study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-16
繳交日期
Date of Submission
2015-01-30
關鍵字
Keywords
中觀生態缸、附著藻、浮游藻類、二氧化碳、溫度
mesocosm, benthic algae, phytoplankton, CO2, temperature
統計
Statistics
本論文已被瀏覽 5776 次,被下載 1469
The thesis/dissertation has been browsed 5776 times, has been downloaded 1469 times.
中文摘要
在本世紀末,大氣CO2濃度預計將會到達800~1000 ppm。浮游植物與附著藻為海洋的基礎生產者,然而CO2及溫度對藻類的影響仍不清楚,因此本實驗將以中觀生態缸探討CO2與溫度對浮游植物與附著藻類的影響。實驗分為兩組,控制組的CO2濃度為400 ppm而處理組為800 ppm,分別代表現今及本世紀末所預估的CO2濃度。實驗分成三階段,第一階段溫度設定為28℃,第二階段溫度設定為25℃,第三階段再將溫度降至22℃。浮游藻類的結果顯示在28℃下,CO2濃度升高會使浮游藻類豐度增加,種歧異度減少,且CO2會增進浮游藻中的藍綠藻生長但不利於矽藻。在附著藻方面,附著藻的生長會隨CO2上升而增加,但CO2上升有助於矽藻生長卻不利於藍綠藻與渦鞭毛藻。而溫度也對附著藻產生影響,溫度下降有利於附著藻生長,在22℃,附著藻的葉綠素a濃度與豐度最高。當溫度下降(28→22℃)時,藍綠藻的相對豐度增加,矽藻則減少。CO2增加與溫度改變導致藻類群聚組成改變,可能影響到海洋初級生產力以及營養循環,對海洋生態產生改變。
Abstract
By the end of this century, the expected atmospheric CO2 concentration will reach 800~1000 ppm. Phytoplankton and benthic algae are the primary production in the ocean, but the effects of CO2 and temperature on the algae is inconclusive. In this study, we examined the effects of CO2 and temperature on growth and community assemblages of phytoplankton and benthic algae. The experiments were conducted with two CO2 treatments (400 ppm and 800 ppm) and three temperatures (28℃, 25℃ and 22℃) in the mesocosms. The results indicated that at 28℃, elevated CO2 enhanced the growth of phytoplankton but the species diversity decreased. Elevated CO2 increased the benthic algal growth, especially for diatom but not cyanobacteria or dinoflagellates. Lower temperature benefited the growth of benthic algae, with the highest chl a concentrations and abundances found at 22℃. When temperature decreased from 28℃ to 22℃, the relative abundance of cyanobacteria increased while the diatom decreased. CO2 and temperature alter algal community assemblages, a result that might affect marine primary production and nutrient cycle in the future.
目次 Table of Contents
論文審定書+i
謝辭+ii
摘要+iii
Abstract+iv
目錄+v
表目錄+vi
圖目錄+vii
附錄目錄+viii
第一章 前言+1
第二章 材料與方法+7
第三章 結果+13
第四章 討論+19
參考文獻+26
參考文獻 References
張家銘。2012。南灣海域碳酸鹽系統分布特性與季節性變化之研究。國立東華大學海洋生物多樣性及演化研究所。1-156頁
環保署 NIEA E507.02B水中葉綠素a檢測方法-丙酮萃取法/分光光度計分析法
Aloi, J.E., 1990. A critical review of recent freshwater periphyton field methods. Canadian Journal of Fisheries and Aquatic Sciences 47, 656-670.
APHA, 1992. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC.
Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M., 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693), 79-86.
Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A., Thingstad, F., 1983. The ecological role of water-column microbes in the sea. Marine ecology progress series. Oldendorf 10(3), 257-263.
Balch, W.M., Kilpatrick, K.A., Trees, C.C., 1996. The 1991 coccolithophore bloom in the central North Atlantic. 1. Optical properties and factors affecting their distribution. Limnology and Oceanography 41(8), 1669-1683.
Barry, J.P., Hall-Spencer, J.M., Tyrell, T., 2010. In situ perturbation experiments: natural venting sites, spatial/temporal gradients in ocean pH, manipulative in situ pCO2 perturbations. Guide to Best Practices in Ocean Acidification Research and Data Reporting, 123-136.
Baulch, H., Schindler, D., Turner, M., Findlay, D., Paterson, M., Vinebrooke, R., 2005. Effects of warming on benthic communities in a boreal lake: implications of climate change. Limnology and Oceanography 50(5), 1377-1392.
Berge, T., Daugbjerg, N., Andersen, B.B., Hansen, P.J., 2010. Effect of lowered pH on marine phytoplankton growth rates. Marine Ecology Progress Series 416, 79-91.
Borges, A., Frankignoulle, M., 1999. Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas. Journal of Marine Systems 19(4), 251-266.
Brodie, J., Williamson, C.J., Smale, D.A., Kamenos, N.A., Mieszkowska, N., Santos, R., Cunliffe, M., Steinke, M., Yesson, C., Anderson, K.M., 2014. The future of the northeast Atlantic benthic flora in a high CO2 world. Ecology and evolution 4(13), 2787-2798.
Burgmer, T., Hillebrand, H., 2011. Temperature mean and variance alter phytoplankton biomass and biodiversity in a long‐term microcosm experiment. Oikos 120(6), 922-933.
Chambouvet, A., Morin, P., Marie, D., Guillou, L., 2008. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322(5905), 1254-1257.
Chen, X., Gao, K., 2003. Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum. Chinese Science Bulletin 48(23), 2616-2620.
Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., Likens, G.E., 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323(5917), 1014-1015.
De Bodt, C., Van Oostende, N., Harlay, J., Sabbe, K., Chou, L., 2010. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences 7(5), 1401-1412.
De Nicola, D.M., 1996. Periphyton responses to temperature at different ecological levels. Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, 149-181.
Detmer, A.E., Bathmann, U.V., 1997. Distribution patterns of autotrophic pico-and nanoplankton and their relative contribution to algal biomass during spring in the Atlantic sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 44(1), 299-320.
Dickson, A.G., Millero, F.J., 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research I 34, 1733-1743.
Endo, H., Yoshimura, T., Kataoka, T., Suzuki, K., 2013. Effects of CO2 and iron availability on phytoplankton and eubacterial community compositions in the northwest subarctic Pacific. Journal of Experimental Marine Biology and Ecology 439, 160-175.
Engel, A., Schulz, K., Riebesell, U., Bellerby, R., Delille, B., Schartau, M., 2007. Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences Discussions 4(6), 4101-4133.
Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J.-P., Harlay, J., Heemann, C., 2005. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnology and Oceanography 50(2), 493-507.
Errera, R., Yvon-Lewis, S., Kessler, J., Campbell, L., 2014. Reponses of the dinoflagellate Karenia brevis to climate change: pCO2 and sea surface temperatures. Harmful Algae 37, 110-116.
Fabry, V.J., Seibel, B.A., Feely, R.A., Orr, J.C., 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65(3), 414-432.
Falkowski, P.G., 2002. The ocean's invisible forest. Scientific American 287(2), 54-61.
Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J., Millero, F.J., 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682), 362-366.
Feng, Y., Hare, C., Rose, J., Handy, S., DiTullio, G., Lee, P., Smith Jr, W., Peloquin, J., Tozzi, S., Sun, J., 2010. Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep Sea Research Part I: Oceanographic Research Papers 57(3), 368-383.
Feng, Y., Hare, C.E., Leblanc, K., Rose, J.M., Zhang, Y., DiTullio, G.R., Lee, P., Wilhelm, S., Rowe, J.M., Sun, J., 2009. The effects of increased pCO2 and temperature on the North Atlantic spring bloom: I. The phytoplankton community and biogeochemical response. Marine Ecology Progress Series 388, 13-25.
Feng, Y., Warner, M.E., Zhang, Y., Sun, J., Fu, F.-X., Rose, J.M., Hutchins, D.A., 2008. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology 43(1), 87-98.
Field, C.B., Behrenfeld, M.J., Randerson, J.T., Falkowski, P., 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374), 237-240.
Fileman, E., Burkill, P., 2001. The herbivorous impact of microzooplankton during two short-term Lagrangian experiments off the NW coast of Galicia in summer 1998. Progress in Oceanography 51(2), 361-383.
Fukuda, S.-y., Suzuki, Y., Shiraiwa, Y., 2014. Difference in physiological responses of growth, photosynthesis and calcification of the coccolithophore Emiliania huxleyi to acidification by acid and CO2 enrichment. Photosynthesis research, 1-11.
Gao, K., Campbell, D.A., 2014. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review. Functional Plant Biology 41(5), 449-459.
Gazeau, F., Quiblier, C., Jansen, J.M., Gattuso, J.P., Middelburg, J.J., Heip, C.H., 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34(7), L07603. doi:10.1029/2006GL028554.
Gómez, F., Souissi, S., 2007. Unusual diatoms linked to climatic events in the northeastern English Channel. Journal of Sea Research 58(4), 283-290.
Gómez, F., Souissi, S., 2008. The impact of the 2003 summer heat wave and the 2005 late cold wave on the phytoplankton in the north-eastern English Channel. Comptes rendus biologies 331(9), 678-685.
Gooding, R.A., Harley, C.D., Tang, E., 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proceedings of the National Academy of Sciences 106(23), 9316-9321.
Green, M.A., Waldbusser, G.G., Reilly, S.L., Emerson, K., 2009. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnology and Oceanography 54(4), 1037-1047.
Hall-Spencer, J.M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S.M., Rowley, S.J., Tedesco, D., Buia, M.-C., 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200), 96-99.
Hama, T., Kawashima, S., Shimotori, K., Satoh, Y., Omori, Y., Wada, S., Adachi, T., Hasegawa, S., Midorikawa, T., Ishii, M., 2012. Effect of ocean acidification on coastal phytoplankton composition and accompanying organic nitrogen production. Journal of oceanography 68(1), 183-194.
Hansson, L.-A., 1992. Factors regulating periphytic algal biomass. Limnology and Oceanography 37(2), 322-328.
Hare, C.E., Leblanc, K., DiTullio, G.R., Kudela, R., Zhang, Y., Lee, P.A., Riseman, S., Hutchins, D.A., 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Marine Ecology Progress Series 352, 9-16.
Hillebrand, H., Kahlert, M., 2001. Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnology and Oceanography 46(8), 1881-1898.
Howarth, R.W., Michaels, A.F., 2000. The measurement of primary production in aquatic ecosystems, Methods in ecosystem science. Springer, pp. 72-85.
Hurd, C.L., Hepburn, C.D., Currie, K.I., Raven, J.A., Hunter, K.A., 2009. Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. Journal of Phycology 45(6), 1236-1251.
Hurst, T.P., Fernandez, E.R., Mathis, J.T., 2013. Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science: Journal du Conseil 70(4), 812-822.
Hutchins, D.A., Fu, F.-X., Zhang, Y., Warner, M.E., Feng, Y., Portune, K., Bernhardt, P.W., Mulholland, M.R., 2007. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnology and Oceanography 52(4), 1293-1304.
Iglesias-Rodriguez, M.D., Halloran, P.R., Rickaby, R.E., Hall, I.R., Colmenero-Hidalgo, E., Gittins, J.R., Green, D.R., Tyrrell, T., Gibbs, S.J., von Dassow, P., 2008. Phytoplankton calcification in a high-CO2 world. science 320(5874), 336-340.
IPCC, 2007. The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Ishimatsu, A., Hayashi, M., Kikkawa, T., 2008. Fishes in high-CO2, acidified oceans. Marine Ecology Progress Series 373, 295-302.
John, D.E., Wang, Z.A., Liu, X., Byrne, R.H., Corredor, J.E., López, J.M., Cabrera, A., Bronk, D.A., Tabita, F.R., Paul, J.H., 2007. Phytoplankton carbon fixation gene (RuBisCO) transcripts and air-sea CO2 flux in the Mississippi River plume. The ISME journal 1(6), 517-531.
Johnson, V.R., Brownlee, C., Rickaby, R.E.M., Graziano, M., Milazzo, M., Hall-Spencer, J.M., 2013. Responses of marine benthic microalgae to elevated CO2. Marine Biology 160(8), 1813-1824.
Kim, J.-M., Lee, K., Shin, K., Kang, J.-H., Lee, H.-W., Kim, M., Jang, P.-G., Jang, M.-C., 2006. The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography 51(5), 1629–1636.
Kiørboe, T., 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in marine biology 29, 1-72.
Kleypas, J.A., Feely, R.A., Fabry, V.J., Langdon, C., Sabine, C.L., Robbins, L.L., 2005. Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the US Geological Survey.
Kruskopf, M., Du Plessis, S., 2006. Growth and filament length of the bloom forming Oscillatoria simplicissima (oscillatoriales, cyanophyta) in varying N and P concentrations. Hydrobiologia 556(1), 357-362.
Kudela, R.M., Seeyave, S., Cochlan, W.P., 2010. The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Progress in Oceanography 85(1), 122-135.
Kunkel, K.E., Pielke Jr, R.A., Changnon, S.A., 1999. Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review. Bulletin of the American Meteorological Society 80(6), 1077-1098.
Levitan, O., Rosenberg, G., Setlik, I., Setlikova, E., Grigel, J., Klepetar, J., Prasil, O., Berman‐Frank, I., 2007. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Global Change Biology 13(2), 531-538.
Lewis, E., Wallace, D.W.R., 1998. Program developed for CO2 system calculations, Carbon Dioxide Information Analysis Center, Report ORNL/CDIAC-105, Oak Ridge National Laboratory, Oak Ridge, Tenn.
Lidbury, I., Johnson, V., Hall-Spencer, J.M., Munn, C.B., Cunliffe, M., 2012. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem. Marine pollution Bulletin 64(5), 1063-1066.
Low-Decarie, E., Fussmann, G.F., Bell, G., 2011. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Global Change Biology 17(8), 2525-2535.
Masson, S., Pinel-Alloul, B., Smith, V.H., 2000. Total phosphorus-chlorophyll a size fraction relationships in southern Quebec lakes. Limnology and Oceanography 45(3), 732-740.
McCarthy, A., Rogers, S.P., Duffy, S.J., Campbell, D.A., 2012. Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliania huxleyi (Haptophyta). Journal of Phycology 48(3), 635-646.
McMinn, A., Müller, M.N., Martin, A., Ryan, K.G., 2014. The response of Antarctic sea ice algae to changes in pH and CO2. PloS one 9(1), e86984.
Mehrbach, C., Culberson, C.H., Hawley, J.E., Pytkowicz, R.M., 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18, 897-907.
Meseck, S.L., Alix, J.H., Wikfors, G.H., 2005. Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429). Aquaculture 246(1), 393-404.
Morán, X.A.G., Lopez-Urrutia, A., Calvo-Diaz, A., Li, W.K.W., 2010. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16(3), 1137-1144.
Müller, M., Schulz, K., Riebesell, U., 2010. Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosciences (BG) 7(3), 1109-1116.
Orr, J.C., Caldeira, K., Fabry, V., Gattuso, J.-P., Haugan, P., Lehodey, P., Pantoja, S., Pörtner, H.-O., Riebesell, U., Trull, T., 2009. Research priorities for understanding ocean acidification: Summary from the second symposium on the ocean in a high-CO2 world. Oceanography 22(4), 182-189.
Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059), 681-686.
Paasche, E., 2001. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40(6), 503-529.
Pai, S.C., Riley, J.P., 1994. Determination of nitrate in the presence of nitrite in natural waters by flow injection analysis with a non-quantitative on-line cadmium reductor. International Journal of Environmental Analytical Chemistry 57(4), 263-277.
Pai, S.C., Young, C.C., Riley, J., 1990. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Analytica Chimica Acta 229, 115-120.
Parker, L., Ross, P.M., O’Connor, W.A., 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Marine Biology 158(3), 689-697.
Paulino, A., Egge, J., Larsen, A., 2008. Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom. Biogeosciences 5(3), 739-748.
Porzio, L., Garrard, S.L., Buia, M.C., 2013. The effect of ocean acidification on early algal colonization stages at natural CO2 vents. Marine Biology 160(8), 2247-2259.
Raven, J.A., Geider, R.J., 1988. Temperature and algal growth. New Phytologist 110(4), 441-461.
Raven, J.A., Hurd, C.L., 2012. Ecophysiology of photosynthesis in macroalgae. Photosynthesis Research 113(1-3), 105-125.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., Zeebe, R.E., Morel, F.M., 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407(6802), 364-367.
Ries, J.B., Cohen, A.L., McCorkle, D.C., 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37(12), 1131-1134.
Roelke, D., Eldridge, P., Cifuentes, L., 1999. A model of phytoplankton competition for limiting and nonlimiting nutrients: implications for development of estuarine and nearshore management schemes. Estuaries 22(1), 92-104.
Rosa, J., Ferreira, V., Canhoto, C., Graça, M.A., 2013. Combined effects of water temperature and nutrients concentration on periphyton respiration–implications of global change. International Review of Hydrobiology 98(1), 14-23.
Schabhüttl, S., Hingsamer, P., Weigelhofer, G., Hein, T., Weigert, A., Striebel, M., 2013. Temperature and species richness effects in phytoplankton communities. Oecologia 171(2), 527-536.
Shi, D., Xu, Y., Morel, F., 2009. Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences 6(7), 1199-1207.
Stevenson, R.J., 1996. An introduction to algal ecology in freshwater benthic habitats. In: Stevenson, R.J., Bothwell, M.L. and Lowe, R.L. (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, California, 3-30.
Stockner, J.G., 1988. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnology and Oceanography 33(4), 765-775.
Strickland, J., Parsons, T., 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin 167:71-75.
Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W., Sutherland, S.C., 1993. Seasonal variation of CO2 and nutrients in the high‐latitude surface oceans: A comparative study. Global Biogeochemical Cycles 7(4), 843-878.
Tarran, G.A., Zubkov, M.V., Sleigh, M.A., Burkill, P.H., Yallop, M., 2001. Microbial community structure and standing stocks in the NE Atlantic in June and July of 1996. Deep Sea Research Part II: Topical Studies in Oceanography 48(4), 963-985.
Tew, K.S., Kao, Y.-C., Ko, F.-C., Kuo, J., Meng, P.-J., Liu, P.-J., Glover, D.C., 2014. Effects of elevated CO2 and temperature on the growth, elemental composition, and cell size of two marine diatoms: potential implications of global climate change. Hydrobiologia (741), 79-87.
Tew, K.S., Meng, P.-J., Leu, M.-Y., 2012. Factors correlating with deterioration of giant kelp Macrocystis pyrifera (Laminariales, Heterokontophyta) in an aquarium setting. Journal of Applied Phycology 24(5), 1269-1277.
Thompson, R.C., Norton, T.A., Hawkins, S.J., 2004. Physical stress and biological control regulate the producer-consumer balance in intertidal biofilms. Ecology 85(5), 1372-1382.
Torstensson, A., Chierici, M., Wulff, A., 2012. The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa. Polar Biology 35(2), 205-214.
Tortell, P.D., DiTullio, G.R., Sigman, D.M., Morel, F., 2002. CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Marine Ecology Progress Series 236, 37-43.
Tortell, P.D., Payne, C.D., Li, Y., Trimborn, S., Rost, B., Smith, W.O., Riesselman, C., Dunbar, R.B., Sedwick, P., DiTullio, G.R., 2008. CO2 sensitivity of Southern Ocean phytoplankton. Geophysical Research Letters 35(4), L04605. doi: 10.1029/2007GL032583.
Tortell, P.D., Rau, G.H., Morel, F.M., 2000. Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnology and Oceanography 45(7), 1485-1500.
Trautman, D.A. and Borowitzka, M.A., 1999. The distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing leaf morphology. Marine Ecology Progress Series (179), 215-229.
Vadeboncoeur, Y., Lodge, D.M., Carpenter, S.R., 2001. Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 82(4), 1065-1077.
Van de Waal, D.B., John, U., Ziveri, P., Reichart, G.-J., Hoins, M., Sluijs, A., Rost, B., 2013. Ocean acidification reduces growth and calcification in a marine dinoflagellate. PloS one 8(6), e65987.
Verspagen, J.M., Van de Waal, D.B., Finke, J.F., Visser, P.M., Van Donk, E., Huisman, J., 2014. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PloS one 9(8), e104325.
Weitzel, R.L. 1979. Periphyton measurements and applications. In: Weitzel, R.L. (ed.) , Methods and measurements of periphyton communities: a review. American Society for Testing and Materials 690, 3-33. Philadelphia.
Welker, M., Von Döhren, H., 2006. Cyanobacterial peptides– nature's own combinatorial biosynthesis. FEMS Microbiology Reviews 30(4), 530-563.
Witt, V., Wild, C., Anthony, K., Diaz‐Pulido, G., Uthicke, S., 2011. Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef. Environmental Microbiology 13(11), 2976-2989.
Wood, H.L., Spicer, J.I., Widdicombe, S., 2008. Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society B: Biological Sciences 275(1644), 1767-1773.
Xu, D., Zhou, B., Wang, Y., Ju, Q., Yu, Q., Tang, X., 2010. Effect of CO2 enrichment on competition between Skeletonema costatum and Heterosigma akashiwo. Chinese Journal of Oceanology and Limnology 28, 933-939.
Xu, J., Gao, K., 2012. Future CO2-Induced ocean acidification mediates the physiological performance of a green tide alga. Plant physiology 160(4), 1762-1769.
Yoshimura, T., Nishioka, J., Suzuki, K., Hattori, H., Kiyosawa, H., Watanabe, Y., 2009. Impacts of elevated CO2 on phytoplankton community composition and organic carbon dynamics in nutrient-depleted Okhotsk Sea surface waters. Biogeosciences Discussions 6(2), 4143-4163.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code