Responsive image
博碩士論文 etd-0028116-121536 詳細資訊
Title page for etd-0028116-121536
論文名稱
Title
表面式與體素式大腦皮質厚度量測方法之比較:應用於極低體重早產之青少年
Comparison of surface-based and voxel-based cerebral cortical thickness measurements: application on very-low-birth-weight teenagers born preterm
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-22
繳交日期
Date of Submission
2016-01-29
關鍵字
Keywords
早產兒、大腦皮質厚度、極低出生體重、再現性
Reproducibility, very low birth weight, preterm born children, Cerebral cortical thickness
統計
Statistics
本論文已被瀏覽 5692 次,被下載 463
The thesis/dissertation has been browsed 5692 times, has been downloaded 463 times.
中文摘要
大腦皮質厚度可以提供臨床上重要的資訊,並且診斷特定神經退化疾病嚴重程度,現今自動化量測方法可分為Surface-based或Voxel-based方式,本研究比較三種量測方法的再現性程度,分別為Surface-based方式中的FreeSurfer和Voxel-based方式中的DiReCT、Laplace-VBCT兩種。再現性分析於單一受試者重複進行MR掃瞄時,比較全域及區域皮質的厚度變異係數大小,結果顯示三種方法於全域比較中再現性程度相差不大,在根據DKT atlas所進行的皮質分區比較中,FreeSurfer相較於兩種Voxel-based方法在絕大數的區域中具有最小的變異係數。

此外,本研究使用這三種量測方法,對於15位具有極低出生體重且排除腦部傷害的早產青少年(平均年齡12.8歲)與17位同年齡出生體重正常的對照組(平均年齡13.8歲)進行大腦皮質厚度分析。結果顯示不管使用何種量測方法,早產組相對於同齡對照組在部分區域發現較厚皮質,且只有在使用Laplace-VBCT方法時才發現有極小區域有較薄的皮質。若將受試者採用13歲分為高低次群組比較,早產兒皮質較厚的現象在低齡群組的比較中依舊存在,在高齡群組中反而出現較厚和較薄區域共陳的結果。發現支持人腦大腦皮質於青春期發展有皮質修剪現象,且極低出生體重早產兒有延遲的大腦成長,所以早產兒之皮質修剪現象相對同齡對照組較慢發生,但隨著歲數增長,兩群組之間差異縮小。
Abstract
Cerebral cortical thickness can provide important clinical information, helping the diagnosis of specific neurodegenerative diseases. In general, the automatic cortical thickness measurement methods can be classified into two types, surface-based and voxel-based. In this study, three methods, including one surface-based FreeSurfer and two voxel-based methods, DiReCT and Laplace-VBCT, are compared. A single subject was scanned for 24 times in a period of three and half months. The global and regional mean of cortical thickness are obtained for each experiment to exam the reproducibility. Results show that the coefficients of variance (CV) of three methods are very close to each other while FreeSurfer is found to have the smallest CV in most of DKT cortical regions than two other voxel-based methods.

In addition, magnetic resonance imaging experiments were performed on 15 young teenagers very-low-birth-weight born preterm (mean age 12.8 yr), all without brain injury, and age-matched 17 normal peers (mean age 13.8 yr) to assess the cerebral cortical thickness. The two-sample t-test with a p value of 0.05 is used to detect the statistical difference. Thicker cortical thickness was found in parietal, temporal, and occipital lobes of the preterm group by using all three measurement methods. In a sub-group comparison, thicker cortices are found in similar areas of young preterm compared with young control. However, when the old preterm is compared to the old control group, more cortical regions with thinner thickness are found than those with thicker cortex. In addition, the young preterm group has thinner cortex than old preterm, revealing the cortical thinning during childhood and early adolescence, which can be also observed but in much less area. All of our results suggest that the developmental cortical thinning of preterm born children is delayed to their term born peers, but the group deviation of cortical thickness is narrowed with increasing age.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 介紹 1
1.1 背景 1
1.2 文獻探討 4
1.2.1 皮質自動化量測方法 4
1.2.2 皮質厚度發展曲線 6
1.2.3 早產兒皮質厚度 9
1.3 研究動機 11
第二章 資料與方法 12
2.1 影像資料 12
2.2 皮質厚度量測方法 14
2.2.1 Surface-based : FreeSurfer 14
2.2.2 Voxel-based : Laplace-VBCT演算法 19
2.2.3 Voxel-based : DiReCT演算法 23
2.2.4 皮質厚度量測流程 25
2.3 大腦皮質分區 26
2.4 實驗設計 28
第三章 實驗結果 30
3.1 再現性分析結果 30
3.1.1 全域(Global)皮質厚度分析 30
3.1.2 區域(Region)皮質厚度分析 32
3.2 早產兒皮質厚度分析結果 37
3.2.1分析流程說明 37
3.2.2 Vertex-wise分析 38
3.2.3 Region-wise分析 44
第四章 討論與結論 57
4.1 再現性分析討論 57
4.2 早產兒皮質厚度分析討論 58
4.3 結論 61
參考文獻 62
參考文獻 References
1. Jones, S.E., B.R. Buchbinder, and I. Aharon, Three-dimensional mapping of
cortical thickness using Laplace's equation. Hum Brain Mapp, 2000. 11(1): p.
12-32.
2. The Cytoarchitectonics of the Human Cerebral Cortex. Journal of Anatomy,
1929. 63(Pt 3): p. 389-389.
3. Chung, M.K., et al., Cortical thickness analysis in autism with heat kernel
smoothing. Neuroimage, 2005. 25(4): p. 1256-65.
4. Zielinski, B.A., et al., Longitudinal changes in cortical thickness in autism and
typical development. Brain, 2014. 137(Pt 6): p. 1799-812.
5. Shaw, P., et al., Longitudinal mapping of cortical thickness and clinical outcome
in children and adolescents with attention-deficit/hyperactivity disorder. Arch
Gen Psychiatry, 2006. 63(5): p. 540-9.
6. Almeida Montes, L.G., et al., Brain cortical thickness in ADHD: age, sex, and
clinical correlations. J Atten Disord, 2013. 17(8): p. 641-54.
7. Walhovd, K.B., et al., Blood markers of fatty acids and vitamin D,
cardiovascular measures, body mass index, and physical activity relate to
longitudinal cortical thinning in normal aging. Neurobiol Aging, 2014. 35(5): p.
1055-64.
8. Luders, E., et al., Gender effects on cortical thickness and the influence of
scaling. Hum Brain Mapp, 2006. 27(4): p. 314-24.
9. MacDonald, D., et al., Automated 3-D extraction of inner and outer surfaces of
cerebral cortex from MRI. Neuroimage, 2000. 12(3): p. 340-56.
10. Fischl, B. and A.M. Dale, Measuring the thickness of the human cerebral cortex
from magnetic resonance images. Proc Natl Acad Sci U S A, 2000. 97(20): p.
11050-5.
11. Hutton, C., et al., Voxel-based cortical thickness measurements in MRI.
Neuroimage, 2008. 40(4): p. 1701-10.
12. Das, S.R., et al., Registration based cortical thickness measurement.
Neuroimage, 2009. 45(3): p. 867-79.
13. Winkler, A.M., et al., Cortical thickness or grey matter volume? The importance
of selecting the phenotype for imaging genetics studies. Neuroimage, 2010.
53(3): p. 1135-46.
14. Clarkson, M.J., et al., A comparison of voxel and surface based cortical
thickness estimation methods. Neuroimage, 2011. 57(3): p. 856-65.
15. Acosta, O., et al., Automated voxel-based 3D cortical thickness measurement in
a combined Lagrangian-Eulerian PDE approach using partial volume maps.
Med Image Anal, 2009. 13(5): p. 730-43.
16. Li, Q., et al., Cortical thickness estimation in longitudinal stroke studies: A
comparison of 3 measurement methods. Neuroimage Clin, 2015. 8: p. 526-35.
17. Tustison, N.J., et al., Large-scale evaluation of ANTs and FreeSurfer cortical
thickness measurements. Neuroimage, 2014. 99: p. 166-79.
18. Lerch, J.P. and A.C. Evans, Cortical thickness analysis examined through power
analysis and a population simulation. Neuroimage, 2005. 24(1): p. 163-73.
19. Shaw, P., et al., Neurodevelopmental trajectories of the human cerebral cortex. J
Neurosci, 2008. 28(14): p. 3586-94.
20. Sowell, E.R., et al., Longitudinal mapping of cortical thickness and brain
growth in normal children. J Neurosci, 2004. 24(38): p. 8223-31.
21. Volpe, J.J., Brain injury in premature infants: a complex amalgam of destructive
and developmental disturbances. Lancet Neurol, 2009. 8(1): p. 110-24.
22. Martinussen, M., et al., Cerebral cortex thickness in 15-year-old adolescents
with low birth weight measured by an automated MRI-based method. Brain,
2005. 128(Pt 11): p. 2588-96.
23. Bjuland, K.J., et al., Cortical thickness and cognition in very-low-birth-weight
late teenagers. Early Hum Dev, 2013. 89(6): p. 371-80.
24. Nagy, Z., H. Lagercrantz, and C. Hutton, Effects of preterm birth on cortical
thickness measured in adolescence. Cereb Cortex, 2011. 21(2): p. 300-6.
25. Zubiaurre-Elorza, L., et al., Cortical Thickness and Behavior Abnormalities in
Children Born Preterm. PLOS ONE, 2012.
26. Solsnes, A.E., et al., Cortical morphometry and IQ in VLBW children without
cerebral palsy born in 2003-2007. Neuroimage Clin, 2015. 8: p. 193-201.
27. Murner-Lavanchy, I., et al., Delay of cortical thinning in very preterm born
children. Early Hum Dev, 2014. 90(9): p. 443-50.
28. Collins, D.L., et al., Automatic 3D intersubject registration of MR volumetric
data in standardized Talairach space. J Comput Assist Tomogr, 1994. 18(2): p.
192-205.
29. Segonne, F., et al., A hybrid approach to the skull stripping problem in MRI.
Neuroimage, 2004. 22(3): p. 1060-75.
30. 鍾潤宏, 體素式大腦皮質厚度量測之穩定性分析, in 電機工程學系研究所.
2012, 國立中山大學: 高雄市. p. 60.
31. Klein, A. and J. Tourville, 101 labeled brain images and a consistent human
cortical labeling protocol. Front Neurosci, 2012. 6: p. 171.
32. Grunewaldt, K.H., et al., Follow-up at age 10 years in ELBW children -
functional outcome, brain morphology and results from motor assessments in
infancy. Early Hum Dev, 2014. 90(10): p. 571-8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code