Responsive image
博碩士論文 etd-0029115-130943 詳細資訊
Title page for etd-0029115-130943
論文名稱
Title
過氧化氫調控發育中爪蟾神經-肌突觸分泌自發性神經傳遞物質之研究
Developmental regulation of hydrogen peroxide on the spontaneous neurotransmitter secretion in developing Xenopus neuromuscular synapse
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-10-09
繳交日期
Date of Submission
2015-01-29
關鍵字
Keywords
質體、神經生長因子、活性氧化物質、過氧化氫
insulin-like growth factor-1, pHyPer-Cyto vector, Xenopus neuromuscular junction, hydrogen peroxide, reactive oxygen species
統計
Statistics
本論文已被瀏覽 5704 次,被下載 0
The thesis/dissertation has been browsed 5704 times, has been downloaded 0 times.
中文摘要
過氧化氫 (H2O2) 為一種可穿透細胞膜的活性氧化物質 (ROS),可透過生物體進行好氧性的新陳代謝,粒線體電子傳遞鏈 (electron transport chain, ETC) 氧化磷酸化的作用 (oxidative phosphorylation) 而產生。H2O2 較為人知的是它對於細胞毒性的部分,例如 DNA 損傷、細胞膜的過氧化、細胞老化等,然而其正常生理角色的研究較為少。因此,在本論文中,我們利用發育中爪蟾神經-肌突觸細胞培養,以 whole-cell patch clamp 方式探討H2O2 在突觸發育成熟的過程中所扮演的角色之研究。
我們在第一天的神經-肌肉突觸中給予H2O2 (30μΜ),大約經過8~15分鐘後,自發性神經傳遞物質釋放開始增加,而這種因外給H2O2而導致自發性神經傳遞物質釋放增加的現象會隨著H2O2濃度增加促進作用也跟著增加,最後到達30μΜ H2O2的時候為促進作用增加的頂點。在第三天的神經-肌肉突觸中給予H2O2 (30μΜ),大約經過13分鐘後,自發性神經傳遞物質釋放開始增加,三天的突觸雖然一樣會隨著H2O2濃度增加促進作用也跟著增加,但是,三天的神經細胞對H2O2作用反應跟一天的細胞相比有明顯下降的情形。因此,我們推論在胚胎發育初期,H2O2對突觸建立成熟扮演著重要的角色,然而,隨著胚胎發育成熟,在運動神經-肌細胞間突觸形成較成熟的階段時,較成熟的細胞對H2O2的反應性較弱,進而對神經活性的影響會降低。
不管是一天或是三天的細胞培養,有預處理H2O2 scavenger的神經活性明顯比沒有預處理H2O2 scavenger還要來的低,顯示在神經-肌突觸發育過程中,肌細胞內的H2O2被清除會延緩突觸發育成熟。既然H2O2 scavenger存在的情況下會使得神經的成熟度受到延緩,而在我們實驗室先前的研究當中,我們發現神經生長因子 (Insulin-like Growth Factor-1, IGF-1) 可能在H2O2促進突觸發育成熟的過程中扮演著一個重要的角色。因此,接下來要探討的是,若我們給予H2O2 scavenger來延緩神經-肌突觸的成熟度,那在這種情況之下,我們同時再額外給予IGF-1是否可以逆轉 (reverse) 因H2O2 scavenger所造成的神經細胞成熟度延緩的現象。接下來我們在細胞培養液中同時加入H2O2 scavenger以及IGF-1來共同培養一天,結果發現有IGF-1共同處理的情況下可以逆轉因H2O2 scavenger存在所造成的神經活性下降之情形,也就是說,有IGF-1共同存在的情形下,可以逆轉因H2O2 scavenger所造成的神經-肌突觸發育延緩的現象。
在第一天的細胞培養液中加入H2O2 scavenger經過一天的細胞培養後,與沒有預處理H2O2 scavenger的細胞相比,肌肉細胞對H2O2的敏感度明顯上升了。然而,對於經過H2O2 scavenger處理三天的細胞而言,肌肉細胞對H2O2所引起的突觸前神經元釋放神經傳遞物質之能力無顯著增加,顯示給予H2O2 的scavenger之後,可以藉由延緩突觸發育成熟,進而使細胞對H2O2的反應性更加強烈。另外,與正常控制組相比,有H2O2 scavenger存在的情況下所造成的H2O2敏感度上升之情形,是可以在細胞培養液中加入IGF-1來共同培養一天而reverse的,顯示因H2O2 scavenger所造成的神經細胞成熟度延緩的現象,透過IGF-1而被reverse為正常神經活性之後,神經細胞對H2O2的反應性也出現reverse的情形。
將正常發育的突觸與大量表現 Catalase的突觸相比,當肌肉細胞在大量表現 Catalase的情況下,讓突觸後肌細胞內的H2O2被大量清除一天之後,其突觸前神經元釋放神經傳遞物質的能力明顯下降,顯示肌細胞內生性H2O2會影響發育中運動神經元-骨骼肌突觸建立成熟。當神經-肌突觸中的肌肉細胞大量表現 Catalase的情況下,我們外給H2O2不會造成神經活性上升。
當以一種可偵測細胞質中H2O2含量變化的質體 (pHyPer-Cyto vector) 來觀察肌細胞內H2O2的變化,結果證實HyPer對H2O2的螢光反應會隨著濃度升高而跟著升高。接著透過電生理實驗與螢光縮時攝影的同時記錄來證實給予H2O2 (100 μΜ) 後30秒HyPer螢光開始上升;而加藥後14分鐘自發性神經傳遞物質釋放開始增加,這個實驗結果證實肌細胞內H2O2上升之後,突觸前神經傳遞物質釋放才會增加。除此之外,透過個別分析給予H2O2 (30 μΜ) 後HyPer螢光變化曲線以及神經活性變化情形,結果可發現投予H2O2 (30 μΜ) 後35~40秒後螢光開始上升;8~15分鐘後突觸前神經傳遞物質釋放增加。以上的結果均顯示肌細胞內H2O2含量上升之後,突觸前神經傳遞物質釋放才會增加。
正常生理情況下的突觸前運動神經元產生動作電位時,會導致突觸後的肌細胞膜去極化而收縮,由於肌肉收縮會產生ROS。我們透過外給KCl來模擬正常生理情況下肌細胞膜去極化而收縮產生H2O2,藉由cyto-HyPer偵測肌細胞內H2O2濃度的改變。從結果中證實隨著KCl濃度升高,H2O2產量也跟著增多。由以上結果推斷,肌細胞內生性H2O2透過釋放IGF-1來滋養突觸前神經元,使突觸建立成熟。
Abstract
Hydrogen peroxide (H2O2), a membrane-permeable reactive oxygen species, is produced by oxidative phosphorylation from electron transport chain. H2O2 is famous for cytotoxic, such as DNA damage, lipid peroxidation and aging. However, the study of the H2O2 in physiology is not know more. We have previously demonstrated that muscle-derived insulin-like growth factor-1 (IGF-1) is important in the development of neuromuscular synapse and hydrogen peroxide plays an important role in the release of IGF-1. Here we want to study on developmental regulation of hydrogen peroxide on the spontaneous neurotransmitter secretion in developing Xenopus neuromuscular synapse by using the recording of whole-cell patch clamp.
In Day-1 Xenopus neuromuscular junction, the spontaneous synaptic current (SSC) frequency is robustly facilitated in 8~15 minutes after H2O2 application. Bath application of H2O2 dose-dependently increases the frequency of SSC and reaches its maximal effect at 30 μM in Day-1 Xenopus neuromuscular junction. The SSC frequency is robustly facilitated in 13 minutes after H2O2 application in Day-3 cultures. The dose-response curve is downward shift while the facilitation effect of H2O2 on SSC frequency was test in Day-3 cultures, suggesting the sensitivity of H2O2-induced facilitating effect reduced as synapse matured. Pretreatment of the culture with H2O2 scavengers both N-Acetylcysteine or sodium pyruvate for 1 day significantly hampered the development of synapse as the SSC frequency significant reduced in treated Day-1 synapses. Day-3 cultures are also pretreated by H2O2 scavengers, and the SSC frequency is also significant reduced, suggesting the maturity of synapse is slow when lack of H2O2 in the development of neuromuscular synapse. Co-pretreatment the culture with IGF-1 in N-Acetylcysteine/sodium pyruvate group reversed N-Acetylcysteine /sodium pyruvate treatment-induced synapse immaturity.
The effect of H2O2 on Day-1 N-Acetylcysteine/sodium pyruvate-pretreated synapse was test after extensively washed the culture to removed N-Acetylcysteine /sodium pyruvate. The SSC frequency facilitating effect induced by H2O2 was significantly enhanced in treated synapse, which supports the notion that H2O2 in involved in the development of synapse. Furthermore, co-pretreatment the culture with IGF-1 in N-Acetylcysteine/sodium pyruvate group reversed N-Acetylcysteine /sodium pyruvate treatment-induced synapse immaturity, it means that the SSC frequency facilitating effect induced by H2O2 was similar with non-treated synapse.
Construction catalase DNA in pDsRed-C1 and overexpression in the myocyte. The SSC frequency is significantly reduced, suggesting endogenous H2O2 play an important role in the maturity of developing neuromuscular synapse. After bath application of H2O2 is not facilitating the SSC frequency.
Overexpression pHyPer-Cyto vector in the myocyte, bath application of H2O2 dose-dependently increases the fluorescence of Hyper. Time-lapse of fluorescence and whole-cell patch clamp are not only synchronous recording but also asynchronous recording to prove that the content of H2O2 in the muscle cell is elevated first, then the frequency of spontaneous ACh release at developing Xenopus neuromuscular synapses is increased. The fluorescence of Hyper is robustly increased in 30~40 seconds and the SSC frequency is increased in 8~15 minutes after H2O2 application, suggesting H2O2 in the myocyte is increased first then SSC frequency. The production of H2O2 is elevated by contraction of muscle cell after KCl application. The fluorescence of Hyper is dose-dependently increases after KCl application.
In previous study in laboratory, H2O2 in myocyte induce the release of IGF-1 which retrogradely enhance the spontaneous neurotransmitter release from presynaptic motoneuron. Overall, results from our current studies provide strong supports on the involvement of H2O2 in the early development of neuromuscular synapse.
目次 Table of Contents
論文審定書 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ i
致謝 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ii
中文摘要 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ iii
Abstract ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ vi
目錄 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ix
圖表目錄 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ x
縮寫表 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ xi
一、 緒論 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1
1.1 前言 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1
1.2 研究目的 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 9
二、 實驗材料 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 10
三、 實驗方法 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 12
(一) 神經釋放神經傳遞物質活性之記錄 ∙∙∙∙∙∙∙∙∙∙∙∙∙ 12
(二) pHyPer-cyto vector和Catalase/pDsRed-C1之質體放大 ∙∙∙∙∙ 13
(三) Catalase/pDsRed-C1之重組質體製備 ∙∙∙∙∙∙∙∙∙∙∙∙ 16
(四) 非洲爪蟾神經-肌突觸混合細胞培養之轉染 ∙∙∙∙∙∙∙∙∙ 21
四、 實驗結果 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 24
五、 結果討論 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35
六、 參考文獻 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 41
附錄 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 49
參考文獻 References
Afanas'ev I (2010a) Signaling and Damaging Functions of Free Radicals in Aging-Free Radical Theory, Hormesis, and TOR. Aging and disease 1:75-88.
Afanas'ev I (2010b) Signaling of reactive oxygen and nitrogen species in Diabetes mellitus. Oxidative medicine and cellular longevity 3:361-373.
Anderson MJ, Cohen MW, Zorychta E (1977) Effects of innervation on the distribu tion of acetylcholine receptors on cultured muscle cells. The Journal of physiology 268:731-756.
Bleau, G., Giasson, C. & Brunette, I. (1998) Measurement of hydrogen peroxide in biological samples containing high levels of ascorbic acid. Anal Biochem, 263, 13-17.
Banker, G. & Goslin, K. (1998) Culturing nerve cells. MIT Press, Cambridge, Mass.
Bukharaeva EA, Samigullin D, Nikolsky EE, Magazanik LG (2007) Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. Journal of neurochemistry 100:939-949.
Bao L, Avshalumov MV, Patel JC, Lee CR, Miller EW, Chang CJ, Rice ME (2009) Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling. The Journal of neuroscience 29:9002-9010.
Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. The Journal of biological chemistry 272:20313-20316.
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. The Journal of biological chemistry 272:217-221.
Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V (2004) Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. American journal of physiology Lung cellular and molecular physiology 286:L344-353.
Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. The Biochemical journal 128:617-630.
Cotterill LA, Gower JD, Fuller BJ, Green CJ (1990) Evidence that calcium mediates free radical damage through activation of phospholipase A2 during cold storage of the rabbit kidney. Advances in experimental medicine and biology 264:397-400.
Cai J, Jones DP (1998) Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. The Journal of biological chemistry 273:11401-11404.
Cotgreave IA, Moldeus P, Orrenius S (1988) Host biochemical defense mechanisms against prooxidants. Annual review of pharmacology and toxicology 28:189-212.
Dymkowska D, Szczepanowska J, Wieckowski MR, Wojtczak L (2006) Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis. Biochimica et biophysica acta 1763:152-163.
Droge W (2002) Free radicals in the physiological control of cell function. Physiological reviews 82:47-95.
Delafontaine, P. & Ku, L. (1997) Reactive oxygen species stimulate insulin-like growth factor I synthesis in vascular smooth muscle cells. Cardiovasc Res, 33, 216-222.
Evers J, Laser M, Sun YA, Xie ZP, Poo MM (1989) Studies of nerve-muscle interactions in Xenopus cell culture: analysis of early synaptic currents. J Neurosci 9:1523-1539.
Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Laboratory investigation; a journal of technical methods and pathology 47:412-426.
Fu WM, Huang FL (1994) Potentiation by endogenously released ATP of spontaneous transmitter secretion at developing neuromuscular synapses in Xenopus cell cultures. British journal of pharmacology 111:880-886.
Giniatullin AR, Giniatullin RA (2003) Dual action of hydrogen peroxide on synaptic transmission at the frog neuromuscular junction. The Journal of physiology 552:283-293.
Giniatullin AR, Grishin SN, Sharifullina ER, Petrov AM, Zefirov AL, Giniatullin RA (2005) Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction. The Journal of physiology 565:229-242.
Gautam, D.K., Misro, M.M., Chaki, S.P. & Sehgal, N. (2006) H2O2 at physiological concentrations modulates Leydig cell function inducing oxidative stress and apoptosis. Apoptosis, 11, 39-46.
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch: European journal of physiology 391:85-100.
Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America 91:3270-3274.
Harman D (1956) Aging: a theory based on free radical and radiation chemistry. Journal of gerontology 11:298-300.
Harman D (1973) Free radical theory of aging. Triangle; the Sandoz journal of medical science 12:153-158.
Harman D (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology 10:773-781.
Higuchi M, Honda T, Proske RJ, Yeh ET (1998) Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 17:2753-2760.
Henderson, C.E. (1996) Role of neurotrophic factors in neuronal development. Curr. Opin. Neurobiol. 6, 67-70.
Ishii, D.N. (1989) Relationship of insulin-like growth factor II gene expression in muscle to synaptogenesis. Proc Natl Acad Sci U S A, 86, 2898-2902.
Jagtap, J.C., Chandele, A., Chopde, B.A. & Shastry, P. (2003) Sodium pyruvate protects against H(2)O(2) mediated apoptosis in human neuroblastoma cell line-SK-N-MC. J Chem Neuroanat, 26, 109-118.
Jackson MJ (2011) Control of reactive oxygen species production in contracting skeletal muscle. Antioxidants & redox signaling 15:2477-2486.
Konishi H, Tanaka M, Takemura Y, Matsuzaki H, Ono Y, Kikkawa U, Nishizuka Y (1997) Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proceedings of the National Academy of Sciences of the United States of America 94:11233-11237.
Kowaltowski AJ, Castilho RF, Grijalba MT, Bechara EJ, Vercesi AE (1996) Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation. The Journal of biological chemistry 271:2929-2934.
Kress M, Riedl B, Reeh PW (1995) Effects of oxygen radicals on nociceptive afferents in the rat skin in vitro. Pain 62:87-94.
Kemmerling U, Munoz P, Muller M, Sanchez G, Aylwin ML, Klann E, Carrasco MA, Hidalgo C (2007) Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons. Cell calcium 41:491-502.
Kodama M, Kamioka Y, Nakayama T, Nagata C, Morooka N, Ueno Y (1987) Generation of free radical and hydrogen peroxide from 2-hydroxyemodin, a direct-acting mutagen, and DNA strand breaks by active oxygen. Toxicology letters 37:149-156.
Koloatsis, V.E., Clatterbuck, R.E., Winslow, J.W., Cayouette, M.H. and Price, D.L. (1993) Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron. 10, 359-367.
Liou JC, Tsai FZ, Ho SY (2003) Potentiation of quantal secretion by insulin-like growth factor-1 at developing motoneurons in Xenopus cell culture. The Journal of physiology 553:719-728.
Lu B, Je HS (2003) Neurotrophic regulation of the development and function of the neuromuscular synapses. Journal of neurocytology 32:931-941.
Laufer R, Changeux JP (1987) Calcitonin gene-related peptide elevates cyclic AMP levels in chick skeletal muscle: possible neurotrophic role for a coexisting neuronal messenger. The EMBO journal 6:901-906.
Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. American journal of physiology Cell physiology 282:C227-241.
MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N, et al. (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641-650.
McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). The Journal of biological chemistry 244:6049-6055.
Medow MS, Bamji N, Clarke D, Ocon AJ, Stewart JM (2011) Reactive oxygen species (ROS) from NADPH and xanthine oxidase modulate the cutaneous local heating response in healthy humans. J Appl Physiol (1985) 111:20-26.
Munnamalai V, Suter DM (2009) Reactive oxygen species regulate F-actin dynamics in neuronal growth cones and neurite outgrowth. Journal of neurochemistry 108:644-661.
Milton VJ, Jarrett HE, Gowers K, Chalak S, Briggs L, Robinson IM, Sweeney ST (2011) Oxidative stress induces overgrowth of the Drosophila neuromuscular junction. Proceedings of the National Academy of Sciences of the United States of America 108:17521-17526.
Milton VJ, Sweeney ST (2012) Oxidative stress in synapse development and function. Developmental neurobiology 72:100-110.
Mittal CK, Murad F (1977) Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: a physiological regulator of guanosine 3',5'-monophosphate formation. Proceedings of the National Academy of Sciences of the United States of America 74:4360-4364.
Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxidants & redox signaling 14:2013-2054.
Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxidants & redox signaling 9:2277-2293.
McMahon, S.B. and Priestley, J.V. (1995) Peripheral neuropathies and neurotrophic factors: animal models and clinical perspectives. Curr. Opin. Neurobiol. 5, 616-624.
Nikolsky EE, Vyskocil F, Bukharaeva EA, Samigullin D, Magazanik LG (2004) Cholinergic regulation of the evoked quantal release at frog neuromuscular junction. The Journal of physiology 560:77-88.
Nastuk MA, Fallon JR (1993) Agrin and the molecular choreography of synapse formation. Trends in neurosciences 16:72-76.
Nakano M (1992) Free radicals and their biological significance: present and future. Human cell 5:334-340.
Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524-526.
Samigullin D, Bukharaeva EA, Vyskocil F, Nikolsky EE (2005) Calcium dependence of uni-quantal release latencies and quantal content at mouse neuromuscular junction. Physiological research / Academia Scientiarum Bohemoslovaca 54:129-132.
Spitzer NC, Lamborghini JE (1976) The development of the action potential mechanism of amphibian neurons isolated in culture. Proceedings of the National Academy of Sciences of the United States of America 73:1641-1645.
Servitja JM, Masgrau R, Pardo R, Sarri E, Picatoste F (2000) Effects of oxidative stress on phospholipid signaling in rat cultured astrocytes and brain slices. Journal of neurochemistry 75:788-794.
Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296-299.
Sudha K, Rao AV, Rao S, Rao A (2003) Free radical toxicity and antioxidants in Parkinson's disease. Neurology India 51:60-62.
Sendtner, M., Schmalbruch, H., Stockli, K.A. Carroll, P., Kreutzberg, G.W. and Thoenen, H. (1992) Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuropathy. Nature 358, 502-4.
Takahashi, T., Nakajima, Y., Hirosawa, K., Nakajima, S. and Onodera, K. (1987) Structure and physiology of developing neuromuscular synapses in culture. J. Neurosci. 7, 473-81.
Tsentsevitsky A, Nikolsky E, Giniatullin R, Bukharaeva E (2011) Opposite modulation of time course of quantal release in two parts of the same synapse by reactive oxygen species. Neuroscience 189:93-99.
Tretter L, Adam-Vizi V (1996) Early events in free radical-mediated damage of isolated nerve terminals: effects of peroxides on membrane potential and intracellular Na+ and Ca2+ concentrations. Journal of neurochemistry 66:2057-2066.
Wang T, Xie Z, Lu B (1995) Nitric oxide mediates activity-dependent synaptic suppression at developing neuromuscular synapses. Nature 374:262-266.
Wu H, Xiong WC, Mei L (2010) To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137:1017-1033.
Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH (1992) Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proceedings of the National Academy of Sciences of the United States of America 89:11993-11997.
Weiss SJ (1986) Oxygen, ischemia and inflammation. Acta physiologica Scandinavica Supplementum 548:9-37.
White AA, Crawford KM, Patt CS, Lad PJ (1976) Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide. The Journal of biological chemistry 251:7304-7312.
Xie ZP, Poo MM (1986) Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. Proc Natl Sci USA 83:7069-7073.
Yan, Q., Elliott, J. and Snider, W.D. (1992) Brain-derived neurotrophic factor rescues spinal motoneurons from axotomy induced cell death. Nature 360, 753-755.
Zhong, J. & Lee, W.H. (2007) Hydrogen peroxide attenuates insulin-like growth factor-1 neuroprotective effect, prevented by minocycline. Neurochem Int, 51, 398-404.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.125.219
論文開放下載的時間是 校外不公開

Your IP address is 18.223.125.219
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code