Responsive image
博碩士論文 etd-0029118-150639 詳細資訊
Title page for etd-0029118-150639
論文名稱
Title
多信號生物醫學信號記錄集成電路晶片設計
Integrated Circuit Designs for a Multi-signal Biomedical Signal Recording Chip
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-25
繳交日期
Date of Submission
2018-01-29
關鍵字
Keywords
集成電路、生醫晶片、切換式電容放大器、溫度監測電路、可調式增益
biomedical chip, adjustable gain, switched capacitor amplifier, integrated circuit, temperature monitoring circuit
統計
Statistics
本論文已被瀏覽 5657 次,被下載 25
The thesis/dissertation has been browsed 5657 times, has been downloaded 25 times.
中文摘要
隨著科技日新月異,目前的社會需要有即時的健康照護系統,能夠隨時
記錄身體的變化以達到維持身體機能正常運作的效果。可量測心電圖及血壓計
等的裝置也朝向微小化和低功率的方向發展,穿戴式及植入式的微小晶片更是
生醫晶片的主流。此論文著重在於即時量測的微小多功能性生醫晶片,本電路
分為三個主要部分,分別為Bandgap電路、Pizeoelectric電路、ECG & EMG
電路系統,分別能感測周遭環境的溫度、壓力感測、心電圖以及肌肉電流。利
用外部壓電片連接Piezoelectric電路儲存所接受到的壓電訊號然後通過內部
的電容放大器將訊號處理後輸出波形,藉此了解施力的大小與正確與否,而
ECG & EMG電路系統則能藉由外部接的電極貼片輸入心電訊號再輸出所量測
到的心電波形與頻率,再由系統中的DAC與浮動電池調整增益放大器的準位電
壓。對於了解運動強度與心跳頻率方面有很大的幫助。本電路由台積電0.18um
製程技術實現在晶片上,其面積為321.2um*383.2um。本論文結合壓電、溫
度、心電圖與生物電流量測,以達到隨時記錄身體狀況的能力,並且能藉由量
測的數據觀察身體的週期變化。此晶片工作電壓為 V再搭配小面積更適用於穿
戴式或植入式的生醫應用。
Abstract
With the advance of mobile healthcare and the Internet-of-things increasing numbers of applications incorporate low-power miniature sensing devices for various types of input signal. In the health and fitness market, devices monitor rehabilitation progress, quantify personal body condition, map activity, and often provide means for data integration within the front-end or via a network. This thesis focuses on the microelectronic biomedical chip for real-time measurement in the target application of a wearable monitoring system for athletes or rehabilitation.
The circuit is divided into three main parts: the temperature readout, the piezoelectric vibration readout circuit, and the variable gain amplifier circuit system to sense the electrocardiograms or muscle activity.
The vibration readout uses an external piezoelectric transducer foil which converts strain to voltage that is then conditioned and acquired by the integrated amplifier. The variable gain amplifier circuit connect to external gel electrode patches. It incorporates digitally controlled offset compensation which enables tracking and compensating for varying electrode offset in real-time. Also the amplifier gain is variable during operation to provide a good match for the amplitude of the signal input.
The system is designed and implemented in TSMC 0.18um CMOS process technology in a small active circuit area of 321.2um * 383.2um. Measured results are reported which confirm the intended operation.
目次 Table of Contents
Content
摘要……………………………………………………………………..ⅰ
Abstract................................................iii
Content………..………………………………………………………..iv
List of Figures…………………………………………………..…….vii
List of Table…………………………………………………………….xi
Chapter 1
Introduction …………………………………………………………...…1
1.1. Motivation …………………………………………………...….1
1.2. Target Specification ………………………………………..…....3
1.3. Contributions ………………………………………………...….4
Chapter 2
Circuit Design ……………………………………………………………5
2.1. Introduction …………………………………………………......5
2.2. Piezoelectric sensor ………………………………………...…...5
2.3. Piezoelectric sensor readout circuit…………………………….10
2.4. ExG readout system…………………………………….…...….14
2.5. Floating battery circuit …………………………………………17
2.6. DAC ……………………………………………………………19
2.7. Bandgap and temperature monitoring circuit…………………..20
Chapter 3
Integrated circuit implementation ………………………………………22
3.1. Overall system plan………………………………………….....22
3.1.1. Implementation of the buffer for bandgap readout……...…23
3.1.2. Bandgap implementation………………………...………...25
3.1.3.‘Capscaling’ circuit for piezo readout………………….…29
3.1.4. Wide range OPA ……………………………………...……31
3.1.5. ExG variable gain amplifier circuit……………………......33
3.1.6. DAC ……………………………………………………….34
3.1.7. Floating battery …………………………………………...37
3.1.8. Bias current distribution…………………………..…....….39
3.2. Chip layout ……………………………………….……………40
Chapter 4
Measured result …………………………………………...……………42
4.1. Chip photos……………………………………………..…..…..42
4.2. Measurement Setup ………………………………………....…43
4.3. Measurement of integrated circuit ………………………….….45
4.3.1. Measurement of ECG…………………………………..…..45
4.3.2. Measurement of piezo readout circuit……………….…..…50
4.3.3. Measurement of bandgap circuit.……………………….…51
4.3.4.Comparison with other programmable systems for biomedical signal applications……………………………………….54
Chapter 5
Conclusions and future works …………………………………..……..57
5.1. Conclusions ……………………………………..…………...57
5.2. Future works ……………………………………………...….58
Reference ………………………………………………………..….….59
參考文獻 References
[1] R. Rieger, M. Schuettler, D. Pal, C. Clarke, et al., “Very low-noise ENG amplifier system using CMOS technology,” IEEE rans. Neural System and Rehab.
Eng., vol. 14, no.4, pp. 427-437, 2006.
[2] M. Haugland, and J. Hoffer, “Slip information obtained from the cutaneous electroneurogram: Application in closed loop control of functional electrical stimulation.” IEEE Tran. Rehab. Eng., vol2, pp. 29-36, 1994.
[3] B. Popovic, R. B. Stein, et al., “Sensory nerve recording for closed-loop control to restore motor functions,” IEEE Tran. Biomed. Eng., vol. 40, no. 10, pp.
1024-1031, 1993.
[4] R. G. Haahr, S. Duun, E. V. Thomsen, K. Hoppe, and J. Branebjerg, “A Wearable “Electronic Patch” for Wireless Continuous Monitoring of Chronically Dieased Parients,” in Proc. 5th Int. Workshop on Wearable and Implantable Body
Sensor Network, 2008, pp. 66-70.
[5] Measurement Specialties. (2006, Mar. 15). Piezo Film Sensors Technical Manual [Online]. Available: http://www.contactmicrophones.com/techman.pdf
[6] Measurement Specialties. (2008, Oct. 13). LDT with Crimps Vibration
Sensor/Switch [Online]. Available: http://www.meas-spec.com/downloads/LDT_sERIES.pdf
[7] X. Zou, X. Xu, L. Yao, and Y. Lian, “A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip,” IEEE J. Solid-State
Circuits, vol. 44, no. 4, pp. 1067-1077, 2009.
[8] H. Kim, S. Kim, N. Van Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C. Van Hoof, and R.F. Yazicioglu, “A Configurable and Low-Power Mixed Signal SoC for Portable ECG Monitoring Applications,” IEEE Trans. Biomedical Circuits and
Systems, vol. 8, no. 2, pp. 257-267, 2014.
[9] Y. Zhang, F. Zhang, Y. Shakhsheer, J. D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E. J. Carlson, A. Wood, B. H. Calhoun, and B. P. Otis, “A Batteryless 19 μW MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 199-213,
2013.
[10] G. Yang, L. Xie, M. Mӓntysalo, J. Chen, H. Tenhunen, and L.R. Zheng, “Bio-Patch Design and Implementation Based on a Low-Power Systemon- Chip and Paper-Based Inkjet Printing Technology,” IEEE Trans. Information Technology in B
iomedicine, vol. 16, no. 6, pp. 1043-1050, 2012.
[11] Y.J. Huang, T.H. Tzeng, T.W. Lin, C.W. Huang, P.W. Yen, P.H. Kuo, C.T. Lin, and S.S. Lu, “A Self-Powered CMOS Reconfigurable Multi- Sensor SoC for Biomedical Applications,” IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 851-866,
2014.
[12] N. Van Helleputte, M. Konijnenburg, J. Pettine, D.W. Jee, H. Kim, A. Morgado, R. Van Wegberg, T. Torfs, R. Mohan, A. Breeschoten, H. deGroot, C. Van Hoof, and R. Firat Yazicioglu, “A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP,” IEEE J. Solid-State
Circuits, vol. 50, no.1, pp. 230-244, 2015.
[13] Measurement Specialties. (2008, Aug. 01). Piezo Film Product Guide and
Price List [Online]. Available: http://www.meas-spec.com/downloads/Piezo_Film_Product_Guide.pdf
[14] G. Gautschi, Piezoelectric Sensorics, 1st ed. Berlin: Springer, 2002.
[15] P. Holmlund, R. Lundström, and L. Lindberg, “Mechanical impedance of the human body in vertical direction,” Applied Ergonomics, vol.31, pp. 415-422,
Aug. 2000.
[16] M. Specialties, "LDT with Crimps Vibration Sensor/Switch," Measurement
Specialties, 2008.
[17] R. Rieger, "Signal-Folding for Range-Enhanced Acquisition and Reconstruction," IEEE Trans. Circuits and Systems I, vol. 62, no. 10, pp. 2615-2617,
2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code