Responsive image
博碩士論文 etd-0030118-172217 詳細資訊
Title page for etd-0030118-172217
論文名稱
Title
可光電調控的維度轉換液晶光柵與菲涅爾液晶透鏡之研究
The studies of opto-electrically controlled dimensional switching grating and Fresnel lens based on liquid crystals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-18
繳交日期
Date of Submission
2018-01-30
關鍵字
Keywords
可複寫、光導電薄膜、菲涅爾透鏡、藍相液晶、鋸齒狀電極、維度轉換、相位光柵
photoconductive layer, Fresnel lens, rewritable, sawtooth electrodes, blue phase liquid crystal, phase grating, dimensional switchable
統計
Statistics
本論文已被瀏覽 5691 次,被下載 68
The thesis/dissertation has been browsed 5691 times, has been downloaded 68 times.
中文摘要
本論文提出兩種以液晶材料主體的光電可調元件:維度轉換相位光柵與可光電調控的菲涅爾透鏡。兩個研究主題的探討,茲說明如下:
第一個研究利用在單片導電玻璃上形成鋸齒狀電極,產生水平方向的電場,再搭配藍相液晶材料製作出維度可轉換的相位液晶光柵。實驗結果顯示一維與二維光柵的切換,可藉由改變入射光的偏振方向實現,主要是透過入射偏振光與鋸齒狀電極的相對角度,使偏振光感受到光柵內不同的折射率(相位)分佈,達到維度轉換的效果。在施加電壓150 V時,一維與二維光柵的一階繞射效率可分別達到20 %與10 %,且光柵具有微小的磁滯效應約10 V,相當於最高繞射效率之電壓的 6.67 %。此外維度轉換光柵隨電壓的上升與衰減時間分別為0.9與1.1 ms,相當於亞毫秒等級,未來可廣泛應用於高速光學操作的領域。
第二個研究利用液晶結合可消除並複寫的光導電薄膜,製作可光、電場調控的菲涅爾透鏡。藉由薩格涅特干涉術產生的類菲涅爾圖案,並照射於光導電薄膜上時,可形成具導電性的亮區與無導電性的暗區結構。相鄰兩區導電率的差異會導致液晶折射率的不匹配,進而形成透鏡聚焦效果。藉由調整樣品的位置,使照射於樣品上的類菲涅爾圖案擁有不同的中心區域之半徑,可輕易的改變菲涅爾液晶透鏡的焦距,此外隨著不同的激發光強度或施加電壓大小,菲涅爾液晶透鏡的聚焦效率也能任意的改變調控。
Abstract
This dissertation proposes two tunable devices based on liquid crystals: a switchable two-dimensional phase grating and an electrically and optically tunable Fresnel lens. The following two topics are discussed.
Topic I demonstrates a switchable two-dimensional phase grating in blue phase liquid crystal (BPLC), which is fabricated by sawtooth in-plane-switch (IPS) electrodes. They are used to generate the horizontal electric field on a single indium-tin-oxide (ITO) glass substrate and, as a result, the 1-D and 2-D phase gratings can be mutual switched via different polarizations of incident light with an applied voltage. The first-order diffraction efficiency is up to 20 % and 10 % for the 1-D and 2-D phase grating at V = 150 V, respectively. Moreover, the rise and decay time is 0.9 and 1.1 ms, respectively, which is suitable for wide applications of high-speed optical manipulations.
Topic II investigates an electrically and optically tunable Fresnel lens in a liquid crystal (LC) cell with an erasable and rewritable photoconductive layer. By using a Sagnac interferometer, a Fresnel-like pattern can be induced on the photoconductive polymer layer which results in conductive and nonconductive structures in bright and dark zones. This effect causes the mismatch of the LC refractive index between adjacent zones with external voltage, generating a LC Fresnel lens. The focal length of the proposed Fresnel lens can be easily tuned by varying the Fresnel pattern size, and the focusing efficiency can be optically and electrically controlled.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 ix
第一章 緒論 1
第二章 液晶簡介 3
2.1 何謂液晶 3
2.2 液晶分類 4
2.2.1向列相 4
2.2.2層列相 5
2.2.3膽固醇相 6
2.3 液晶的物理特性 7
2.3.1光學異向性 7
2.3.2介電異向性 9
2.3.3彈性連續體理論 11
2.3.4 秩序參數 12
2.3.5 表面配向 13
2.3.6 溫度效應 14
第三章 藍相液晶與光導電薄膜 16
3.1 藍相液晶 16
3.1.1 藍相簡介 16
3.1.2 藍相的旋光性 17
3.1.3 藍相的結構形成 17
3.1.4 藍相的光子晶體特性 21
3.1.5 藍相的克爾效應 22
3.1.6 藍相的電致伸縮效應 23
3.2 光導電薄膜 24
3.2.1 材料簡介與特性 24
3.2.2 PVK與C60的電荷轉移機制 26
3.2.3 光導電性 28
3.2.4 光引致導電機制 29
第四章 繞射光柵與菲涅爾透鏡 31
4.1 繞射 31
4.2 繞射光柵 32
4.2.1 繞射光柵的類型 32
4.2.2 相位光柵的分類 33
4.2.3 相位光柵的繞射效率 34
4.3 菲涅爾透鏡 37
4.3.1菲涅爾透鏡的類型 37
4.3.2菲涅爾透鏡的結構定義與其聚焦效率理論 39
第五章 利用藍相液晶製作維度可轉換光柵之研究 43
5.1 簡介 43
5.2 材料與實驗方法 44
5.3 研究結果討論 46
第六章 利用光導電薄膜製作可光電控複寫式菲涅爾液晶透鏡之研究 52
6.1 簡介 52
6.2 樣品製作與實驗架設 53
6.3 研究結果討論 55
第七章 總結與未來展望 59
7.1 總結 59
7.2 未來展望 60
參考文獻 61
參考文獻 References
[1] P. G. de Gennes and J. Prost, The Physics of Liquids (Oxford University Press, 1993).
[2] L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag Publishing Co, 1994).
[3] G. W. Gray, Thermotropic Liquid Crystals (the Society of Chemical Industry, 1987).
[4] A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal
(PDLC) Materials,” Chem. Mater. 6(10), 1726–1736 (1994).
[5] G. R. Fowles, Introduction to Modern Optics, 2nd ed. (University of Utah, 1975).
[6] A. Yariv, Quantum Electronics (John Wiley & Sons Press, 1989).
[7] I.-C. Khoo, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons Press, 1995).
[8] F. C. Frank, “I. Liquid crystals. On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[9] P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).
[10] J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[11] F. Reinitzer, “Contributions to the knowledge of cholesterol,” Liq. Cryst. 5(1), 7–18 (1989).
[12] T. Seideman, “The liquid-crystalline blue phases,” Rep. Prog. Phys. 53(6), 659–705 (1990).
[13] H. Kikuchi, “Liquid Crystalline Blue Phases,” Struct. Bonding 128, 99–117 (2008).
[14] I. Dierking, Textures of Liquid Crystals (Wiley-VCH: Weinheim, 2003).
[15] E. Dubois-violette and B. Pansu, “Frustration and related topology of blue phases,” Mol. Cryst. Liq. Cryst. 165(1), 151–182
(1988).
[16] R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic bands in simple and body-centered-cubic cholesteric blue phases,”
Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47(3), 2067–2072 (1993).
[17] H. Kleinert and K. Maki, “Lattice textures in cholesteric liquid crystals,” Fortschr. Phys. 29(5), 219–259 (1981).
[18] S. Meiboom, J. P. Sethna, W. P. Anderson, and W. F. Brinkman, “Theory of the blue phase cholesteric liquid crystals,” Phys. Rev.
Lett. 46(18), 1216–1219 (1981).
[19] Y. Ogawa, J.-I. Fukuda, H. Yoshida, and M. Ozaki, “Finite-difference time-domain analysis of cholesteric blue phase II using the
Landau-de Gennes tensor order parameter model,” Opt. Lett. 38(17), 3380–3383 (2013).
[20] F. Porsch and H. Stegemeyer, “The effect of an electric field on the selective reflection bands of liquid crystalline blue phases,”
Chem. Phys. Lett. 125(4), 319–323 (1986).
[21] H. S. Kitzerow, “Blue phase come of age: a review,” Proc. SPIE 7232, 723205 (2009).
[22] J. Yan, M. Jiao, L. Rao, and S.-T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-
phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010).
[23] P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116(3–4), 197–206 (1985).
[24] S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite
with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[25] G. Heppke, B. Jérôme, H.-S. Kitzerow, and P. Pieranski, “Electrostriction of BPI and BPII for blue phase systems with negative
dielectric anisotropy,” J. Phys. France 50(5), 549–562 (1989).
[26] H. Hoegl, “On Photoelectric Effects in Polymers and Their Sensitization by Dopants,” J. Phys. Chem. 69(3), 755–766 (1965).
[27] Y. Wang and N. Herron, “Semiconductor nanocrystals in carrier-transporting polymers: Charge generation and charge transport,”
J. Lumin. 70(1–6), 48–59 (1996).
[28] H. S. Kim, C. H. Kim, C. S. Ha, and J. K. Lee, “Organic solar cell devices based on PVK/porphyrin system,” Synth. Met. 117(1–3),
289–291 (2001).
[29] A. Dyadyusha, M. Kaczmarek, and S. Slussarenko, “Dynamics and uniformity of reorientation in liquid crystal cells with PVK
alignment layers,” J. Electron.-Liq. Cryst. Commun. 23, 1–10 (2003).
[30] Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
[31] Q. D. Ling, S. L. Lim, Y. Song, C. X. Zhu, and D. S. H. Chan, “Nonvolatile Polymer Memory Device Based on Bistable Electrical
Switching in a Thin Film of Poly(N-vinylcarbazole) with Covalently Bonded C60,” Langmuir 23(1), 312–319 (2007).
[32] A. Grunnet-Jepsen, D. Wright, B. Smith, M. S. Bratcher, M. S. DeClue, J. S. Siegel, W. E. Moerner, “Spectroscopic determination
of trap density in C60-sensitized photorefractive polymers,” Chem. Phys. Lett. 291(5–6), 553–561 (1998).
[33] H. J. Bolink, C. Arts, V. V. Krasnikov, G. G. Malliaras, and G. Hadziioannou, “Novel Bifunctional Molecule for Photorefractive
Materials,” Chem. Mater. 9(6), 1407–1413 (1997).
[34] G. Bekefi and A. H. Barrett. Electromagnetic vibrations, waves, and radiation (MIT Press, 1977).
[35] R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating shape,” J. Opt. Soc. Am.
68(6), 806–809 (1978).
[36] G. P. Wiederrecht and M. R. Wasielewski, “Photorefractive Bragg gratings in nematic liquid crystals aligned by a magnetic field,”
Appl. Phys. Lett. 74(23), 3459 (1999).
[37] H. J. Eichler, P. Günter, and D. W. Pohl, Laser-induced Dynamic Gratings (Springer-Verlag, 1986).
[38] X. Ren, S. Liu and X. Zhang, “Fabrication of off-axis holographic Fresnel lens used as multiplexer/demulltiplexer in optical
communication,” Proc. SPIE 5456, 391–398 (2004).
[39] M. Hain, W. Spiegle, M. Schmiedchen, T. Tschudi and B. Javidi, “3D integral imaging using diffractive Fresnel lens arrays,” Opt.
Express 13(1), 315–326 (2005).
[40] E. Hecht, Optics (Addison Wesley, 2002).
[41] K. Rastani, A. Marrakchi, S. F. Habiby, W. M. Hubbard, H. Gilchrist, and R. E. Nahory, “Binary phase Fresnel lenses for
generation of two-dimensional beam arrays,” Appl. Opt. 30(11), 1347–1354 (1991).
[42] B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43(1), 11–
19 (2004).
[43] S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol.
14(5), R49–R61 (2003).
[44] D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle,
glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[45] S.-W. Kang and L.-C. Chiena, “Field-induced and polymer-stabilized two-dimensional cholesteric liquid crystal gratings,” Appl.
Phys. Lett. 90(22), 221110 (2007).
[46] T. O. Carroll, “Liquid-crystal diffraction grating,” J. Appl. Phys. 43(3), 767–770 (1972).
[47] L. Gu, X. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution
switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[48] I. Fujieda, “Liquid-crystal phase grating based on in-plane switching,” Appl. Opt. 40(34), 6252–6259 (2001).
[49] C. V. Brown, E. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–
3500 (2002).
[50] R. G. Lindquist, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, and M. Friends, “High-resolution liquid-crystal phase grating
formed by fringing fields from interdigitated electrodes,” Opt. Lett. 19(9), 670–672 (1994).
[51] I. Drevenšek-Olenika, M. Čopič, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed
liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[52] J.-N. Li, X.-K. Hu, B.-Y. Wei, Z.-J. Wu, S.-J. Ge, W. Ji, W. Hu, and Y.-Q. Lu, “Simulation and optimization of liquid crystal gratings
with alternate twisted nematic and planar aligned regions,” Appl. Opt. 53(22), E14–E18 (2014).
[53] D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,”
Opt. Express 23(9), 12274–12285 (2015).
[54] V. Kapoustine, A. Kazakevith, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing
periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266(1), 1–5 (2006).
[55] W. Hu, A. Srivastava, F. Xu, J.-T. Sun, X.-W. Lin, H.-Q. Cui, V. Chigrinov, and Y.-Q. Lu, “Liquid crystal gratings based on alternate
TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[56] G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and P. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization
holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[57] C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by
polarization holography,” Opt. Express 15(9), 5872–5878 (2007).
[58] H. Gao, J. Liu, F. Gan, and B. Ma, “Investigation of multiple holographic recording in azo-dye-doped nematic liquid-crystal film,”
Appl. Opt. 48(16), 3014–3018 (2009).
[59] B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on field-induced layer
undulations in cholesteric liquid crystals,” Opt. Lett. 30(4), 349–351 (2005).
[60] F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and
H. J. Coles “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7),
599–603 (2012).
[61] C.-H. Lin, Y.-Y. Wang, and C.-W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue
phase liquid crystals,” Opt. Lett. 36(4), 502–504 (2011).
[62] Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl.
Phys. Lett. 94(10), 101104 (2009).
[63] M. Jiao, Y. Li, and S.-T. Wu, “Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes,”
Appl. Phys. Lett. 96(1), 011102 (2010).
[64] H. S. Kitzerow, “The effect of electric field on blue phases,” Mol. Cryst. Liq. Cryst. 202(1), 51–83 (1991).
[65] J. Yan, Y. Li, and S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett.
36(8), 1404–1406 (2011).
[66] J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid
crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[67] M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes
for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502
(2009).
[68] Y. Chen, D. Xu, S.-T. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue
phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[69] Y. Haseba, S. Yamamoto, K. Sago, A. Takata, and H. Tobata, “Low-voltage polymer-stabilized blue-phase liquid crystals,” SID Int.
Symp. Digest Tech. Papers 44(1), 254–257 (2013).
[70] D. Xu, Y. Chen, Y. Liu, and S.-T. Wu, “Refraction effect in an in-plane-switching blue phase liquid crystal cell,” Opt. Express
21(21), 24721–24735 (2013).
[71] K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol. 6(8), 318–322
(2010).
[72] P. Nayek, H. Jeong, S.-W. Kang, S. H. Lee, H.-S. Park, H. J. Lee, H. S. Kim, and G.-D. Lee, “Effect of the grain size on hysteresis
of liquid-crystalline Blue Phase I,” J. Soc. Inf. Disp. 20(6), 318–325 (2012).
[73] S. C. Noh, N. Park, H. R. Park, P. Nayek, S. W. Kang, M. H. Lee, M.-S. Gong, and S. H. Lee, “Stabilizing blue phase liquid crystal
with photo-reactive chiral mesogen,” SID Int. Symp. Digest Tech. Papers 45(1), 1396–1398 (2014).
[74] D. Xu, J. Yuan, M. Schadt, and S.-T. Wu, “Blue phase liquid crystals stabilized by linear photo-polymerization,” Appl. Phys. Lett.
105(8), 081114 (2014).
[75] Y. Liu, S. Xu, D. Xu, J. Yan, Y. Gao, and S.-T. Wu, “A hysteresis-free polymer-stabilised blue-phase liquid crystal,” Liq. Cryst.
41(9), 1339–1344 (2014).
[76] L. Rao, J. Yan, S.-T. Wu, Y.-H. Chiu, H.-Y. Chen, C.-C Liang, C.-M. Wu, P.-J. Hsieh, S.-H. Liu, and K.-L. Cheng, “Critical field for a
hysteresis-free BPLC device,” J. Disp. Technol. 7(12), 627–629 (2011).
[77] Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline
blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[78] Y.-J. Lee, J.-H. Baek, Y. Kim, J. U. Heo, Y.-K. Moon, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Polarizer-free liquid crystal display with
electrically switchable microlens array,” Opt. Express 21(1), 129–134 (2013).
[79] C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express
20(4), 4738–4746 (2012).
[80] C.-T. Kuo, S.-Y. Huang, I.-M. Jiang, and M.-S. Tsai, “Multiguide directional coupler using switchable liquidcrystalline optical
channels,” J. Appl. Phys. 97(10), 103113 (2005).
[81] S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[82] Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multielectrode driven liquid
crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).
[83] K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a
circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104
(2007).
[84] S.-C. Jeng, S.-J. Hwang, J.-S. Horng, and K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified
alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[85] C.-H. Lin, H.-Y. Huang, and J.-Y. Wang, “Polarization-independent liquid-crystal Fresnel lenses based on surface-Mode switching
of 90 twisted-nematic liquid crystals,” IEEE Photon. Technol. Lett. 22(3), 137–139 (2010).
[86] S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-
independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[87] C.-T. Kuo, C.-Y. Li, S.-H. Lin, and H.-C. Yeh, “Electrically controllable Fresnel lens in 90° twisted nematic liquid crystals,” Opt.
Express 23(20), 26041–26048 (2015).
[88] C.-R. Lee, K.-C. Lo, and T.-S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,”
Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[89] L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped
liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[90] H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett.
83(8), 1515–1517 (2003).
[91] T.-H. Lin, Y. Huang, A. Y. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express
14(6), 2359–2364 (2006).
[92] X. Q. Wang, F. Fan, T. Du, A. M. W. Tam, Y. Ma, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Liquid crystal Fresnel zone
lens based on single-side-patterned photoalignment layer,” Appl. Opt. 53(10), 2026–2029 (2014).
[93] Y.-C. Kuo and H.-C. Yeh, “Optically controllable transflective Fresnel lens in azobenzene-doped cholesteric liquid crystals using a
Sagnac interferometer,” Appl. Phys. Express 5(2), 021701 (2012).
[94] H.-C. Yeh, Y.-C. Kuo, S.-H. Lin, J.-D. Lin, T.-S. Mo, and S.-Y. Huang, “Optically controllable and focustunable Fresnel lens in azo-
dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
[95] J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys.
Lett. 257(5–6), 563–568 (1996).
[96] C.-Y. Huang, J.-M. Ma, T.-S. Mo, K.-C. Lo, K.-Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based
on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392
(2009).
[97] C.-R. Lee, S.-C. Huang, S.-H. Lin, Z.-Y. Lin, S.-Y. Huang, and T.-S. Mo, “Distributed feedback laser with optoelectronic tunability
in dye-doped cholesteric liquid crystal with coated photoconductive layer,” Appl. Phys. B 105(4), 689–695 (2011).
[98] J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29(7),
931–936 (1990).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code