Responsive image
博碩士論文 etd-0031121-222737 詳細資訊
Title page for etd-0031121-222737
論文名稱
Title
合成與檢測鉬、金、鈣鈦礦奈米材料並應用於生物標記物的分析
Synthesis and characterization of molybdenum, gold and perovskite nanomaterials for biomarker analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
260
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-01-28
繳交日期
Date of Submission
2021-01-31
關鍵字
Keywords
金奈米立方體、半胱胺金奈米顆粒、螢光鉬奈米團簇、生物影像、二維奈米薄片α-MoO3-x、生物標記檢測、金屬氧化物鈣鈦礦、過氧化氫 鹼性磷酸酶、肌酸激酶
biomarker detection, hydrogen peroxide, alkaline phosphatase, creatine kinase, bioimaging, metal oxide perovskites, cysteamine-gold nanoparticles, gold nanocubes, fluorescent molybdenum nanoclusters, two-dimensional nanoflakes α-MoO3-x
統計
Statistics
本論文已被瀏覽 148 次,被下載 74
The thesis/dissertation has been browsed 148 times, has been downloaded 74 times.
中文摘要
本論文的重點在於設計可調控特性的多功能奈米材料,並應用在生物醫學和生物感測器中。該研究探討奈米顆粒、奈米團簇和奈米片的合成策略,並同時越過了材料的挑戰,從而獲得了理想的光電特性。這些奈米材料用於檢測生物流體和癌症生物成像中的疾病生物標記,鹼性磷酸酶、肌酸激酶和過氧化氫。第三章以剝落法合成二維α-MoO3-x奈米薄片,在近紅外條件下獲得等表面電漿峰。與過氧化氫相互作用後,最初為藍色的α-MoO3-x溶液被氧化,從而改變其氧化態以形成α-MoO3。此奈米薄片的顏色變化從藍色轉變為灰藍色,吸收光譜也有明顯變化。利用其光學性質,應用在檢測生物流體中的過氧化氫(H2O2)。第4章討論了對鉬的量子限制效應,從而獲得了一種螢光鉬奈米團簇(MoNCs)。該反應系統的化學成分在優化的條件下(具有水和pH穩定性)使球形顆粒中快速出現綠色螢光。由於這些特性,MoNC被用於HaCaT和A549癌細胞的成像。第5章詳細介紹了一種新穎的方法,可合成獨特的無模板穩定蛋白的金奈米立方體(PSGNC),用於感測和定量生物流體中的癌症生物標記物鹼性磷酸酶(ALP)。 PSGNC的波長最大發射值與ALP催化反應終產物即405 nm的對硝基苯酚(p-NP)的最大吸收值重疊。該光譜重疊在基於螢光內濾效應(IFE)下,在生物流體中檢測ALP。第6章探討在ATP存在下,聚集半胱胺(Cys)功能化金奈米粒子(GNPs)的獨特方法,用於有效檢測血清中的心臟生物標記物肌酸激酶(CK-MM)。帶正電的Cys-GNP(磚紅色)在存在帶負電的ATP(藍色)下聚集,但是當將CK-MM添加到溶液中時,可防止轉化。這種相互作用為鑑定血清中CK-MM奠定了基礎。第7章說明了鑭系元素的螢光性質在生物感測中的適用性。該研究詳細介紹基於螢光的H2O2檢測系統。利用乾磨和濕磨相結合,然後進行退火和煅燒,得到結晶且高度有序的鈰-鉬-銪(CME)鈣鈦礦。所獲得的粒徑出乎意料的小(<100 nm),在近紅外(NIR)範圍內具有水分散性和強烈的紅色螢光。
在溶液中加入極少的H2O2的過程中,改變了金屬氧化物鍵,導致螢光信號增強,進一步利用此螢光反應檢測生物流體中的H2O2。
Abstract
The main focus of this thesis is to design multiple functional nanomaterials with tunable properties for their applications in biomedicine and biosensor. The research projects explore the synthesis strategies for nanoparticles, nanoclusters, and nanosheets while pushing beyond the material challenges to obtain desirable optoelectronic characteristics. These nanomaterials are further employed to detect disease biomarkers alkaline phosphatase, creatine kinase, and hydrogen peroxide in biological fluids and cancer bioimaging. Chapter 3 discusses the synthesis of two-dimensional α-MoO3-x nanoflakes by an exfoliation-based method to obtain plasmonic peaks in the near-infrared regime. α-MoO3-x initially blue-colored solution is oxidized after interaction with hydrogen peroxide, thereby changing its oxidation state to form α-MoO3. The change in the nanoflakes' oxidation state transforms from blue to a visually distinct hazy blue color with an apparent shift in the absorption spectrum. The optical property is explored in the detection of hydrogen peroxide (H2O2) in the biological fluid. Chapter 4 discusses about the quantum confinement effect on molybdenum to obtain one-of-a-kind fluorescent molybdenum nanoclusters (MoNCs). The reaction system's chemical composition resulted in the rapid emergence of green fluorescence from the spherical particle under optimized conditions with aqueous and pH stability. Owing to these characteristics, MoNCs were used for imaging of HaCaT and A549 cancer cells. Chapter 5 details a novel approach for synthesizing unique template free protein stabilized gold nanocubes (PSGNCs) for sensing and quantifying cancer biomarker alkaline phosphatase (ALP) in biological fluids. The wavelength emission maxima of PSGNCs overlap with the absorption maxima of the final product of ALP catalyzed reaction, i.e., p-Nitrophenol (p-NP) at 405 nm. This spectral overlap was used in an inner filter effect (IFE) based detection system for ALP in the biological fluid. Chapter 6 explores a unique method based on the aggregation of cysteamine (Cys) functionalized GNPs in the presence of ATP for effective detection of cardiac biomarker creatine kinase (CK-MM) in serum. Positively charged Cys-GNPs (brick red color) aggregate in the presence of negatively charged ATP (blue color), but the transformation is prevented when CK-MM is added to the solution. This interaction lays the foundation for identifying CK-MM in serum. Chapter 7 shows the applicability of intrinsic fluorescent property of lanthanides in bio-sensing. The research details the design of a fluorescence-based detection system for H2O2. A combination of dry and wet grinding followed by annealing and calcination resulted in crystalline and highly ordered cerium-molybdenum-europium (CME) perovskites. The particle size obtained was surprisingly small (<100 nm) with aqueous dispersity and intense red fluorescence in the near-infrared (NIR) regime. During its incubation with minimum H2O2 in the solution, the metal oxide bond was altered, resulting in an enhanced fluorescence signal. This fluorescent response was further extended to detect H2O2 in a biological fluid.
目次 Table of Contents
Table of Contents
Thesis/Dissertation validation letter …………………………………..………..…….…….. i
Acknowledgements ………………………...…………………………………….….…….. ii
Abstract (Chinese) ………………………………………………………………......….… vii
Abstract ……………………………………………………………..………...…......…..… ix
Table of Figures ……………………………………………………….………………….. xv
Table of Tables ……………………………………………………...…………...……..… xxi
Chapter 1
Introduction ……………………………………………………...………………………..... 1
1. Definition of nanomaterials ………………………………………………………...…... 1
2. History of nanomaterials ……………………………………………………………….. 1
3. Types of nanomaterials ……………………………………………………………….... 3
4. Properties of nanomaterials ……………………………………………………...…...… 4
5. Principles of nanomaterial synthesis ……………………...……………………...…..… 6
6. Principles of Biosensing …………………………………………...…………………… 9
7. Highlights of the upcoming chapter ………………………………………………...… 11
8. Reference ………………………………………………………………………...…… 13
Chapter 2
Instrumentation ………………………………………………………………………….... 20
1. UV-Vis spectroscopy ……………………………………………..………………....... 20
2. Fluorescence spectroscopy …………………………………………………………..... 22
3. Method for identifying limits of detection …………………………………………..… 24
4. Raman spectroscopy ………………………………………………………………..… 24
5. Electron micrographs ………………………………………………………………..... 26
6. X-ray photoelectron spectroscopy …………………………………………………..… 27
7. X-ray diffraction ……………………………………………………………………… 29
8. Cyclic voltammetry ………………………………………………………………....… 31
9. Reference …………………………………………………………………………...… 33
Chapter 3
Two dimensional α-MoO3-x nanoflakes as bare eye probe for hydrogen peroxide in biological fluids ………………………………………………………….……………………...…… 35
1. Introduction ………………………………………………………………………...…. 35
2. Materials and Methods …………………………………………………………...….... 37
3. Results and Discussions …………………………………………………………….… 40
4. Conclusion ....………………………………………………………………………..... 50
5. Reference ……………………………………………………………………………... 50
Chapter 4
Synthesis of fluorescent molybdenum nanoclusters at ambient temperature and their application in biological imaging …………………………………………………………. 60
1. Introduction ………………………………………………………………………….... 60
2. Materials and Methods …………………………………………………………...….... 62
3. Results and Discussions …………………………………………………………….… 66
4. Conclusion ....…………………………………………………………………………. 91
5. Reference …………………………………………………………………………....... 92
Chapter 5
Protein stabilized fluorescent gold nanocubes as selective probe for alkaline phosphatase via inner filter effect ……………………………………………………...…………...…...… 104
1. Introduction ……………………...…………………………………………...…….... 104
2. Materials and Methods ……………………………………….………………....….... 106
3. Results and Discussions ………………………………………..………..…….......… 108
4. Conclusion ....………………………………………………………………...…….... 117
5. Reference …………………………………………………………..……………....... 118
Chapter 6
Aggregation of cysteamine-capped gold nanoparticles in presence of ATP as an analytical tool for rapid detection of creatine kinase (CK-MM) ……………………….…………… 126
1. Introduction ………………………………………………………………………….. 126
2. Materials and Methods …………………………………………………………......... 128
3. Results and Discussions …………………………………………………………....... 131
4. Conclusion ...……………………………………………………………………….... 147
5. Reference …………………………………………………………………………..... 147
Chapter 7
Ce1.0Mo0.15Eu0.05Ox aqueous perovskites for stable NIR-emission and its sensitivity towards hydrogen peroxide …………………...………………………………………………..… 155
1. Introduction ………………………………………………………………………….. 155
2. Materials and Methods …………………………………………………………......... 157
3. Results and Discussions ……………………………………………………………... 160
4. Conclusion ...……………………………………………………………………….... 180
5. Reference ……………………………………………………………………………. 181
Conclusion ……………………………………………………….…………………….... 190
Appendix ……………………..…..…………………………………………………...… 192

Table of Figures
Chapter 1
Fig. 1.1: A photograph of the Lycurgus cup &amp; Michael Faraday’s gold colloids ……….… 3
Fig. 1.2: Different dimensions of nanomaterials ……………………………...………….... 4
Fig. 1.3: Size dependent change in plasmonic gold nanoparticles (Left); Fluorescent CdSe quantum dots, (Right)............................................................................................................. 6
Fig. 1.4: (A) Quantum confinement effect; (B) Schematic depicting the localized surface plasmon resonance of surface delocalized electrons …………………………………......… 7
Fig. 1.5: Schematics of bottom-up and top-down approach for synthesis of nanomaterials through various chemical treatments ………………………………………………..…........ 8
Fig. 1.6: Schematic representation of (A) Ostwald ripening; (B) Digestive ripening …....... 9
Fig. 1.7: Schematics representing lateral flow immunoassay using gold nanoparticles…... 11
Fig. 1.8: Schematics representing (A) Forster resonance energy transfer (FRET); (B) Inner Filter effect (IFE) …............................................................................................................. 12

Chapter 2
Fig. 2.1: Principle of absorption spectroscopy depicting the incident and transmitting radiation with the path length covered by the light through the solution and the concentration gradient ………………………………………………………………………………...…. 21
Fig. 2.2: The principle of photoluminescence depicting fluorescence and phosphorescence phenomenon under the influence of incident excitation radiation ……………………….... 23
Fig. 2.3: Schematic depicting the various scattering of light after interaction with nanomaterial solution …………………………..…………………………………………. 25
Fig. 2.4: Schematic of transmission and scanning electron microscope ………………..… 27
Fig. 2.5: Schematic representing the XPS...…………………………...………………...… 28
Fig. 2.6: Schematic representing the principle of Bragg’s law used in X-ray diffraction..... 30
Fig. 2.7: Schematics depicting cyclic voltammetry electrochemical cell and a demonstrative voltammogram showing the anodic and cathodic peak potential ………………..………... 32

Chapter 3
Scheme 3.1: Schematic representation of the detection system at a glance ………….…… 41
Fig. 3.1: Graphical representation: Comparing the sensitivity of colorimetric methods earlier reported for detection of H2O2 ……………………………………...…………………...… 42
Fig. 3.2: (A-B) TEM characterization of α-MoO3-x nanoflakes; (B-C) XPS analysis of the nanoflakes before and after addition of H2O2 …………………………………..…………. 43
Fig. 3.3: (A) UV-Vis spectra and (B) Day-light photograph of H2O2 concentration dependent color change of α-MoO3-x; (C-D) Concentration dependent change in absorption spectra .. 45
Fig. 3.4: UV-Vis absorbance spectra of α-MoO3-x¬ in presence of varying concentration of urine spiked H2O2 ………………………………………………………..……………...… 46
Fig. 3.5: (A) Relative intensity I/I0 vs. Concentration of H2O2 spiked in biological fluid. (B) Day-light photograph of color change in H2O2 spiked biological sample ………………… 47
Fig. 3.6: (A) Selective assay of OH• radicals generated using Fenton Reaction; (B) Comparing percent recovery of H2O2 in urine samples conventional method …..………... 48
Fig. 3.7: (A) Representative of “zone of inhibition” recorded in petri dish; (B) Relative absorbance showing selective analysis of urine samples…………………………..………. 49

Chapter 4
Scheme 4.1: Schematic representation of the synthesis of molybdenum nanocluster .....… 67
Fig. 4.1: (A) UV-Vis Spectroscopy; (B) Fluorescence spectroscopy; (C-D) Time-dependent observation using UV-Vis spectroscopy and fluorescence spectroscopy …………..……... 70
Fig. 4.2: (A) TRPL; and (B) pH stability of MoNCs ……………………………………... 71
Fig. 4.3: Synthesis of MoNC at different pH solutions of NaOH ……………...…….....… 72
Fig. 4.4: Salt stability of MoNC (A) absorbance and (B) fluorescence spectroscopy ……. 73
Fig. 4.5: Physical characterizations involving (A-C) TEM; (D) Dynamic Light Scattering measured for 2 ml solution; (E) FTIR spectroscopy …………………………………….… 74
Fig. 4.6: Zeta potential spectrum of MoNCs (-77.75 mV) ………….…………………….. 75
Fig. 4.7: XPS spectra of MoNCs …………………………………………….……………. 76
Fig. 4.8: (A) XRD pattern; (B) Cyclic voltammogram of MoNCs ………….……..…...… 78
Fig. 4.9: Cyclic voltammogram of MoCl3 ……………………………………………….... 78
Fig. 4.10: Photostability of MoNCs under continuous light exposure …………...…..…… 83
Fig. 4.11: DLS and Zeta potential of MoNCs after incubating with serum ……………..... 84
Fig. 4.12: Confocal images of the MoNCs entering the cell cytoplasm ………………...… 84
Fig. 4.13: Cell viability assessment of MoNCs against HaCaT cells. …………………….. 85
Fig. 4.14: MoNC internalization of A549 cells (A-C); (D) 3D tomographic image …….... 85
Fig. 4.15: MoNC internalization of RPTEC cells (A-C); (D) 3D tomographic image ...…. 87
Fig. 4.16: Cell viability analysis of A549 cells ……………..……….……………….….... 88
Fig. 4.17: Cell viability analysis of Kidney epithelial cells ……………………………..... 88
Fig. 4.18: Percent cellular uptake of MoNCs in A549 cells ……………………………..... 90
Fig. 4.19: Quantitative cellular uptake of MoNCs …………………………..…………..... 91

Chapter 5
Fig. 5.1: (A) UV-Vis absorbance (Inset: TEM representative); (B) Fluorescence spectroscopy of PSGNC …………………………………………………………………. 110
Fig. 5.2: Effect of different saline concentration on detection system ………………....… 111
Fig. 5.3: Effect of different pH on the sensitivity of detection system ………….......….... 111
Fig. 5.4: Effect of different metals on the detection system ……………………......….… 111
Scheme 5.1: Schematic representation of working principles for sensing alkaline phosphatase in the presence of p-Nitrophenyl phosphate (p-NPP) …………………….… 114
Fig. 5.5: (A) Concentration dependent assay of ALP; (B) Relative fluorescence intensity 115
Fig. 5.6: (A) Concentration dependent assay in serum; (B) Relative fluorescence intensity ……………………………………………………………………...………....... 116
Fig. 5.7: Selectivity of the sensing system …………………………………………….… 117

Chapter 6
Scheme 6.1: Schematics depicting reaction between gold nanoparticles and CKMM….... 133
Fig. 6.1: TEM of Cys-GNP (A) and aggregated nanoparticles (B); (C) Photograph of nanoparticles; (D) UV-Vis absorbance spectra; (E) DLS of bare Cys-GNP (Inset: Zeta potential); (F) Cys-GNPs in presence of CK-MM and ATP …………………..…............. 135
Fig. 6.2: Optical response of other components in the reaction system ………………….. 137
Fig. 6.3: Inhibition of ALP for CK-MM activity ……………………………………..…. 138
Fig. 6.4: (A) pH stability of the detection system; (B) Relative absorbance of A532/A700 …140
Fig. 6.5: (A) Salt stability of the reaction system; (B) Relative absorbance of A532/A700 .. 140
Fig. 6.6: (A) Varying ATP concentrations; (B) Relative absorbance plot of A532/A700 ..… 141
Fig. 6.7: (A) Detecting varying CKMM concentrations (Inset: A532/A700 Vs concentration of CK-MM; (B) Day-light photograph of Cys-GNPs in presence of CK-MM ..……………. 142
Fig. 6.8: (A) A532/A700 Vs Concentration of CK-MM (Inset: Optical response of different concentrations of CK-MM in presence of serum); (B) Day-light photograph of Cys-GNPs in presence of CK-MM. ……………………………………………………………………. 143
Fig. 6.9: Selectivity of the method …………….………………...…………..…………... 146

Chapter 7
Scheme 7.1: Stepwise synthesis scheme of CME perovskites; predicted crystal structure; Day light and UV-lamp exposed photographs of the as-synthesized CME perovskites …. 161
Fig. 7.1: (A) High resolution TEM image; (B) SAED pattern; (C-D) Magnified image of the HRTEM image (Inset: FFT representative of the selected area)...…………………..……. 162
Fig. 7.2: (A) TEM image; (B) Histogram showing the particle counts; (C-D) TEM image and Energy dispersive x-ray spectroscopy (EDS) ………………………………………….… 163
Fig. 7.3: (A) X-ray diffraction spectrum; (B) The predicted crystal structure ………........ 165
Fig. 7.4: (A) UV-Vis absorption and fluorescence spectrum (Inset: photographic representation of perovskites); (B) Raman shifts ……………………………….……...… 166
Fig. 7.5: (A) Solvent treatment in bright daylight and UV-lamp exposure photographs; (B-C) Fluorescence spectra ………………………………………………….....................… 167
Fig. 7.6: pH stability of CME perovskites (A) UV-Vis spectra; (B) 3D fluorescence spectra; (C) Relative fluorescence intensity …………………………………………………....… 168
Fig. 7.7: (A) Comparing fluorescence behavior in CE, ME and CME (at λex = 370 nm); (B) Raman spectra of CE, ME and CME ……………………………….………………...….. 170
Fig. 7.8: Time resolved photoluminescence of CME perovskites ……………..………… 171
Fig. 7.9: X-ray photoelectron spectroscopy (XPS) of the synthesized CME perovskites... 172
Fig. 7.10: X-ray photoelectron spectroscopy (XPS) of ME ……………………………… 173
Fig. 7.11: X-ray photoelectron spectroscopy (XPS) of CE ………………………………. 173
Fig. 7.12: 3D Raman spectra for CME treated with H2O2 …………….…….…………… 175
Fig. 7.13: XPS of CME perovskites after treatment with H2O2 ……………………….…. 175
Fig. 7.14: Cyclic voltammogram of (A) CME; (B) Hydrogen peroxide treated CME….... 176
Fig. 7.15: CME perovskites with various concentrations of H2O2. ……..…………...…… 177
Fig. 7.16: (A) Concentration dependent H2O2 detection; (B) Linear regression.……........ 178
Fig. 7.17: Graphical comparison of fluorescence-based detection methods of H2O2….... 178
Fig. 7.18: (A) Concentration dependent H2O2 detection in urine; (B) Linear regression ... 179
Fig. 7.19: Effect of free oxygen radicals on the CME perovskites …….………………… 180

Table of Tables
Chapter 3
Table 3.1: DLS studies of the α-MoO3-x nanoflakes in presence of various concentration of H2O2………………………………………………...………………………………..….… 44
Table 3.2: “Zone of inhibition” recorded in petri dish containing α-MoO3-x infused 0.8% agarose. Wells contain various concentration of H2O2…………………………………….. 49

Chapter 4
Table 4.1: Tabular representation of MoNCs particles size and zeta potential ……….….. 75
Table 4.2: Tabular comparison between synthesis of conventional MoS2 and the current MoNCs ………………………………………………………………………………….… 80

Chapter 5
Table 5.1: Comparison of the limit of detection of fluorescence-based detection of alkaline phosphatase …………………………………………...………………………………..... 113

Chapter 6
Table 6.1: Tabular illustration of control and sample groups shown in Fig. 6.1D ………. 136
Table 6.2: Tabular illustration of control and sample groups shown in Fig. 6.2 …..…..… 137
Table 6.3: Tabular illustration of control and sample groups shown in Fig. 6.3 ………… 139
Table 6.4: Tabular illustration of control and sample groups shown in Fig. 6.8 ………… 143
Table 6.5: Tabular comparison between strategies reported for detection of creatine kinase (CK) and its isoforms (MB and MM) …………………………………………………..... 144
Chapter 7
Table 7.1: Tabular details of the element’s composition of the CME perovskite nanoparticles …...…………………………………………………………………...…… 163
參考文獻 References
Chapter 1
1. Schaming D, Remita H. Nanotechnology: from the ancient time to nowadays. Found Chem. 2015;17(3):187-205. doi:10.1007/s10698-015-9235-y
2. Thompson D. Michael Faraday’s recognition of ruby gold: the birth of modern nanotechnology. Gold Bull. 2007;40(4):267-269. doi:10.1007/BF03215598
3. “Plenty of room” revisited. Nat Nanotechnol. 2009;4(12):781-781. doi:10.1038/nnano.2009.356
4. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules. 2019;25(1):112. doi:10.3390/molecules25010112
5. Michael Faraday’s gold colloids. https://www.rigb.org/our-history/iconic-objects/iconic-objects-list/faraday-gold-colloids. Accessed January 24, 2021.
6. Sandhu A. Who invented nano? Nat Nanotechnol. 2006;1(2):87-87. doi:10.1038/nnano.2006.115
7. Otles S, Sahyar BY. Chemical Structure and Toxicity of Nanomaterials Used in Food and Food Products. In: Nanomaterials: Ecotoxicity, Safety, and Public Perception. Cham: Springer International Publishing; 2018:37-55. doi:10.1007/978-3-030-05144-0_3
8. Dreaden EC, Austin L, Mackey M, El-Sayed M. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 2012;3(4):457-478. doi:10.4155/tde.12.21
9. Arachchige IU, Brock SL. Sol-gel methods for the assembly of metal chalcogenide quantum dots. Acc Chem Res. 2007. doi:10.1021/ar600028s
10. Li T, Galli G. Electronic properties of MoS 2 nanoparticles. J Phys Chem C. 2007. doi:10.1021/jp075424v
11. Gu Y, Kuskovsky IL, Yin M, O’Brien S, Neumark GF. Quantum confinement in ZnO nanorods. Appl Phys Lett. 2004. doi:10.1063/1.1811797
12. Fang Y, Pang Q, Wen X, Wang J, Yang S. Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate. Small. 2006. doi:10.1002/smll.200500379
13. Rosenman G, Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E. Blue luminescence based on quantum confinement at peptide nanotubes. Nano Lett. 2009. doi:10.1021/nl9008265
14. Borousan F, Yousefi R, Shabani P. Tuning the size of PbSe nanocubes for solar-cell applications. Mater Lett. 2020. doi:10.1016/j.matlet.2020.127590
15. Dwyer JD, Diaz EJ, Webber TE, Katzenberg A, Modestino MA, Aydil ES. Quantum confinement in few layer SnS nanosheets. Nanotechnology. 2019. doi:10.1088/1361-6528/ab0e3e
16. Chen Y, Fan Z, Zhang Z, et al. Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chem Rev. 2018;118(13):6409-6455. doi:10.1021/acs.chemrev.7b00727
17. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano. 2009;3(12):3884-3890. doi:10.1021/nn9010472
18. Zhang JZ. Optical Properties and Spectroscopy of Nanomaterials.; 2009. doi:10.1142/7093
19. Chen Y, Xianyu Y, Jiang X. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Acc Chem Res. 2017. doi:10.1021/acs.accounts.6b00506
20. Tang Q, Zhou Z, Chen Z. Graphene-related nanomaterials: Tuning properties by functionalization. Nanoscale. 2013. doi:10.1039/c3nr33218g
21. Kong ESW. Nanomaterials, Polymers and Devices: Materials Functionalization and Device Fabrication.; 2015. doi:10.1002/9781118867204
22. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X. Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol. 2016. doi:10.1038/nnano.2015.340
23. Njoki PN, Lim I-IS, Mott D, et al. Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles. J Phys Chem C. 2007;111(40):14664-14669. doi:10.1021/jp074902z
24. Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev. 2011. doi:10.1021/cr100313v
25. Tiwari P, Vig K, Dennis V, Singh S. Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials. 2011. doi:10.3390/nano1010031
26. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 2006. doi:10.1021/nl061286u
27. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005. doi:10.1021/nl0515753
28. Ren K, Yin P, Zhou Y, et al. Localized Defects on Copper Sulfide Surface for Enhanced Plasmon Resonance and Water Splitting. Small. 2017. doi:10.1002/smll.201700867
29. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008. doi:10.1021/ar7002804
30. Rabouw FT, de Mello Donega C. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Top Curr Chem. 2016;374(5):58. doi:10.1007/s41061-016-0060-0
31. Teranishi T, Eguchi M, Kanehara M, Gwo S. Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region. J Mater Chem. 2011;21(28):10238. doi:10.1039/c0jm04545d
32. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35(7):583. doi:10.1039/b502142c
33. Ovais M, Raza A, Naz S, et al. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol. 2017;101(9):3551-3565. doi:10.1007/s00253-017-8250-4
34. Shimpi JR, Sidhaye DS, Prasad BL V. Digestive Ripening: A Fine Chemical Machining Process on the Nanoscale. Langmuir. 2017;33(38):9491-9507. doi:10.1021/acs.langmuir.7b00193
35. Lin XM, Sorensen CM, Klabunde KJ. Digestive ripening, nanophase segregation and superlattice formation in gold nanocrystal colloids. J Nanoparticle Res. 2000;2:157-164. doi:10.1023/A:1010078521951
36. Hwang N-M, Jung J-S, Lee D-K. Thermodynamics and Kinetics in the Synthesis of Monodisperse Nanoparticles. In: Thermodynamics - Fundamentals and Its Application in Science. InTech; 2012. doi:10.5772/50324
37. Mitragotri S, Anderson DG, Chen X, et al. Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano. 2015. doi:10.1021/acsnano.5b03569
38. Siqueira JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON. Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron. 2010. doi:10.1016/j.bios.2009.09.043
39. Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012. doi:10.1016/j.molonc.2012.01.010
40. Scolletta S, Donadello K, Santonocito C, Franchi F, Taccone FS. Biomarkers as predictors of outcome after cardiac arrest. Expert Rev Clin Pharmacol. 2012. doi:10.1586/ecp.12.64
41. Bayoumy S, Hyytiä H, Leivo J, et al. Glycovariant-based lateral flow immunoassay to detect ovarian cancer–associated serum CA125. Commun Biol. 2020. doi:10.1038/s42003-020-01191-x
42. Mahmoudi T, de la Guardia M, Baradaran B. Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends. TrAC - Trends Anal Chem. 2020. doi:10.1016/j.trac.2020.115842
43. Lee VBC, Mohd-Naim NF, Tamiya E, Ahmed MU. Trends in paper-based electrochemical biosensors: From design to application. Anal Sci. 2018. doi:10.2116/analsci.34.7
44. Lateral Flow Immonoassay. https://www.creative-diagnostics.com/food-analysis/tag-lateral-flow-immunoassay-30.htm. Accessed January 24, 2021.
45. Pant K, Sedláček O, Nadar RA, Hrubý M, Stephan H. Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis? Adv Healthc Mater. 2017. doi:10.1002/adhm.201601115
46. Guo M, Huang K, Xu W. Third Generation Whole-Cell Sensing Systems: Synthetic Biology Inside, Nanomaterial Outside. Trends Biotechnol. October 2020. doi:10.1016/j.tibtech.2020.10.002
47. Chen T, He B, Tao J, et al. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Adv Drug Deliv Rev. 2019;143:177-205. doi:10.1016/j.addr.2019.04.009
48. Chen S, Yu Y-L, Wang J-H. Inner filter effect-based fluorescent sensing systems: A review. Anal Chim Acta. 2018;999:13-26. doi:10.1016/j.aca.2017.10.026
49. Sharma AK, Pandey S, Sharma KH, et al. Two dimensional α-MoO3-xnanoflakes as bare eye probe for hydrogen peroxide in biological fluids. Anal Chim Acta. 2018;1015:58-65. doi:10.1016/j.aca.2018.01.057
50. Sharma AK, Pandey S, Sharma N, Wu HF. Synthesis of fluorescent molybdenum nanoclusters at ambient temperature and their application in biological imaging. Mater Sci Eng C. 2019;99:1-11. doi:10.1016/j.msec.2019.01.029
51. Sharma AK, Pandey S, Khan MS, Wu HF. Protein stabilized fluorescent gold nanocubes as selective probe for alkaline phosphatase via inner filter effect. Sensors Actuators, B Chem. 2018;259:83-89. doi:10.1016/j.snb.2017.11.190
52. Sharma AK, Pandey S, Nerthigan Y, Swaminathan N, Wu HF. Aggregation of cysteamine-capped gold nanoparticles in presence of ATP as an analytical tool for rapid detection of creatine kinase (CK-MM). Anal Chim Acta. 2018;1024:161-168. doi:10.1016/j.aca.2018.03.027
53. Sharma AK, Sharma N, Pandey S, Guo J-L, Wu H-F. Ce 1.0 Mo 0.15 Eu 0.05 O x Aqueous Perovskites for Stable Near-Infrared Emission and Their Sensitivity toward Hydrogen Peroxide. ACS Sustain Chem Eng. 2020;8(8):3126-3134. doi:10.1021/acssuschemeng.9b05879

Chapter 2
1. Skoog DA, Holler FJ, Crouch SR. Principles of Instrumental Analysis. 7th Editio. Emerald Group Publishing Limited; 2018.
2. The Beer-Lambert Law. https://www.edinst.com/us/blog/the-beer-lambert-law/. Accessed January 24, 2021.
3. Lakowicz JR. Principles of Fluorescence Spectroscopy. (Lakowicz JR, ed.). Boston, MA: Springer US; 2006. doi:10.1007/978-0-387-46312-4
4. Principles and Theory of Fluorescence Spectroscopy. doi:https://www.horiba.com/en_en/technology/measurement-and-control- techniques/spectroscopy/fluorescence-spectroscopy/principles-and-theory-of- fluorescence-spectroscopy/
5. Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci. 2011;2(1):21. doi:10.4103/2229-5186.79345
6. Moura CC, Tare RS, Oreffo ROC, Mahajan S. Raman spectroscopy and coherent anti- Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. J R Soc Interface. 2016;13(118):20160182.
33
doi:10.1098/rsif.2016.0182
7. Instruments of Microscopy.
https://courses.lumenlearning.com/microbiology/chapter/instruments-of-
microscopy/. Accessed January 24, 2021.
8. Cyclic voltammetry: Basic Principles &amp; Set up.
https://www.ossila.com/pages/cyclic-voltammetry. Accessed January 24, 2021.

Chapter 3
1. Nagano T. Bioimaging probes for reactive oxygen species and reactive nitrogen species. J Clin Biochem Nutr. 2009;45(2):111-124. doi:10.3164/jcbn.R09-66
2. Bienert GP , Schjoerring JK, Jahn TP . Membrane transport of hydrogen peroxide. Biochim Biophys Acta. 2006;1758(8):994-1003. doi:10.1016/j.bbamem.2006.02.015
3. Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000;486(1):10-13. doi:10.1016/S0014-5793(00)02197-9
4. Veal E, Day A. Hydrogen Peroxide as a Signaling Molecule. Antioxid Redox Signal. 2011;15(1):147-151. doi:10.1089/ars.2011.3968
5. Gough DR, Cotter TG. Hydrogen peroxide: a Jekyll and Hyde signalling molecule.
Cell Death Dis. 2011;2(10):e213. doi:10.1038/cddis.2011.96
6. Aroca R, Amodeo G, Fernández-Illescas S, Herman EM, Chaumont F, Chrispeels MJ.
The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol. 2005;137(1):341-353. doi:10.1104/pp.104.051045
7. Fomenko DE, Koc A, Agisheva N, et al. Thiol peroxidases mediate specific genome- wide regulation of gene expression in response to hydrogen peroxide. Proc Natl Acad Sci U S A. 2011;108(7):2729-2734. doi:10.1073/pnas.1010721108
8. Wagner BA, Evig CB, Reszka KJ, Buettner GR, Burns CP. Doxorubicin increases intracellular hydrogen peroxide in PC3 prostate cancer cells. Arch Biochem Biophys. 2005;440(2):181-190. doi:10.1016/j.abb.2005.06.015
9. Lisanti MP, Martinez-Outschoorn UE, Lin Z, et al. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis. Cell Cycle. 2011;10(15):2440-2449. doi:10.4161/cc.10.15.16870
10. Y ang J, Y ang J, Liang SH, Xu Y , Moore A, Ran C. Imaging hydrogen peroxide in Alzheimer’s disease via cascade signal amplification. Sci Rep. 2016;6:35613. doi:10.1038/srep35613
11. Tabner BJ, El-Agnaf OMA, Turnbull S, et al. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem. 2005;280(43):35789-35792. doi:10.1074/jbc.C500238200
12. Shan X, Chai L, Ma J, Qian Z, Chen J, Feng H. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst. 2014;139(10):2322-2325. doi:10.1039/c3an02222f
13. Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H. Si-doped carbon quantum dots: A facile and general preparation strategy, bioimaging application, and multifunctional sensor. In: ACS Applied Materials and Interfaces. Vol 6. ; 2014:6797-6805. doi:10.1021/am500403n
14. Sanford AL, Morton SW, Whitehouse KL, et al. Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal Chem. 2010;82(12):5205-5210. doi:10.1021/ac100536s
15. Yang YC, Tseng WL. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin- Mediated Immunoassay with Naked-Eye Detection. Anal Chem. 2016;88(10):5355- 5362. doi:10.1021/acs.analchem.6b00668
16. Chen X, Wu G, Cai Z, Oyama M, Chen X. Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta. 2014;181(7- 8):689-705. doi:10.1007/s00604-013-1098-0
17. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183-191. doi:10.1038/nmat1849
18. Buller DB, Berwick M, Lantz K, et al. Smartphone Mobile Application Delivering Personalized, Real-Time Sun Protection Advice A Randomized Clinical Trial. Jama Dermatology. 2015;151(5):497-504. doi:10.1001/jamadermatol.2014.3889
19. Lu H-G, Li S. Two-dimensional carbon allotropes from graphene to graphyne. J Mater Chem C. 2013;1(23):3677. doi:10.1039/c3tc30302k
20. Jha RK, Guha PK. Liquid exfoliated pristine WS 2 nanosheets for ultrasensitive and
highly stable chemiresistive humidity sensors. Nanotechnology. 2016;27(47):475503.
doi:10.1088/0957-4484/27/47/475503
21. Zuo X, Zhang H, Zhu Q, Wang W, Feng J, Chen X. A dual-color fluorescent
biosensing platform based on WS2 nanosheet for detection of Hg2+ and Ag+. Biosens
Bioelectron. 2016;85:464-470. doi:10.1016/j.bios.2016.05.044
22. Kim YH, Kim KY, Choi YR, et al. Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS2 nanoparticles. J Mater Chem A. 2016;4(16):6070-6076.
doi:10.1039/c6ta01277a
23. Tian X-Q, Liu L, Wang X-R, et al. Engineering of the interactions of volatile organic
compounds with MoS2. J Mater Chem C. 2017;5(6):1463-1470.
doi:10.1039/C6TC04673H
24. Zheng Q, Huang J, Cao S, Gao H. A flexible ultraviolet photodetector based on single
crystalline MoO 3 nanosheets. J Mater Chem C. 2015;3(28):7469-7475.
doi:10.1039/C5TC00850F
25. Lu X, Wang R, Yang F, et al. Preparation of MoO 3 QDs through combining
intercalation and thermal exfoliation. J Mater Chem C. 2016;4(28):6720-6726.
doi:10.1039/C6TC01656A
26. Varghese S, Varghese S, Swaminathan S, Singh K, Mittal V. Two-Dimensional
Materials for Sensing: Graphene and Beyond. Electronics. 2015;4(3):651-687.
doi:10.3390/electronics4030651
27. Pumera M, Loo AH. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends Anal Chem. 2014;61:49-53.
doi:10.1016/j.trac.2014.05.009
28. Appel JH, Li DO, Podlevsky JD, et al. Low Cytotoxicity and Genotoxicity of Two-
Dimensional MoS2 and WS2. ACS Biomater Sci Eng. 2016;2(3):361-367.
doi:10.1021/acsbiomaterials.5b00467
29. Wu C-R, Chang X-R, Wu C-H, Lin S-Y. The Growth Mechanism of Transition Metal
Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment. Sci Rep. 2017;7:42146. doi:10.1038/srep42146
30. Gao J, Li B, Tan J, Chow P, Lu TM, Koratkar N. Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano. 2016;10(2):2628-2635. doi:10.1021/acsnano.5b07677
31. Gavrilyuk A, Tritthart U, Gey W. The nature of the photochromism arising in the nanosized MoO3 films. Sol Energy Mater Sol Cells. 2011;95(7):1846-1851. doi:10.1016/j.solmat.2011.02.006
32. He T, Yao J. Photochromism of molybdenum oxide. J Photochem Photobiol C Photochem Rev. 2003;4(2):125-143. doi:10.1016/S1389-5567(03)00025-X
33. Hsu CS, Chan CC, Huang HT, Peng CH, Hsu WC. Electrochromic properties of nanocrystalline MoO3 thin films. Thin Solid Films. 2008;516(15):4839-4844. doi:10.1016/j.tsf.2007.09.019
34. Tomás S a., Arvizu MA, Zelaya-Angel O, Rodríguez P. Effect of ZnSe doping on the photochromic and thermochromic properties of MoO3 thin films. Thin Solid Films. 2009;518(4):1332-1336. doi:10.1016/j.tsf.2009.05.054
35. Borgschulte A, Sambalova O, Delmelle R, Jenatsch S, Hany R, Nüesch F. Hydrogen reduction of molybdenum oxide at room temperature. Sci Rep. 2017;7:40761. doi:10.1038/srep40761
36. Alsaif MMYA, Balendhran S, Field MR, et al. Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H2
gas sensing. Sensors Actuators, B Chem. 2014;192:196-204. doi:10.1016/j.snb.2013.10.107
37. Hu J, Wu S, Ma Y, et al. Effect of the particle size of MoO3 on the catalytic activity of Mo/ZSM-5 in methane non-oxidative aromatization. New J Chem. 2015;39(7):5459-5469. doi:10.1039/C5NJ00672D
38. Luo Z, Miao R, Huan TD, et al. Mesoporous MoO 3- x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions. Adv Energy Mater. 2016;6(16):1600528. doi:10.1002/aenm.201600528
39. Sreedhara MB, Santhosha AL, Bhattacharyya AJ, Rao CNR. Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries. J Mater Chem A. 2016;4(24):9466-9471. doi:10.1039/C6TA02561G
40. Alsaif MMYA, Field MR, Daeneke T, et al. Exfoliation solvent dependent plasmon resonances in two-dimensional sub-stoichiometric molybdenum oxide nanoflakes. ACS Appl Mater Interfaces. 2016;8(5):3482-3493. doi:10.1021/acsami.5b12076
41. Bai H, Yi W, Li J, et al. Direct growth of defect-rich MoO 3−x ultrathin nanobelts for efficiently catalyzed conversion of isopropyl alcohol to propylene under visible light. J Mater Chem A. 2016;4(5):1566-1571. doi:10.1039/C5TA08603E
42. Wongkrua P, Thongtem T, Thongtem S. Synthesis of h- and α -MoO 3 by Refluxing and Calcination Combination: Phase and Morphology Transformation, Photocatalysis, and Photosensitization. J Nanomater. 2013;2013:1-8. doi:10.1155/2013/702679
43. Illyaskutty N, Sreedhar S, Kohler H, Philip R, Rajan V, Pillai VPM. ZnO-modified MoO3 nano-rods, -wires, -belts and -tubes: Photophysical and nonlinear optical properties. J Phys Chem C. 2013;117(15):7818-7829. doi:10.1021/jp311394y
44. Hang D-R, Sharma KH, Chen C-H, Islam SE. Enhanced Photocatalytic Performance of ZnO Nanorods Coupled by Two-Dimensional α-MoO 3 Nanoflakes under UV and Visible Light Irradiation. Chem - A Eur J. 2016;22(36):12777-12784.
doi:10.1002/chem.201602141
45. Kim H-S, Cook JB, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater. 2017;16(4):454-460.
http://dx.doi.org/10.1038/nmat4810.
46. Li Y, Cheng J, Liu Y, et al. Manipulation of Surface Plasmon Resonance in Sub-
Stoichiometry Molybdenum Oxide Nanodots through Charge Carrier Control
Technique. J Phys Chem C. 2017;121(9):5208-5214. doi:10.1021/acs.jpcc.6b11047
47. Wendumu TB, Seifert G, Lorenz T, Joswig JO, Enyashin A. Optical properties of triangular molybdenum disulfide nanoflakes. J Phys Chem Lett. 2014;5(21):3636-3640. doi:10.1021/jz501604j
48. Long LH, Evans PJ, Halliwell B. Hydrogen Peroxide in Human Urine: Implications
for Antioxidant Defense and Redox Regulation. Biochem Biophys Res Commun.
1999;262(3):605-609. doi:10.1006/bbrc.1999.1263
49. Chen S, Yuan R, Chai Y, Hu F. Electrochemical sensing of hydrogen peroxide using
metal nanoparticles: A review. Microchim Acta. 2013;180(1-2):15-32. doi:10.1007/s00604-012-0904-4
50. Sodzel D, Khranovskyy V, Beni V, et al. Continuous sensing of hydrogen peroxide
and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles.
Microchim Acta. 2015;182(9):1819-1826. doi:10.1007/s00604-015-1493-9
51. Wang N, Sun J, Chen L, Fan H, Ai S. A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta. 2015;182(9):1733-1738.
doi:10.1007/s00604-015-1506-8
52. Xiang Z, Wang Y, Ju P, Zhang D. Optical determination of hydrogen peroxide by
exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta.
2016;183(1):457-463. doi:10.1007/s00604-015-1670-x
53. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen
peroxide produced by cells in culture. J Immunol Methods. 1980;38(1-2):161-170.
doi:10.1016/0022-1759(80)90340-3
54. Wu ZS, Zhang SB, Guo MM, Chen CR, Shen GL, Yu RQ. Homogeneous, unmodified
gold nanoparticle-based colorimetric assay of hydrogen peroxide. Anal Chim Acta.
2007;584(1):122-128. doi:10.1016/j.aca.2006.11.003
55. Wu S, Tan SY, Ang CY, Luo Z, Zhao Y. Oxidation-triggered aggregation of gold
nanoparticles for naked-eye detection of hydrogen peroxide. Chem Commun.
2016;52(17):3508-3511. doi:10.1039/C5CC09447J
56. Sang Y, Zhang L, Li YF, Chen LQ, Xu JL, Huang CZ. A visual detection of hydrogen
peroxide on the basis of Fenton reaction with gold nanoparticles. Anal Chim Acta. 2010;659(1-2):224-228. doi:10.1016/j.aca.2009.11.031
57. Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun. 2010;46(42):8017-8019. doi:10.1039/C0CC02698K
58. Zhang W, Ma D, Du J. Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta. 2014;120:362-367. doi:10.1016/j.talanta.2013.12.028
59. Nitinaivinij K, Parnklang T, Thammacharoen C, Ekgasit S, Wongravee K. Colorimetric determination of hydrogen peroxide by morphological decomposition of silver nanoprisms coupled with chromaticity analysis. Anal Methods. 2014;6(24):9816-9824. doi:10.1039/C4AY02339K
60. Niu X, He Y, Pan J, et al. Uncapped nanobranch-based CuS clews used as an efficient peroxidase mimic enable the visual detection of hydrogen peroxide and glucose with fast response. Anal Chim Acta. 2016;947:42-49. doi:10.1016/j.aca.2016.10.013
61. Lin Z, Xiao Y, Yin Y, Hu W, Liu W, Yang H. Facile Synthesis of Enzyme-Inorganic Hybrid Nanoflowers and Its Application as a Colorimetric Platform for Visual Detection of Hydrogen Peroxide and Phenol. ACS Appl Mater Interfaces. 2014;6(13):10775-10782. doi:10.1021/am502757e
62. Wang Y, Zhou B, Wu S, Wang K, He X. Colorimetric detection of hydrogen peroxide and glucose using the magnetic mesoporous silica nanoparticles. Talanta. 2015;134:712-717. doi:10.1016/j.talanta.2014.12.013
63. Lin L, Song X, Chen Y, et al. Intrinsic peroxidase-like catalytic activity of nitrogen- doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal Chim Acta. 2015;869:89-95. doi:10.1016/j.aca.2015.02.024
64. Alsaif MMYA, Latham K, Field MR, et al. Tunable plasmon resonances in two- dimensional molybdenum oxide nanoflakes. Adv Mater. 2014;26(23):3931-3937. doi:10.1002/adma.201306097
65. Balendhran S, Walia S, Nili H, et al. Two-dimensional molybdenum trioxide and dichalcogenides. Adv Funct Mater. 2013;23(32):3952-3970. doi:10.1002/adfm.201300125
66. Vasilopoulou M, Douvas AM, Georgiadou DG, et al. The influence of hydrogenation and oxygen vacancies on molybdenum oxides work function and gap states for application in organic optoelectronics. J Am Chem Soc. 2012;134(39):16178-16187. doi:10.1021/ja3026906
67. Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nat Photonics. 2014;8(12):899-907. doi:10.1038/nphoton.2014.271
68. Gopalakrishnan A, Ji LL, Cirelli C. Sleep deprivation and cellular responses to oxidative stress. Sleep. 2004;27(1):27-35.

Chapter 4
1. Stamplecoskie KG, Kamat P V. Size-dependent excited state behavior of glutathione- capped gold clusters and their light-harvesting capacity. J Am Chem Soc. 2014;136(31):11093-11099. doi:10.1021/ja505361n
2. Stanzel J, Burmeister F, Neeb M, et al. Size-dependent dynamics in excited states of gold clusters: From oscillatory motion to photoinduced melting. J Chem Phys. 2007;127(16). doi:10.1063/1.2795727
3. Udayabhaskararao T, Pradeep T. New protocols for the synthesis of stable ag and au nanocluster molecules. J Phys Chem Lett. 2013;4(9):1553-1564. doi:10.1021/jz400332g
4. Devadas MS, Kim J, Sinn E, Lee D, Iii TG, Ramakrishna G. Unique Ultrafast Visible Luminescence in Monolayer-Protected Au 25 Clusters. J Phys Chem C. 2010;114:22417-22423. doi:10.1021/jp107033n
5. Murray RW. Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev. 2008;108(7):2688-2720. doi:10.1021/cr068077e
6. Zhu M, Aikens CM, Hendrich MP, et al. Reversible switching of magnetism in thiolate-protected Au 25 superatoms. J Am Chem Soc. 2009;131(7):2490-2492. doi:10.1021/ja809157f
7. Zheng J, Zhou C, Yu M, Liu J. Different sized luminescent gold nanoparticles. Nanoscale. 2012;4(14):4073. doi:10.1039/c2nr31192e
8. Yuan X, Tay Y, Dou X, Luo Z, Leong DT, Xie J. Glutathione-protected silver
nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal Chem.
2013;85(3):1913-1919. doi:10.1021/ac3033678
9. Chen YS, Choi H, Kamat P V. Metal-cluster-sensitized solar cells. A new class of
thiolated gold sensitizers delivering efficiency greater than 2%. J Am Chem Soc.
2013;135(24):8822-8825. doi:10.1021/ja403807f
10. Zhou C, Long M, Qin Y, Sun X, Zheng J. Luminescent gold nanoparticles with
efficient renal clearance. Angew Chem Int Ed Engl. 2011;50(14):3168-3172.
doi:10.1002/anie.201007321
11. Xavier PL, Chaudhari K, Verma PK, Pal SK, Pradeep T. Luminescent quantum
clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale.
2010;2(12):2769-2776. doi:10.1039/c0nr00377h
12. Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H. A universal fluorescence
sensing strategy based on biocompatible graphene quantum dots and graphene oxide
for the detection of DNA. Nanoscale. 2014;6(11):5671-5674. doi:10.1039/C3NR06583A
13. Tsoi KM, Dai Q, Alman BA, Chan WCW. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res. 2013;46(3):662- 671. doi:10.1021/ar300040z
14. Oh E, Liu R, Nel A, et al. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat Nanotechnol. 2016;11(5):479-486. doi:10.1038/nnano.2015.338
15. Xie J, Zheng Y, Ying JY. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J Am Chem Soc. 2009;131(3):888-889. doi:10.1021/ja806804u.
16. Díez I, Ras RH a. Fluorescent silver nanoclusters. Nanoscale. 2011;3(5):1963.
doi:10.1039/c1nr00006c
17. Lin CAJ, Yang TY, Lee CH, et al. Synthesis, characterization, and bioconjugation of
fluorescent gold nanoclusters toward biological labeling applications. ACS Nano.
2009;3(2):395-401. doi:10.1021/nn800632j
18. Wu Z, Jin R. On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano
Lett. 2010;10(7):2568-2573. doi:10.1021/nl101225f
19. Zhou C, Sun C, Yu M, et al. Luminescent gold nanoparticles with mixed valence states
generated from dissociation of polymeric Au(I) thiolates. J Phys Chem C.
2010;114(17):7727-7732. doi:10.1021/jp9122584
20. Huang S, Pfeiffer C, Hollmann J, et al. Synthesis and characterization of colloidal
fluorescent silver nanoclusters. Langmuir. 2012;28(24):8915-8919.
doi:10.1021/la300346t
21. Xu H, Suslick KS. Water-Soluble Fluorescent Silver Nanoclusters. Adv Mater.
2010;22(10):1078-1082. doi:10.1002/adma.200904199
22. Han B, Wang E. DNA-templated fluorescent silver nanoclusters. Anal Bioanal Chem.
2012;402(1):129-138. doi:10.1007/s00216-011-5307-6
23. Zhao M, Sun L, Crooks RM. Preparation of Cu Nanoclusters within Dendrimer
Templates. J Am Chem Soc. 1998;120(19):4877-4878. doi:10.1021/ja980438n
24. Qiao Y, Xu T, Zhang Y, et al. Green synthesis of fluorescent copper nanoclusters for reversible pH-sensors. Sensors Actuators B Chem. 2015;220:1064-1069. doi:10.1016/j.snb.2015.06.073
25. Wilcoxon JP, Abrams BL. Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev. 2006;35(11):1162-1194. doi:10.1039/b517312b
26. Shang L, Stockmar F, Azadfar N, Nienhaus GU. Intracellular thermometry by using fluorescent gold nanoclusters. Angew Chemie - Int Ed. 2013;52(42):11154-11157. doi:10.1002/anie.201306366
27. Tanaka S-I, Miyazaki J, Tiwari DK, Jin T, Inouye Y. Fluorescent Platinum Nanoclusters: Synthesis, Purification, Characterization, and Application to Bioimaging. Angew Chemie Int Ed. 2011;50(2):431-435. doi:10.1002/anie.201004907
28. Le Guével X, Trouillet V, Spies C, Jung G, Schneider M. Synthesis of yellow-emitting platinum nanoclusters by ligand etching. J Phys Chem C. 2012;116(10):6047-6051. doi:10.1021/jp211672t
29. Aiken JD, Finke RG. A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis. J Mol Catal A Chem. 1999;145(1-2):1-44. doi:10.1016/S1381-1169(99)00098-9
30. Hackendorn RA, Virkar A V. Synthesis of platinum nanoclusters and electrochemical investigation of their stability. J Power Sources. 2013;240:618-629. doi:10.1016/j.jpowsour.2013.05.028
31. Dhanalakshmi L, Udayabhaskararao T, Pradeep T. Conversion of double layer charge- stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters. Chem Commun (Camb). 2012;48(6):859-861. doi:10.1039/c1cc15604g
32. Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131(3):888-889. doi:10.1021/ja806804u
33. Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem. 2011;83(4):1193-1196. doi:10.1021/ac1031447
34. Shiang Y , Huang C, Chen W-Y , Chen P , Chang H. Fluorescent gold and silver
nanoclusters for the analysis of biopolymers and cell imaging. J Mater Chem.
2012;22(26):12972. doi:10.1039/c2jm30563a
35. Bao Y, Yeh H-C, Zhong C, et al. Formation and Stabilization of Fluorescent Gold
Nanoclusters Using Small Molecules. J Phys Chem C. 2010;114(38):15879-15882.
doi:10.1021/jp909580z
36. Yu Y, New SY, Xie J, Su X, Tan YN. Protein-based fluorescent metal nanoclusters
for small molecular drug screening. Chem Commun (Camb). 2014;50(89):13805-
13808. doi:10.1039/c4cc06914e
37. Taylor MG, Mpourmpakis G. Thermodynamic stability of ligand-protected metal
nanoclusters. Nat Commun. 2017;8. doi:10.1038/ncomms15988
38. Dong H, Tang S, Hao Y, et al. Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy. ACS Appl Mater Interfaces. 2016;8(5):3107-3114.
doi:10.1021/acsami.5b10459
39. Gopalakrishnan D, Damien D, Shaijumon MM. MoS2 quantum dot-interspersed
exfoliated MoS2 nanosheets. ACS Nano. 2014;8(5):5297-5303.
doi:10.1021/nn501479e
40. Wu J-Y, Zhang X-Y, Ma X-D, et al. High quantum-yield luminescent MoS 2 quantum
dots with variable light emission created via direct ultrasonic exfoliation of MoS 2 nanosheets. RSC Adv. 2015;5(115):95178-95182. doi:10.1039/C5RA19201C
41. Gan Z, Gui Q, Shan Y, Pan P, Zhang N, Zhang L. Photoluminescence of MoS2 quantum dots quenched by hydrogen peroxide: A fluorescent sensor for hydrogen peroxide. J Appl Phys. 2016;120(10). doi:10.1063/1.4962318
42. Huang H, Du C, Shi H, et al. Water-Soluble Monolayer Molybdenum Disulfide Quantum Dots with Upconversion Fluorescence. Part Part Syst Charact. 2015;32(1):72-79. doi:10.1002/ppsc.201400101
43. Gu W, Yan Y, Zhang C, Ding C, Xian Y. One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection. ACS Appl Mater Interfaces. 2016;8(18):11272-11279. doi:10.1021/acsami.6b01166
44. Hang D-R, Sharma KH, Chen C-H, Islam SE. Enhanced Photocatalytic Performance of ZnO Nanorods Coupled by Two-Dimensional α-MoO3 Nanoflakes under UV and Visible Light Irradiation. Chem – A Eur J. 2016;22(36):12777-12784. doi:10.1002/chem.201602141
45. Mendel RR. Biology of the molybdenum cofactor. In: Journal of Experimental Botany. Vol 58. ; 2007:2289-2296. doi:10.1093/jxb/erm024
46. Lai Z, Y ang X, Li A, Qiu Y , Cai J, Y ang P . Facile preparation of full-color emissive carbon dots and their applications in imaging of the adhesion of erythrocytes to endothelial cells. J Mater Chem B. 2017;5(26):5259-5264. doi:10.1039/C7TB00567A
47. Lee SK, Chu D, Song DY, Pak SW, Kim EK. Electrical and photovoltaic properties of residue-free MoS2 thin films by liquid exfoliation method. Nanotechnology. 2017;28:195703. doi:10.1088/1361-6528/aa6740
48. Kumawat MK, Thakur M, Gurung RB, Srivastava R. Graphene Quantum Dots for Cell Proliferation, Nucleus Imaging, and Photoluminescent Sensing Applications. Sci Rep.
2017;7(1). doi:10.1038/s41598-017-16025-w
49. Chevrier DMDM, Chatt A, Zhang P, Chatt A. Properties and applications of protein-
stabilized fluorescent gold nanoclusters : short review. J Nanophotonics.
2012;6(1):064504. doi:10.1117/1.JNP.6
50. Selvaprakash K, Chen YC. Using protein-encapsulated gold nanoclusters as
photoluminescent sensing probes for biomolecules. Biosens Bioelectron. 2014;61:88-
94. doi:10.1016/j.bios.2014.04.055
51. Hu L, Han S, Parveen S, Yuan Y, Zhang L, Xu G. Highly sensitive fluorescent
detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens Bioelectron.
2012;32(1):297-299. doi:10.1016/j.bios.2011.12.007
52. Aikens CM. Electronic structure of ligand-passivated gold and silver nanoclusters. J
Phys Chem Lett. 2011;2(2):99-104. doi:10.1021/jz101499g
53. Xu Y , Sherwood J, Qin Y , Crowley D, Bonizzoni M, Bao Y . The role of protein
characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale.
2014;6(3):1515-1524. doi:10.1039/c3nr06040c
54. Ding H, Liang C, Sun K, et al. Dithiothreitol-capped fluorescent gold nanoclusters: an
efficient probe for detection of copper(II) ions in aqueous solution. Biosens
Bioelectron. 2014;59:216-220. doi:10.1016/j.bios.2014.03.045
55. Kamakoti V , Selvam AP , Shanmugam NR, Muthukumar S, Prasad S. Flexible molybdenum electrodes towards designing affinity based protein biosensors.
Biosensors. 2016;6(3). doi:10.3390/bios6030036
56. Dai C, Y ang CX, Y an XP . Ratiometric Fluorescent Detection of Phosphate in Aqueous Solution Based on Near Infrared Fluorescent Silver Nanoclusters/Metal- Organic Shell Composite. Anal Chem. 2015;87(22):11455-11459. doi:10.1021/acs.analchem.5b03086
57. Liu F, Bing T, Shangguan D, Zhao M, Shao N. Ratiometric Fluorescent Biosensing of Hydrogen Peroxide and Hydroxyl Radical in Living Cells with Lysozyme-Silver Nanoclusters: Lysozyme as Stabilizing Ligand and Fluorescence Signal Unit. Anal Chem. 2016;88(21):10631-10638. doi:10.1021/acs.analchem.6b02995
58. Yuping B, Chang Z, Vu DM, Temirov JP, Dyer RB, Martinez JS. Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J Phys Chem C. 2007;111(33):12194-12198. doi:10.1021/jp071727d
59. Kumawat MK, Thakur M, Lakkakula JR, Divakaran D, Srivastava R. Evolution of thiol-capped gold nanoclusters into larger gold nanoparticles under electron beam irradiation. Micron. 2017;95:1-6. doi:https://doi.org/10.1016/j.micron.2017.01.002
60. Shrivastava M, Kumari R, Parra MR, Pandey P, Siddiqui H, Haque FZ. Electrochemical synthesis of MoS2 quantum dots embedded nanostructured porous silicon with enhanced electroluminescence property. Opt Mater (Amst). 2017;73:763- 771. doi:10.1016/j.optmat.2017.09.029
61. Hariharan S, Karthikeyan B. Optical and surface band bending mediated fluorescence sensing properties of MoS2 quantum dots. RSC Adv. 2016;6(104):101700-101777. doi:10.1039/c6ra21157g
62. Lin H, Wang C, Wu J, Xu Z, Huang Y, Zhang C. Colloidal synthesis of MoS2 quantum dots: Size-dependent tunable photoluminescence and bioimaging. New J Chem. 2015;39(11):8492-8497. doi:10.1039/c5nj01698c
63. Wu J, Dai J, Shao Y, Cao M, Wu X. Carbon dot-assisted hydrothermal synthesis of flower-like MoS2 nanospheres constructed by few-layered multiphase MoS2 nanosheets for supercapacitors. RSC Adv. 2016;6(81):77999-78007. doi:10.1039/c6ra15074h
64. Gopalakrishnan D, Damien D, Li B, et al. Electrochemical synthesis of luminescent MoS2 quantum dots. Chem Commun (Camb). 2015;51(29):6293-6296. doi:10.1039/c4cc09826a
65. Xing W, Chen Y, Wang X, et al. MoS2 Quantum Dots with a Tunable Work Function for High-Performance Organic Solar Cells. ACS Appl Mater Interfaces. 2016;8(40):26916-26923. doi:10.1021/acsami.6b06081
66. Pagona G, Bittencourt C, Arenal R, Tagmatarchis N. Exfoliated semiconducting pure 2H-MoS 2 and 2H-WS 2 assisted by chlorosulfonic acid. Chem Commun. 2015;51(65):12950-12953. doi:10.1039/C5CC04689K
67. Zhou K, Zhang Y, Xia Z, Wei W. As-prepared MoS 2 quantum dot as a facile fluorescent probe for long-term tracing of live cells. Nanotechnology. 2016;27(27):275101. doi:10.1088/0957-4484/27/27/275101
68. Ha HD, Han DJ, Choi JS, Park M, Seo TS. Dual Role of Blue Luminescent MoS2 Quantum Dots in Fluorescence Resonance Energy Transfer Phenomenon. Small. 2014;10(19):3858-3862. doi:10.1002/smll.201400988
69. Lin H, Wang C, Wu J, Xu Z, Huang Y, Zhang C. Colloidal synthesis of MoS 2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New J Chem. 2015;39(11):8492-8497. doi:10.1039/C5NJ01698C
70. Liu QQ, Hu CF, Wang XM. A facile one-step method to produce MoS2 quantum dots as promising bio-imaging materials. RSC Adv. 2016;6(30):25605-25610.
doi:10.1039/c6ra00572a
71. Mukherjee S, Maiti R, Katiyar AK, Das S, Ray SK. Novel Colloidal MoS2 Quantum
Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices.
Sci Rep. 2016;6(1):29016. doi:10.1038/srep29016
72. Gu W, Yan Y, Cao X, Zhang C, Ding C, Xian Y. A facile and one-step ethanol-thermal
synthesis of {MoS}2 quantum dots for two-photon fluorescence imaging. J Mater
Chem B. 2016;4(1):27-31. doi:10.1039/c5tb01839k
73. Zhu X, Xiang J, Li J, Feng C, Liu P, Xiang B. Tunable photoluminescence of MoS2
quantum dots passivated by different functional groups. J Colloid Interface Sci.
2017;511:209-214. doi:10.1016/j.jcis.2017.09.118
74. Govindaraju S, Ankireddy SR, Viswanath B, Kim J, Yun K. Fluorescent Gold
Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid. Sci Rep.
2017;7. doi:10.1038/srep40298
75. Yang Y, Han A, Li R, Fang G, Liu J, Wang S. Synthesis of highly fluorescent gold
nanoclusters and their use in sensitive analysis of metal ions. Analyst.
2017;142(23):4486-4493. doi:10.1039/c7an01348e
76. Jin R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale.
2010;2(3):343-362. doi:10.1039/b9nr00160c
77. Chen LY, Wang CW, Yuan Z, Chang HT. Fluorescent gold nanoclusters: Recent
advances in sensing and imaging. Anal Chem. 2015;87(1):216-229.
doi:10.1021/ac503636j
78. Gunion RF, Dixon-Warren SJ, Lineberger WC, Morse MD. Ultraviolet photoelectron spectroscopy of molybdenum and molybdenum monoxide anions. J Chem Phys.
1996;104(5):1765. doi:10.1063/1.470975
79. Mendel RR, Kruse T. Cell biology of molybdenum in plants and humans. Biochim
Biophys Acta - Mol Cell Res. 2012;1823(9):1568-1579.
doi:10.1016/j.bbamcr.2012.02.007
80. Shang L, Nienhaus K, Nienhaus G. Engineered nanoparticles interacting with cells:
size matters. J Nanobiotechnology. 2014;12(1):5. doi:10.1186/1477-3155-12-5
81. Torres AG, Gait MJ. Exploiting cell surface thiols to enhance cellular uptake. Trends
Biotechnol. 2012;30(4):185-190. doi:10.1016/j.tibtech.2011.12.002
82. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature.
2003;422(6927):37-44. doi:10.1038/nature01451
83. Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: Relevance to drug delivery.
Cell Mol Life Sci. 2009;66(17):2873-2896. doi:10.1007/s00018-009-0053-z
84. Ivanov AI, Nusrat A, Parkos CA. Endocytosis of Epithelial Apical Junctional Proteins by a Clathrin-mediated Pathway into a Unique Storage Compartment. Mol Biol Cell.
2004;15(1):176-188. doi:10.1091/mbc.E03-05-0319
85. dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. Effects of transport inhibitors
on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines.
Schnur JM, ed. PLoS One. 2011;6(9):e24438. doi:10.1371/journal.pone.0024438
86. Xie X, Liao J, Shao X, Li Q, Lin Y. The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles. Sci Rep. 2017;7(1).
doi:10.1038/s41598-017-04229-z
87. Ali MRK, Panikkanvalappil SR, El-Sayed MA. Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin. J Am Chem Soc. 2014;136(12):4464-4467. doi:10.1021/ja4124412

Chapter 5
1. Fenning RT. Silver Nanoparticles. 2010;80(18):2010. doi:10.5772/186
2. Hayat A, Gonca Bulbul, Andreescu S. Probing phosphatase activity using redox active nanoparticles: A novel colorimetric approach for the detection of enzyme activity.
Biosens Bioelectron. 2014;56:334-339. doi:10.1016/j.bios.2014.01.003
3. Li G, Fu H, Chen X, et al. Facile and Sensitive Fluorescence Sensing of Alkaline
Phosphatase Activity with Photoluminescent Carbon Dots Based on Inner Filter Effect.
Anal Chem. 2016;88(5):2720-2726. doi:10.1021/acs.analchem.5b04193
4. Hoylaerts MF, Manes T, Millán JL. Mammalian alkaline phosphatases are allosteric
enzymes. J Biol Chem. 1997;272(36):22781-22787. doi:10.1074/jbc.272.36.22781
5. Siddique A, Kowdley K V. Approach to a Patient with Elevated Serum Alkaline
Phosphatase. Clin Liver Dis. 2012;16(2):199-229. doi:10.1016/j.cld.2012.03.012
6. Sharma U, Pal D, Prasad R. Alkaline phosphatase: An overview. Indian J Clin
Biochem. 2014;29(3):269-278. doi:10.1007/s12291-013-0408-y
7. Wang JH, Wang K, Bartling B, Liu CC. The detection of alkaline phosphatase using an electrochemical biosensor in a single-step approach. Sensors. 2009;9(11):8709-
8721. doi:10.3390/s91108709
8. Sharma U, Pal D, Prasad R. Alkaline phosphatase: An overview. Indian J Clin
Biochem. 2014;29(3):269-278. doi:10.1007/s12291-013-0408-y
9. Kaliannan K, Hamarneh SR, Economopoulos KP, et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci U S A. 2013;110(17):7003-
7008. doi:10.1073/pnas.1220180110
10. Bonomi R, Cazzolaro A, Sansone A, Scrimin P, Prins LJ. Detection of enzyme activity through catalytic signal amplification with functionalized gold nanoparticles. Angew
Chemie - Int Ed. 2011;50(10):2307-2312. doi:10.1002/anie.201007389
11. Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics. 2011;6:491-506.
doi:10.1007/s11468-011-9228-1
12. Wei H, Chen C, Han B, Wang E. Enzyme colorimetric assay using unmodified silver
nanoparticles. Anal Chem. 2008;80(18):7051-7055. doi:10.1021/ac801144t
13. Liang J, Liu H, Huang C, et al. Aggregated silver nanoparticles based surface- enhanced raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules. Anal Chem. 2015;87(11):5790-
5796. doi:10.1021/acs.analchem.5b01011
14. Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. J Mater
Chem C. 2014;2(34):6921-6939. doi:10.1039/c4tc00988f
15. Wu L, Ma C, Zheng X, Liu H, Yu J. Paper-based electrochemiluminescence origami
device for protein detection using assembled cascade DNA-carbon dots nanotags based on rolling circle amplification. Biosens Bioelectron. 2015;68:413-420. doi:10.1016/j.bios.2015.01.034
16. Chen Z, Qian S, Chen J, Chen X. Highly fluorescent gold nanoclusters based sensor for the detection of quercetin. J Nanoparticle Res. 2012;14(12). doi:10.1007/s11051- 012-1264-z
17. Hu L, Han S, Parveen S, Yuan Y, Zhang L, Xu G. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens Bioelectron. 2012;32(1):297-299. doi:10.1016/j.bios.2011.12.007
18. Liu Y, Kwa T, Revzin A. Simultaneous detection of cell-secreted TNF-α and IFN-γ using micropatterned aptamer-modified electrodes. Biomaterials. 2012;33(30):7347- 7355. doi:10.1016/j.biomaterials.2012.06.089
19. Wang J, Musameh M. Electrochemical detection of trace insulin at carbon-nanotube- modified electrodes. Anal Chim Acta. 2004;511(1):33-36. doi:10.1016/j.aca.2004.01.035
20. Wang H-B, Zhang H-D, Chen Y, Liu Y-M. A fluorescent biosensor for protein detection based on poly(thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosens Bioelectron. 2015;74:581-586. doi:10.1016/j.bios.2015.07.021
21. You C-C, Miranda OR, Gider B, et al. Detection and identification of proteins using nanoparticle-fluorescent polymer “chemical nose” sensors. Nat Nanotechnol. 2007;2(5):318-323. doi:10.1038/nnano.2007.99
22. Pandey S, Sharma AK, Sharma KH, et al. Rapid naked eye detection of alkaline phosphatase using α-MoO3-x nano-flakes. Sensors Actuators B Chem. 2018;254:514- 518. doi:10.1016/j.snb.2017.06.123
23. Li CM, Zhen SJ, Wang J, Li YF, Huang CZ. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens Bioelectron. 2013;43(1):366-371. doi:10.1016/j.bios.2012.12.015
24. Gabor G, Walt DR. Sensitivity Enhancement of Fluorescent Ph Indicators by Inner Filter Effects. Anal Chem. 1991;63(8):793-796. doi:10.1021/ac00008a011
25. Fonin A V., Sulatskaya AI, Kuznetsova IM, Turoverov KK. Fluorescence of dyes in solutions with high absorbance. Inner filter effect correction. PLoS One. 2014;9(7). doi:10.1371/journal.pone.0103878
26. Larsson T, Wedborg M, Turner D. Correction of inner-filter effect in fluorescence
excitation-emission matrix spectrometry using Raman scatter. Anal Chim Acta.
2007;583(2):357-363. doi:10.1016/j.aca.2006.09.067
27. Wang YH, Jiang K, Zhu JL, Zhang L, Lin HW. A FRET-based carbon dot-MnO2
nanosheet architecture for glutathione sensing in human whole blood samples. Chem
Commun. 2015;51(64):12748-12751. doi:10.1039/c5cc04905a
28. Wang Y, La A, Brückner C, Lei Y. FRET- and PET-Based Sensing in a Single Material: Expanding the Dynamic Range of an Ultra-Sensitive Nitroaromatic
Explosives Assay. Chem Commun. 2012;48(79):9903. doi:10.1039/c2cc34492k
29. Thiagarajan V , Ramamurthy P . Fluorescent sensing of anions with acridinedione based neutral PET chemosensor. Spectrochim Acta - Part A Mol Biomol Spectrosc.
2007;67(3-4):772-777. doi:10.1016/j.saa.2006.08.031
30. Veale EB, Tocci GM, Pfeffer FM, Kruger PE, Gunnlaugsson T. Demonstration of
bidirectional photoinduced electron transfer (PET) sensing in 4-amino-1,8- naphthalimide based thiourea anion sensors. Org Biomol Chem. 2009;7(17):3447- 3454. doi:10.1039/b907037k
31. Xu L, Li B, Jin Y. Inner filter effect of gold nanoparticles on the fluorescence of quantum dots and its application to biological aminothiols detection. Talanta. 2011;84(2):558-564. doi:10.1016/j.talanta.2011.01.061
32. Cao X, Shen F, Zhang M, et al. Efficient inner filter effect of gold nanoparticles on the fluorescence ofCdS quantum dots for sensitive detection of melamine in raw milk. Food Control. 2013;34(1):221-229. doi:10.1016/j.foodcont.2013.04.016
33. Lin M, Zou HY, Yang T, Liu ZX, Liu H, Huang CZ. An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers. Nanoscale. 2016;8(5):2999-3007. doi:10.1039/C5NR08177G
34. Shang L, Qin C, Jin L, Wang L, Dong S. Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles. Analyst. 2009;134(7):1477-1482. doi:10.1039/b823471j
35. Chaudhuri G, Chatterjee S, Venu-Babu P, Ramasamy K, Richard Thilagaraj W. Kinetic behaviour of calf intestinal alkaline phosphatase with pNPP. Indian J Biochem Biophys. 2013;50(1):64-71.
36. Ding H, Yang D, Zhao C, et al. Protein-gold hybrid nanocubes for cell imaging and
drug delivery. ACS Appl Mater Interfaces. 2015;7(8):4713-4719. doi:10.1021/am5083733
37. Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131(3):888-889. doi:10.1021/ja806804u
38. Alkaline phosphatase reaction buffer (APRB). Cold Spring Harb Protoc. 2009;2009(8):pdb.rec11874-pdb.rec11874. doi:10.1101/pdb.rec11874
39. Stamplecoskie KG, Kamat P V. Size-dependent excited state behavior of glutathione- capped gold clusters and their light-harvesting capacity. J Am Chem Soc. 2014;136(31):11093-11099. doi:10.1021/ja505361n
40. Aikens CM. Electronic structure of ligand-passivated gold and silver nanoclusters. J Phys Chem Lett. 2011;2(2):99-104. doi:10.1021/jz101499g
41. Le Guével X, Hötzer B, Jung G, Hollemeyer K, Trouillet V, Schneider M. Formationof fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J Phys Chem C. 2011;115(22):10955-10963. doi:10.1021/jp111820b
42. Yuping B, Chang Z, Vu DM, Temirov JP, Dyer RB, Martinez JS. Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J Phys Chem C. 2007;111(33):12194-12198. doi:10.1021/jp071727d
43. Qian ZS, Chai LJ, Huang YY, et al. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens Bioelectron. 2015;68:675-680. doi:10.1016/j.bios.2015.01.068
44. Ma J-L, Yin B-C, Wu X, Ye B-C. Copper-Mediated DNA-Scaffolded Silver Nanocluster On-Off Switch for Detection of Pyrophosphate and Alkaline Phosphatase. Anal Chem. 2016;88(18):9219-9225. doi:10.1021/acs.analchem.6b02465
45. Tang C, Qian Z, Huang Y, et al. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition. Biosens Bioelectron. 2016;83:274-280. doi:10.1016/j.bios.2016.04.047
46. Liu X-G, Xing X-J, Li B, et al. Fluorescent assay for alkaline phosphatase activity based on graphene oxide integrating with λ exonuclease. Biosens Bioelectron. 2016;81:460-464. doi:10.1016/j.bios.2016.03.030
47. Xiang M-H, Liu J-W, Li N, Tang H, Yu R-Q, Jiang J-H. A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase. Nanoscale. 2016;8(8):4727-4732. doi:10.1039/c5nr08278a
48. Hu X-L, Wu X-M, Fang X, Li Z-J, Wang G-L. Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application inimmunoassay. Biosens Bioelectron. 2016;77:666-672.
doi:10.1016/j.bios.2015.10.046
49. Zhang Y, Li Y, Zhang C, et al. Fluorescence turn-on detection of alkaline phosphatase
activity based on controlled release of PEI-capped Cu nanoclusters from MnO2
nanosheets. Anal Bioanal Chem. June 2017. doi:10.1007/s00216-017-0420-9
50. He Y, Wang C, Zhao Q, et al. Facile and sensitive fluorescence sensing of alkaline phosphatase activity using NMM/G-quadruplex. Talanta. 2017;172:171-175.
doi:10.1016/j.talanta.2017.05.041
51. Hu Z, Chen J, Li Y, et al. Nucleic acid-controlled quantum dots aggregation: A label-
free fluorescence turn-on strategy for alkaline phosphatase detection. Talanta.
2017;169:64-69. doi:10.1016/j.talanta.2017.03.063
52. Halawa MI, Gao W, Saqib M, Kitte SA, Wu F, Xu G. Sensitive detection of alkaline
phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal
phosphate. Biosens Bioelectron. 2017;95:8-14. doi:10.1016/j.bios.2017.03.073
53. Liu J, Tang D, Chen Z, et al. Chemical redox modulated fluorescence of nitrogen- doped graphene quantum dots for probing the activity of alkaline phosphatase. Biosens
Bioelectron. 2017;94:271-277. doi:10.1016/j.bios.2017.03.017
54. Qu F, Pei H, Kong R, Zhu S, Xia L. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta.
2017;165:136-142. doi:10.1016/j.talanta.2016.11.051
55. Zhao L, Xie S, Song X, Wei J, Zhang Z, Li X. Ratiometric fluorescent response of
electrospun fibrous strips for real-time sensing of alkaline phosphatase in serum. Biosens Bioelectron. 2017;91:217-224. doi:10.1016/j.bios.2016.12.025
56. Liu H, Li M, Xia Y, Ren X. A Turn-On Fluorescent Sensor for Selective and Sensitive Detection of Alkaline Phosphatase Activity with Gold Nanoclusters Based on Inner Filter Effect. ACS Appl Mater Interfaces. 2017;9(1):120-126. doi:10.1021/acsami.6b11920
57. Zhao M, Guo Y, Wang L, et al. A sensitive fluorescence biosensor for alkaline phosphatase activity based on the Cu(II)-dependent DNAzyme. Anal Chim Acta. 2016;948:98-103. doi:10.1016/j.aca.2016.10.033

Chapter 6
1. Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global economic burden of heart failure. Int J Cardiol. 2014;171(3):368-376. doi:10.1016/j.ijcard.2013.12.028
2. Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007;356:1140-
1151. doi:10.1056/NEJMra063052
3. Kehl DW, Iqbal N, Fard A, Kipper BA, De La Parra Landa A, Maisel AS. Biomarkers
in acute myocardial injury. Transl Res. 2012;159(4):252-264.
doi:10.1016/j.trsl.2011.11.002
4. Mann DL, Bristow MR. Mechanisms and models in heart failure: The biomechanical
model and beyond. Circulation. 2005;111(21):2837-2849doi:10.1161/CIRCULATIONAHA.104.500546
5. Patra S, Ghosh A, Roy SS, et al. A short review on creatine-creatine kinase system in
relation to cancer and some experimental results on creatine as adjuvant in cancer
therapy. Amino Acids. 2012;42(6):2319-2330. doi:10.1007/s00726-011-0974-3
6. Nabuurs CI, Choe CU, Veltien A, et al. Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake. J
Physiol. 2013;591(2):571-592. doi:10.1113/jphysiol.2012.241760
7. Jung K. Tietz Fundamentals of Clinical Chemistry, 6th edition. Carl A. Burtis, Edward R. Ashwood, and David E. Bruns, editors. St Louis, MO: Saunders/Elsevier, 2008, 976 pp, $96.95. ISBN 978-0-7216-3865-2. Clin Chem. 2008;54(11):1933-1933.
doi:10.1373/clinchem.2007.101378
8. McLeish MJ, Kenyon GL. Relating structure to mechanism in creatine kinase. Crit
Rev Biochem Mol Biol. 2005;40:1-20. doi:10.1080/10409230590918577
9. Bessman SP, Geiger PJ. Transport of energy in muscle: the phosphorylcreatine shuttle.
Science. 1981;211(4481):448-452. doi:10.1126/science.6450446
10. Robinson DJ, Christenson RH. Creatine kinase and its CK-MB isoenzyme: The conventional marker for the diagnosis of acute myocardial infarction. J Emerg Med.
1999;17(1):95-104. doi:10.1016/S0736-4679(98)00129-2
11. Adams JE, Abendschein DR, Jaffe AS. Biochemical markers of myocardial injury. Is
MB creatine kinase the choice for the 1990s? Circulation. 1993;88(2):750-763.
doi:10.1161/01.CIR.88.2.750
12. Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR. Functions and
effects of creatine in the central nervous system. Brain Res Bull. 2008;76(4):329-343. doi:10.1016/j.brainresbull.2008.02.035
13. Wu AH, Gornet TG, Wu VH, Brockie RE, Nishikawa A. Early diagnosis of acute
myocardial infarction by rapid analysis of creatine kinase isoenzyme-3 (CK-MM) sub- types. Clin Chem. 1987;33(3):358-362. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&amp;PAGE=reference&amp;D=med2&amp;NEWS=N &amp;AN=3815799.
14. Karras DJ, Kane DL. Serum markers in the emergency department diagnosis of acute myocardial infarction. Emerg Med Clin North Am. 2001;19(2):321-337. doi:10.1016/S0733-8627(05)70186-3
15. Curley P, Abbott R, Vallance D. Clinical application of a new enzyme-linked assay for the estimation of brain-specific creatine kinase in head injured patients. Br J Neurosurg. 1989;3(6):655-658. doi:10.3109/02688698908992688
16. Chiu a, Chan WK, Cheng SH, Leung CK, Choi CH. Troponin-I, myoglobin, and mass concentration of creatine kinase-MB in acute myocardial infarction. QJM. 1999;92:711-718. doi:10.1093/qjmed/92.12.711
17. Piran U, Kohn DW, Uretsky S, et al. Immunochemiluminometric assay of creatine kinase MB with a monoclonal antibody to the MB isoenzyme. Clin Chem. 1987;33(9):1517-1520.
18. Davis G, Green MJ, Hill HAO. Detection of ATP and creatine kinase using an enzyme electrode. Enzyme Microb Technol. 1986;8(6):349-352. doi:10.1016/0141- 0229(86)90134-1
19. Fonong T. Immobilized enzyme assay of creatine kinase with amperometric detection. Anal Biochem. 1989;176(2):234-238.
20. Liu X, Wang Y, Chen P, et al. Peptide Functionalized Gold Nanoparticles with Optimized Particle Size and Concentration for Colorimetric Assay Development: Detection of Cardiac Troponin i. ACS Sensors. 2016;1(12):1416-1422. doi:10.1021/acssensors.6b00493
21. Moreira FTC, Dutra RAF, Noronha JP, Sales MGF. Novel sensory surface for creatine kinase electrochemical detection. Biosens Bioelectron. 2014;56:217-222. doi:10.1016/j.bios.2013.12.052
22. Jiaul Haque A-M, Kim J, Dutta G, Kim S, Yang H. Redox cycling-amplified enzymatic Ag deposition and its application in the highly sensitive detection of creatine kinase-MB. Chem Commun Chem Commun. 2015;51(51):14493-14496. doi:10.1039/c5cc06117b
23. Kato K, Shimizu A, Ishiguro Y, Mokuno K, Ariyoshi Y, Nakajima T. Highly sensitive enzyme immunoassay for human creatine kinase BB isozyme. Clin Chim Acta. 1985;150(1):31-40. doi:10.1016/0009-8981(85)90308-0
24. Liu CX, Jiang LY, Wang H, Guo ZH, Cai XX. A novel disposable amperometric biosensor based on trienzyme electrode for the determination of total creatine kinase. Sensors Actuators, B Chem. 2007;122(1):295-300. doi:10.1016/j.snb.2006.05.043
25. Tsukamoto H, Hashimoto H, Matsui Y, Okumura K, Ito T, Ogawa K. Detection of myocardial reperfusion by analysis of serum creatine kinase isoforms. Clin Cardiol. 1988;11(5):287-291. doi:10.1002/clc.4960110503
26. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir. 2005;21(23):10644-10654. doi:10.1021/la0513712
27. Priyadarshini E, Pradhan N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sensors Actuators, B Chem. 2017;238:888- 902. doi:10.1016/j.snb.2016.06.081
28. Borst JW, Willemse M, Slijkhuis R, et al. ATP changes the fluorescence lifetime of cyan fluorescent protein via an interaction with His148. PLoS One. 2010;5(11). doi:10.1371/journal.pone.0013862
29. Li CM, Zhen SJ, Wang J, Li YF, Huang CZ. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens Bioelectron. 2013;43(1):366-371. doi:10.1016/j.bios.2012.12.015
30. Seargeant LE, Stinson RA. Inhibition of human alkaline phosphatases by vanadate. Biochem J. 1979;181(1):247-250.
31. Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun. 2010;46(42):8017-8019. doi:10.1039/c0cc02698k
32. Cytodiagnostics. Gold Nanoparticle Properties.
33. Yang YC, Tseng WL. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold
Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin- Mediated Immunoassay with Naked-Eye Detection. Anal Chem. 2016;88(10):5355- 5362. doi:10.1021/acs.analchem.6b00668
34. Ruan C, Wang W, Gu B. Detection of Alkaline Phosphatase Using Surface-Enhanced Raman Spectroscopy. Anal Chem. 2006;78(1):3379-3384. doi:10.1021/ac0522106
35. Li CM, Li YF, Wang J, Huang CZ. Optical investigations on ATP-induced aggregation of positive-charged gold nanoparticles. Talanta. 2010;81(4-5):1339-1345. doi:10.1016/j.talanta.2010.02.032
36. Daniel MC, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry,
Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and
Nanotechnology. Chem Rev. 2004;104(1):293-346. doi:10.1021/cr030698+
37. Liu X, Atwater M, Wang J, Huo Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surfaces B Biointerfaces.
2007;58(1):3-7. doi:10.1016/j.colsurfb.2006.08.005
38. Herrera AP, Resto O, Briano JG, Rinaldi C. Synthesis and agglomeration of gold
nanoparticles in reverse micelles. Nanotechnology. 2005;16(7):S618-S625.
doi:10.1088/0957-4484/16/7/040
39. Wearne J, Moore RW, Caplan B. Does Alkaline Phosphatase Affect Serum Creatine
Kinase V alues? Clin Chem. 1975;21(9):1343-1343.
http://clinchem.aaccjnls.org/content/21/9/1343.1.abstract.
40. Tsung SH. Letters: Relationship between alkaline phosphatase and creatine kinase
activity. Clin Chem. 1976;22(1):116-116.
http://clinchem.aaccjnls.org/content/22/1/116.abstract.
41. Gordon J. Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods
Enzymol. 1991;201(1982):477−82. doi:10.1016/0076-6879(91)01043-2
42. Huyer G, Liu S, Kelly J, et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem. 1997;272(2):843-851.
doi:10.1074/jbc.272.2.843
43. McComb RB, Bowers GNJ, Posen S. Alkaline Phosphatase. In: Alkaline Phosphatase.
Vol Suppl 116. ; 1979:633-2322. doi:10.1056/NEJM197201272860407
44. Boyd DW, Kustin K, Niwa M. Do vanadate polyanions inhibit phosphotransferase enzymes? Biochim Biophys Acta (BBA)/Protein Struct Mol. 1985;827(3):472-475. doi:10.1016/0167-4838(85)90235-3
45. Geng T, Song Z, Zhang J, Xu Z. Creatine Kinase Determination Based on an Electrochemical Impedance Immunosensor. Int J Electrochem Sci. 2017;12:8552- 8563. doi:10.20964/2017.09.60
46. Lee J, Choi Y-S, Lee Y, et al. Sensitive and Simultaneous Detection of Cardiac Markers in Human Serum Using Surface Acoustic Wave Immunosensor. Anal Chem. 2011;83(22):8629-8635. doi:10.1021/ac2020849
47. Garay F, Kisiel G, Fang A, Lindner E. Surface plasmon resonance aided electrochemical immunosensor for CK-MB determination in undiluted serum samples. Anal Bioanal Chem. 2010;397(5):1873-1881. doi:10.1007/s00216-010-3736-2
48. Steinhardt J, Krijn J, Leidy JG. Differences between bovine and human serum albumins: binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence effects. Biochemistry. 1971;10(22):4005-4015. doi:10.1021/bi00798a001
49. Fanali G, Di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: From bench to bedside. Mol Aspects Med. 2012;33(3):209-290. doi:10.1016/j.mam.2011.12.002
50. Shuman MA, Tollefsen DM, Majerus PW. The binding of human and bovine thrombin to human platelets. Blood. 1976;47(1):43-54.
51. Tomita H, Sato S, Matsuda R, et al. Serum lysozyme levels and clinical features of sarcoidosis. Lung. 1999;177(3):161-167. doi:10.1007/PL0000763752. Hawkins RC. Total iron binding capacity or transferrin concentration alone outperforms iron and saturation indices in predicting iron deficiency. Clin Chim Acta. 2007;380(1-2):203-207. doi:10.1016/j.cca.2007.02.032
53. Mattana J, Singhal PC. Determinants of elevated creatine kinase activity and creatine kinase MB-fraction following cardiopulmonary resuscitation. Chest. 1992;101(5):1386-1392. doi:10.1378/chest.101.5.1386

Chapter 7
1. Zhang D, Zhou W, Liu Q, Xia Z. CH3NH3PbBr3 Perovskite Nanocrystals Encapsulated in Lanthanide Metal-Organic Frameworks as a Photoluminescence Converter for Anti-Counterfeiting. ACS Appl Mater Interfaces. 2018;10(33):27875- 27884. doi:10.1021/acsami.8b10517
2. Pan G, Bai X, Yang D, et al. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. Nano Lett. 2017;17(12):8005-8011. doi:10.1021/acs.nanolett.7b04575
3. Pizani PS, Leite ER, Pontes FM, et al. Photoluminescence of disordered ABO3 perovskites. Appl Phys Lett. 2000;77(6):824-826. doi:10.1063/1.1306663
4. Sunarso J, Hashim SS, Zhu N, Zhou W. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review.
Prog Energy Combust Sci. 2017;61:57-77. doi:10.1016/j.pecs.2017.03.003
5. Ida S, Ogata C, Eguchi M, Youngblood WJ, Mallouk TE, Matsumoto Y.
Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion). J Am Chem Soc. 2008;130(22):7052-7059. doi:10.1021/ja7114772
6. Ahmad G, Dickerson MB, Cai Y, et al. Rapid bioenabled formation of ferroelectric BaTiO3 at room temperature from an aqueous salt solution at near neutral pH. J Am Chem Soc. 2008;130(1):4-5. doi:10.1021/ja0744302
7. Wang J, Pang X, Akinc M, Lin Z. Synthesis and characterization of perovskite PbTiO3 nanoparticles with solution processability. J Mater Chem. 2010;20(28):5945-5949. doi:10.1039/c0jm00270d
8. Yu J, Liu X. Hydrothermal synthesis and characterization of LiNbO3 crystal. Mater Lett. 2007;61(2):355-358. doi:10.1016/j.matlet.2006.04.087
9. Souza AE, Almeida Santos GT, Silva RA, et al. Morphological and structural changes of Ca xSr 1-xTiO 3 powders obtained by the microwave-assisted hydrothermal method. Int J Appl Cera
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code