Responsive image
博碩士論文 etd-0101107-235955 詳細資訊
Title page for etd-0101107-235955
論文名稱
Title
基於基因演算法之碎形影像壓縮及主動輪廓模型
GA-based Fractal Image Compression and Active Contour Model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-12-29
繳交日期
Date of Submission
2007-01-01
關鍵字
Keywords
基因演算法、碎形影像壓縮、動態輪廓模型
genetic algorithm, fractal image compression, active contour model
統計
Statistics
本論文已被瀏覽 5660 次,被下載 1176
The thesis/dissertation has been browsed 5660 times, has been downloaded 1176 times.
中文摘要
本論文將探討基因演算法在碎形影像壓縮及動態輪廓模型上的應用。關於在碎形影像壓縮上的研究,傳統碎形影像壓縮的最大缺點為編碼速率太慢,因此吾人提出兩種方法來解決這類問題。首先我們提出schema genetic algorithm (SGA)以解決編碼速率太慢的問題。此演算法乃將基因演算法中的一個重要定理–Schema定理嵌入GA裡面以便加速這編碼器。在GA的進化過程中,每一個要被編碼的range block,其基因運算子都依據schema定理來做改造。依據此策略,編碼所需的時間將可大幅的減少,且可維持不錯的重建影像品質。接著根據自然影像的自我相似性,吾人提出一SC-GA演算法以便更進一步降低編碼的時間。此方法分成兩個步驟,首先利用每一個欲編碼的range block與它相鄰blocks之間的空間相關性來找出區域最佳解。假如此解不夠理想的話,則第二階段才會被啟動以便嘗試發現更佳的解。在此階段中,GA將作用在整張影像中以便找出更相似的domain block。如此不僅編碼的時間會被更進一步地減少。由於在第一階段所發現的解只需記錄和相鄰range block的解之偏移量來代替完整的位置,因此壓縮比將更進一步被提高。上述兩種方法將和full search、傳統的 GA及其它的GA搜尋方法做比較以證明它們確實能大幅的提升編碼的速率。緊接著是關於動態輪廓模型的研究(以下簡稱為ACM)。首先針對傳統ACM的缺點之一–蛇輪廓無法收斂於物件凹陷的邊界,吾人提出一改良的ACM演算法來克服此類問題。此方法分成兩個階段。第一階段為執行傳統的ACM演算法以便擷取除了凹陷區域以外的物件輪廓。接著於第二階段中,對於那些停留在凹陷區域外的控制點,分別將適當的能量模板加入它們的外部能量。如此利用此修正過後的蛇能量將這些控制點導引進入凹陷區域來完整地擷取物件的輪廓。實驗的結果將發現吾人所提出的方法確實能完整擷取所需的物件輪廓,且在第二階段中額外再付出的計算量非常地少。另外,在有限數量的控制點之下,蛇輪廓通常無法精確擷取到物件的邊界,因此吾人進一步提出一以GA為基礎的ACM演算法來處理此問題。首先利用先前所提出的改良式ACM演算法初步擷取物件輪廓後,接著利用GA的進化策略,嘗試著在兩兩相鄰的控制點之間額外加入少量的控制點以便進一步擷取更精確的物件輪廓。同樣地,一些實驗也將被執行以便說明此方法的可行性。
Abstract
In this dissertation, several GA-based approaches for fractal image compression and active contour model are proposed. The main drawback of the classical fractal image compression is the long encoding time. Two methods are proposed in this dissertation to solve this problem. First, a schema genetic algorithm (SGA), in which the Schema Theorem is embedded in GA, is proposed to reduce the encoding time. In SGA, the genetic operators are adapted according to the Schema Theorem in the evolutionary process performed on the range blocks. We find that such a method can indeed speedup the encoder and also preserve the image quality. Moreover, based on the self-similarity characteristic of the natural image, a spatial correlation genetic algorithm (SC-GA) is proposed to further reduce the encoding time. There are two stages in the SC-GA method. The first stage makes use of spatial correlations in images for both the domain pool and the range pool to exploit local optima. The second stage is operated on the whole image to explore more adequate similarities if the local optima are not satisfactory. Thus not only the encoding speed is accelerated further, but also the higher compression ratio is achieved, because the search space is limited relative to the positions of the previously matched blocks, fewer bits are required to record the offset of the domain block instead of the absolute position. The experimental results of comparing the two methods with the full search, traditional GA, and other GA search methods are provided to demonstrate that they can indeed reduce the encoding time substantially. The main drawback of the traditional active contour model (ACM) for extracting the contour of a given object is that the snake cannot converge to the concave region of the object under consideration. An improved ACM algorithm is proposed in this dissertation to solve this problem. The algorithm is composed of two stages. In the first stage, the ACM with traditional energy function guides the snake to converge to the object boundary except the concave regions. In the second stage, for the control points which stay outside the concave regions, a proper energy template are chosen and are added in the external energy. The modified energy function is applied so as to move the snake toward the concave regions. Therefore, the object of interest can be completely extracted. The experimental results show that, by using this method, the snake can indeed completely extract the boundary of the given object, while the extra cost is very low. In addition, for the problem that the snake cannot precisely extract the object contour when the number of the control points on the snake is not enough, a GA-based ACM algorithm is presented to deal with such a problem. First the improved ACM algorithm is used to guide the snake to approximately extract the object boundary. By utilizing the evolutionary strategy of GA, we attempt to extract precisely the object boundary by adding a few control points into the snake. Similarly, some experimental results are provided to show the performance of the method.
目次 Table of Contents
誌謝 i
摘要 ii
ABSTRACT iv
LIST OF FIGURES vi
LIST OF TABLES xii
GLOSSARY OF SYMBOLS xiii
CHAPTER 1 INTRODUCTION……………………………………………………… 1
1.1 Motivation………………………………………………………...……….. 1
1.2 Brief Sketch of the Contents……………………………………………..... 5
CHAPTER 2 GENETIC ALGORITHM………………………………………………. 8
2.1 Evolutionary Computation of Genetic Algorithm…………………………. 9
2.2 Schema Theorem…………………………………………………………. 11
CHAPTER 3 FRACTAL IMAGE COMPRESSION………………………………… 13
3.1 Some Definitions and Theorems………………………………..…….….. 14
3.2 Introduction to Fractal Image Compression…………………………...…. 15
CHAPTER 4 SCHEMA GENETIC ALGORITHM FOR FRACTAL IMAGE
COMPRESSION………………………………………………..……….. 19
4.1 Introduction………………………………………………………………. 19
4.2 Fractal Image Compression using SGA Method…………………………. 20
4.3 Experimental Result……………………………………………………… 25
CHAPTER 5 SPATIAL CORRELATION GENETIC ALGORITHM FOR
FRACTAL IMAGE COMPRESSION…………………………………… 36
5.1 Introduction………………………………………………………………. 36
5.2 Fractal Image Compression using SC-GA Method……………………… 37
5.3 Experimental Result………………………………………….................... 46
CHAPTER 6 ACTIVE CONTOUR MODEL………………………………………... 59
6.1 Introduction to Conventional ACM……………………………………… 60
6.2 Drawbacks and Remedial Methods……………………………………… 62
CHAPTER 7 GENETIC ALGORITHM APPROACH FOR ACTIVE CONTOUR
MODEL………………………………………………………………….. 64
7.1 An Improved ACM for Extracting Objects with Concavities…………… 64
7.2 GA-based ACM………………………………………………………….. 67
7.3 Experimental Results…………………………………………………….. 71
CHAPTER 8 CONCLUSIONS AND DISCUSSIONS……………………………… 78
REFERENCES………………………………………………………………………… 82
參考文獻 References
[Bar.1] Barnsley, M. F., Fractal everywhere. Academic Press, California, 1988.
[Bar.2] Barnsley, M. F. and Demko, S., Iterated function systems and the global construction of fractals. Royal Society of London, A399, pp. 243-275, 1985.
[Bar.3] Barnsley, M. F., Elton, J. H., and Hard, D. P., Recurrent iterated function systems. Constructive Approximation, pp. 3-31, 1989.
[Cal.1] Caldwell, C. and Johnston, V. S., Tracking a criminal suspect through “Face-Space” with a genetic algorithm. Proceedings of the 4th International Conference on Genetic Algorithms, Morgan Kaufmann, California, pp. 416-421, 1991.
[Cha.1] Chalmers, D. J., The evolution of learning: an experiment in genetic connectionism. in Touretzky, D. S., Elman, J. L., Sejnowski, T. J., and Hinton, G. E., (Eds.), Proceedings of the 1990 Connectionist Models Summer School, Morgan Kaufmann, California, 1990.
[Che.1] Chen, D. R., Chang, R. F., Chen, C. J., Ho, M. F., Kuo, S. J., Chen, S. T., Hung, S. J., and Woo, K. M., Classification of breast ultrasound images using fractal feature. Clinical Imaging, 29 (4), pp. 235-245, 2005.
[Chi.1] Chipperfield, A. J. and Fleming, P. J., Genetic algorithms in control systems engineering. IASTED Journal of Computers and Control, 24 (1), 1996.
[Chn.1] Chen, Y. W., Nakao, Z., Arakaki, K., and Tamura, S., Blind deconvolution based on genetic algorithms. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E80-A (12), pp. 2603-2607, 1997.
[Coh.1] Cohen, L. D., On active contour models and balloons. in CVGIP: Image Understanding, 53 (2), pp. 211-218, 1991.
[Coo.1] Cohoon, J. P., Hegde, S. U., Martin, W. N., and Richards, D. S., Distributed genetic algorithms for the floorplan design problem. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10 (4), pp. 483-492, 1991.
[Esb.1] Esbensen, H. and Mazumder, P., SAGA: a unification of the genetic algorithm with simulated annealing and its application to macro-cell placement. Proceedings of the 7th International Conference on VLSI Design, pp. 211-214, 1994.
[Fis.1] Fisher, Y., Fractal Image Compression: Theory and Application. Springer-Verlag, Berlin, 1995.
[Fu.1] Fu, Y., Erdem, A. T., and Trkalp, A. M., Tracking visible boundary of objects using occlusion adaptive motion snake. IEEE Transactions on Image Processing, 9 (12), pp. 2051-2060, 2000.
[Gol.1] Goldberg, D. E., Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Massachusetts, 1989.
[Hau.1] Haupt, R. L. and Haupt, S. E., Practical genetic algorithms. Wiley-Interscience, New York, 1998.
[Hol.1] Holland, J. H., Adaptation in natural and artificial systems. The University of Michigan Press, Michigan, 1975.
[Jac.1] Jacquin, A. E., Image coding based on a fractal theory of iterated contractive image transformations. IEEE Transactions on Image Processing, 1 (1), pp. 18-30, 1992.
[Jan.1] Jang, D. S. and Choi, H. I., Active models for tracking moving objects. Pattern Recognition, 33, pp. 1135-1146, 2000.
[Kas.1] Kass, M., Witkin, A., and Terzopoulos, D., Snake: active contour models. International Journal of Computer Vision, 1, pp. 321-332, 1988.
[Kaw.1] Kawaguchi, T., Baba, T., and Nagata, R., 3-D object recognition using a genetic algorithm-based search scheme. IEICE Transactions on Information and Systems, E80-D (11), pp. 1064-1073, 1997.
[Kit.1] Kitano, H., Designing neural networks using genetic algorithms with graph generation system. Complex Systems, 4, pp. 461-476, 1990.
[Kit.2] Kitano, H., Neurogenetic learning: an integrated method of designing and training neural networks using genetic algorithms. Physica D: Nonlinear Phenomena, 75, pp. 225-238, 1994.
[Koz.1] Koza, J. R., Evolving a computer program to generate random numbers using the genetic programming paradigm. in Belew, R. K. and Booker, L. B., (Eds), Proceedings of the 4th International Conference on Genetic Algorithms, Morgan Kaufmann, California, pp. 37-44, 1991.
[Koz.2] Koza, J. R., Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, Massachusetts, 1992.
[Koz.3] Koza, J. R., Genetic programming Ⅱ: automatic discovery of reusable programs. MIT Press, Cambridge, Massachusetts, 1994.
[Li.1] Li, C. H. and Wang, S. S., Digital watermarking using fractal image coding. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E83-A (6), pp. 1286-1288, 2000.
[Lin.1] Linnell, T. A. and Derari, F., Mapping vector accumulator: fractal domain feature for character recognition. Electronics Letters, 40 (22), pp. 1406-1407, 2004.
[Mah.1] Mahfoud, S. W. and Mani, G., Financial forecasting using genetic algorithms. Applied Artificial Intelligence, 10, pp. 543-565, 1996.
[Mci.1] McInerney, T. and Terzopoulos, D., Deformable models in medical image analysis: a survey. Medical Image Analysis, 1, pp. 91-108, 1996.
[Mci.2] McInerney, T. and Terzopoulos, D., Topologically adaptable snake. International Conference on Computer Vision (ICCV’95), pp. 840-845, 1995.
[Mci.3] McInerney, T. and Terzopoulos, D., Topologically adaptable deformable surfaces for medical image volume segmentation. IEEE Transactions on Medical Imaging, 18 (10), pp. 840-845, 1999.
[Mit.1] Mitra, S. K., Murthy, C.A., and Kundu, M.K., Technique for fractal image compression using genetic algorithm. IEEE Transactions on Image Processing, 4 (7), pp. 586-593, 1998.
[Nor.1] Nordvik, J. and Renders, J., Genetic algorithms and their potential for use in process control: a case study. in Belew, R. K. and Booker, L. B., (Eds), Proceedings of the 4th International Conference on Genetic Algorithms, Morgan Kaufmann, California, pp. 480-486, 1991.
[Pac.1] Packard, N. H., A genetic learning algorithm for the analysis of complex data. Complex Systems, 4 (5), pp. 543-572, 1990.
[Pak.1] Park, J. and Keller, J. M., Snake on the watershed. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (10), pp. 1201-1205, 2001.
[Par.1] Park, H., Schoepflin, T., and Kim, Y., Active contour model with gradient directional information: directional snake. IEEE Transactions on Circuits and Systems for Video Technology, 11 (2), pp. 252-256, 2001.
[Ran.1] Randy, L. H. and Sue, E. H., Practical genetic algorithms. Wiley-Interscience, New York, 1998.
[Seo.1] Seo, K. H., Kim, W., On, C., and Lee, J. J., Face detection and facial extraction using color snake. IEEE Transactions Symposium on Industrial Electronics, L’A quila, Italy, 2, pp. 457-462, 2002.
[Tsa.1] Tsai, J. C. and Hsieh, C. H., Predictive vector quantization for image compression. Electronics Letters, 32, pp. 2325-2326, 1998.
[Ven.1] Vences, L. and Rudomin, I., Genetic algorithms for fractal image and image sequence compression. Proceedings Computacion Visual, Universidad Nacional Autonoma de Mexico, pp. 35-44, 1997.
[Wan.1] Wang, C. T., Chen, T. S., and He, S. H., Detecting and restoring the tampered images based on iteration-free fractal compression. Journal of Systems and Software, 67 (2), pp. 131-140, 2003.
[Wag.1] Wang, Z., Zhang, D., and Yu, Y. L., Hybrid image coding based on partial fractal mapping. Signal Processing: Image Communication, 15, pp. 767-779, 2000.
[Whi.1] Whitley, L. D. and Schaffer, J. D., (Eds), COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks. IEEE Computer Society Press, Maryland, 1992.
[Won.1] Wong, Y. Y., Yuen, P. C., and Tong, C. S., Segmented snake for contour detection. Pattern Recognition, 31, pp. 1669-1679, 1998.
[Wu.1] Wu, M. S., Jeng, J. H., and Hsieh, J. G., Schema genetic algorithm for fractal image compression. Engineering Applications of Artificial Intelligence, in Press.
[Wu.2] Wu, M. S., Teng, W. C., Jeng, J. H., and Hsieh, J. G., Spatial correlation genetic algorithm for fractal image compression. Chaos, Solitons & Fractals, 28 (2), pp. 497-510, 2006.
[Xu.1] Xu, C. and Prince, J. L., Snake, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7 (3), pp. 359-369, 1998.
[Yao.1] Yao, Z., Fixed point in fractal image compression as watermarking. International Conference on Image Processing (ICIP 2003), 2, pp. 475-478, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code