Responsive image
博碩士論文 etd-0101110-230725 詳細資訊
Title page for etd-0101110-230725
論文名稱
Title
應用導波T(0,1)模態於孔蝕檢測之研究
The Study of Pitting Inspection in Pipes Using Guided Waves T(0,1) Mode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-12-24
繳交日期
Date of Submission
2010-01-01
關鍵字
Keywords
小波時頻分析、有限元素法、孔蝕、波式轉換、T(0,1)模態
finite element method, wavelet transform, mode conversion phenomena, pitting, T(0,1) mode
統計
Statistics
本論文已被瀏覽 5678 次,被下載 0
The thesis/dissertation has been browsed 5678 times, has been downloaded 0 times.
中文摘要
導波法可以快速檢測長距離的管線,經由分析反射回波訊號及波式轉換現象可指出缺陷或其他特徵的存在,但對於孔蝕這類型腐蝕仍有檢測困難度與盲點。故本研究之目的係探討導波T(0,1)模態遭遇孔蝕之反射回波現象,並利用小波時頻分析技術來提高腐蝕訊號的判讀能力。
為了瞭解孔蝕反射回波訊號之特性,本論文先以有限元素法模擬T(0,1)模態導波入射至孔蝕所產生之反射訊號,藉由有限元素法模擬與實驗法來研究單一孔蝕在不同孔徑及深度變化下,其導波反射訊號及頻率響應之特性;其次進行多孔規則型及隨機型孔蝕之討論,探討多孔規則型孔蝕區之軸向距離與激發頻率波長之關係,同時也針對四區人工腐蝕程度不同之隨機孔蝕區所產生之回波訊號進行分析。實驗乃藉由環狀探頭激發T(0,1)模態於3吋碳鋼管件上,採收發合置,分析各案例中的孔蝕區回波訊號特性。
由模擬的結果顯示,孔蝕因幾何形狀影響容易散射,導致回波訊號較弱,因此在操作頻率範圍內選擇較高頻者,以取得較大的單一孔蝕反射回波訊號。而由實驗結果可知,當腐蝕截面積損失比小於2 %時,由於訊號過小導致被淹沒於雜訊之中,以目前導波技術尚無法檢測出來。但輔以小波時頻分析後,該結果可有效提高訊號判讀的能力,使訊號得以分離出來;針對多排規則型孔蝕區之研究結果發現,孔蝕區之軸向間距為入射波長0.66倍時發生建設性干涉現象,使得反射訊號有最大值,且由於孔蝕區具有非軸對稱特徵,波式轉換易伴隨而生。針對隨機孔蝕腐蝕區,其反射回波訊號隨頻率變化特性則不像規則型孔蝕一樣受干涉現象影響較深,該回波乃隨頻率升高而反射訊號下降;在不同腐蝕程度下之孔蝕區經小波時頻分析後可有效地定義其腐蝕程度。藉由本研究成果了解T(0,1)模態與孔蝕之交互作用現象,配合訊號處理分析,將有助於提高導波於管線孔蝕檢測之能力。
Abstract
Using ultrasonic guided waves can achieve long range inspection along the pipeline rapidly. The presence of defect or other features on the pipe were identified by analyzing the reflected echoes as well as mode conversion phenomena. However, it is difficult for guided wave to find a minor corrosion, such as pitting. Therefore, a study of the reflection of torsional T(0,1) mode from pits on the pipe has been carried out and an advanced signal processing method wavelet transform is adopted to process the reflected echoes in this study.
In order to understand that characteristic of the reflected echoes of pits, the propagation of guided wave T(0,1) through pits was simulated by the finite element method. The frequency response of the signal reflected from the pits with different sizes was discussed both by finite element method and experimental method. Then, we discuss two types of pitting including regular- distributed pitting and the random-distributed pitting. We not only discuss the relation between the axial length of regular pitting and wave length of the T(0,1) mode, but also the reflected singal of four random pittings. The experiments were performed on 3 inch carbon steel pipe for measuring the reflected signals from different pittings with different frequencies.
The results of the simulation, indicate that the wave was easily scattered by pitting because the shape of geometry. It is the reason of reducing the amplitude of reflected signals. To receive a dominate signal reflected from pitting, the excitation with higher frequency was choosen within the frequency range of interest. The experimental results indicate that the signals would be too weak to be detected by guided waves when the estimated cross sectional loss of the pitting is less than 2 percent. However, the results after wavelet transform showed the feasibility of improving the abilities of detecting minor pitting. In the case of regular pitting, the maximu value of the reflected signal appeared when the axial length of the pitting equals to the 66 % of the wavelength. It is because the constructive interference. The mode conversion phenomena is another behavior of the reflected signal cased by the non-axissymetric geometry of the pitting. As for the random pitting, The reflected echo shows different behavior with the regular pitting. The amplitude of the signal is bigger with lower frequency we use. The different level of random pitting on the pipe were also identified successfully by wavelet transform. Understanding the phenomena of interaction between the guided wave and the pitting is helpful to the guided wave inspection.
目次 Table of Contents
中文摘要................................................................................................................i
英文摘要……………………………………………………………………… iii
目錄……………………………………………………………………………v
表目錄………………………………………………………………………viii
圖目錄……………………………………………………………………x
第一章緒論.........................................................................................................1
1.1 研究背景……………………………………………………………1
1.2 文獻回顧……………………………………………………………2
1.3 研究方法……………………………………………………………5
1.4 本文架構……………………………………………………………5
第二章基本理論.................................................................................................7
2.1 導波基本概念........................................................................................7
2.2 導波基本理論與分析............................................................................7
2.2.1 導波於圓管中之波動方程式.....................................................7
2.2.2 頻散曲線.....................................................................................9
2.2.3 波形結構...................................................................................10
2.3 小波轉換法..........................................................................................11
第三章 實驗架構與模擬設定...........................................................................17
3.1 實驗架設..............................................................................................17
3.1.1 實驗儀器設備[43] ....................................................................17
3.1.2 實驗管件規格...........................................................................19
vi
3.1.3 實驗步驟與方法…...................................................................20
3.2 導波波傳模擬......................................................................................21
3.2.1 有限元素暫態模擬...................................................................21
3.2.2 有限元素法模型設定...............................................................21
3.2.3 施加負載與後處理部份...........................................................22
3.3 缺陷尺寸與截面積損失比之計算......................................................23
3.3.1 單孔、規則型孔蝕模型之建立及截面積損失比之計算.......23
3.3.2 規則型與隨機型孔蝕模型之建立...........................................24
第四章 單一孔蝕之結果與討論.......................................................................40
4.1 單一孔蝕與凹槽模擬結果與討論......................................................40
4.1.1 凹槽尺寸變化之影響...............................................................40
4.1.2 單一孔蝕模擬結果...................................................................41
4.1.3 孔蝕與凹槽模擬討論...............................................................42
4.2 實驗結果與討論..................................................................................43
4.2.1 單一孔蝕………………………………………………………43
4.2.2 重覆性實驗..............................................................................45
4.3 小波時頻分析結果..............................................................................46
第五章 規則型與隨機孔蝕研究成果 ..............................................................73
5.1 規則型與隨機孔蝕模擬結果與討論..................................................73
5.1.1 規則型孔蝕模擬結果與討論...................................................73
5.1.2 隨機型孔蝕模擬結果與討論...................................................75
5.2 規則型與隨機孔蝕實驗結果與討論..................................................75
5.2.1 規則型孔蝕實驗結果與討論...................................................75
vii
5.2.2 隨機型孔蝕實驗結果與討論...................................................76
5.3 小波時頻分析......................................................................................77
第六章 結論與建議.........................................................................................110
6.1 結論....................................................................................................110
6.2 未來展望............................................................................................111
參考文獻...........................................................................................................112
參考文獻 References
1. API 579-1/ASME FFS-1, JUNE 5, 2007.
2. J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
3. P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
4. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
5. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
6. A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
7. D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
8. W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
9. G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
10. G. M. Light, N. R. Joshi and S. N. Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, Vol. 44,pp. 494-503, 1986.
11. W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves”, Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
12. S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
13. H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.
14. J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, February, 1998.
15. J. J. Ditri and J. L. Rose, "Excitation of Guided Elastic Wave Modes in Hollow Cylinders by Applied Surface Tractions", Journal of Applied Physics, Vol. 72, No. 7, pp.2589-2597,1992.
16. H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
17. J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
18. J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” IEEE Transactions on Ultrasonics, Ferroelectics and Frequency Control, Vol. 48, No. 3, pp. 761-768, May, 2001.
19. J. Li and J. L. Rose, “Angular-Profile Tuning of Guided Waves in Hollow Cylinders Using a Circumferential Phased Array,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 49, pp. 1720-1729, 2002.
20. T. Hayashi, K. Kawashima, Z. Sun, J. L. Rose, “Analysis of Flexural Mode Focusing by a Semianalytical Finite Element Method,” Journal of Acoustical Society of America, Vol. 113, pp. 1241-1248, 2002.
21. D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
22. D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics, Ferroelectics and Frequency Control, Vol. 39, pp. 381-396, 1992.
23. M. Castasing and P. Cawley, “The Generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
24. P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
25. O. Diligent, P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the S0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” Journal of the Acoustical Society of America, Vol. 112, No. 6, December, pp. 2589-2601, 2002.
26. D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-2080, 1995.
27. D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
28. D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859-1866, 1996.
29. M. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
30. D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” Journal of Applied Mechanics, Vol. 65, pp. 635-641, 1998.
31. D. N. Alleyne, P. Cawley and M. J. S. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circuferential Notch in a Pipe,” Journal of Applied Mechanics, Vol. 65, pp. 649-656, 1998.
32. A. Demma, P. Cawley, M. J. S. Lowe, B. Pavlakovic and A. G.. Roosenbrand, “The Reflection of Guided Waves from Notches in Pipes : a Guide for Interpreting Corrosion Measurements,” NDT&E International, Vol. 37, No. 3, pp.167-180, 2004.
33. A. Demma, P. Cawley, M. L. S. Lowe and A. G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” Journal of the Acoustical Society of America, Vol. 114, No. 2, August, pp. 611-625, 2003.
34. A. Grossman and J. Morlet, “Decomposition of Hardy Functions into Square Integrablewavelets of Constant Shape,” SIAM Journal on Mathematical Analysis, pp. 723-736, 1984.
35. T. Onsay and A. G. Haddow, “Wavelet Transform Analysis of Transient Wave Propagation in a Dispersive Medium,” Journal of the Acoustical Society of America, Vol. 95, No. 3, pp. 1441-1449, 1994.

36. S. Lin, T. Ito and K. Kawashima , “Sizing of Axial Defects in Pipes with FEM Simulation of Wave Propagation and Wavelet Transformation,” Proceeding of the IEEE Ultrasonics Symposium’98, New York, pp. 877-880, 1998.
37. Z. Li, S. Xia S and J. Wang, “Detection of the Radial Crack in a Thin-wall Tube,” Journal of Mechanical Strength, Vol. 26, No. 6, pp. 642-646, 2004.(in Chinese)
38. M. H. S. Siquera, C. E. N. Gatts and R. R. Silva, “The Use of Guided Waves and Wavelets Analysis in Pipe Inspection,” Ultrasonics, Vol. 41, pp.785-797, 2004.
39. F. He, Y. Gao, Z. Zhou, and J. Bai, “An Overview of Testing Applications of Wavelet in Guided Waves,” 12th A-PCNDT, Auckland, New Zealand, 2006.
40. M. G. Silk and K. P. Bainton, “The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves,” Ultrasonics, Vol. 17, pp. 11-19, 1979.
41. B. Pavlakovic, M.J.S. Lowe, D.N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 16, pp.185-192, 1997.
42. J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University, 1999.
43. Wavemaker Pipe Screening System User Manual and Course Notes, version 1.0, Guided Ultrasonics Ltd., UK, 2001.
44. 李傑弘,導波經焊接管鞋之波式轉換現象,國立中山大學機械與機電工程研究所碩士論文,中華民國95年7月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.199.243
論文開放下載的時間是 校外不公開

Your IP address is 3.141.199.243
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code