Responsive image
博碩士論文 etd-0101116-165249 詳細資訊
Title page for etd-0101116-165249
論文名稱
Title
聚酯類高分子之熱裂解機制
Thermal degradation mechanism of polyesters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
225
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-27
繳交日期
Date of Submission
2016-02-01
關鍵字
Keywords
聚酯、共聚酯、熱裂解、β-hydrogen 斷裂、低溫電漿游離、裂解機制
polyesters, copolyesters, low temperature plasma, thermal degradation, β-hydrogen bond scission, degradation mechanism
統計
Statistics
本論文已被瀏覽 5678 次,被下載 85
The thesis/dissertation has been browsed 5678 times, has been downloaded 85 times.
中文摘要
摘要

本研究主要是利用熱重分析儀(TGA)銜接質譜儀(MS),並以低溫電漿作為游離源(LTP),鑑定熱裂解時所釋出之特徵產物,以探討含有不同數目 β-hydrogen 之單聚酯與共聚酯的熱裂解機制。實驗分為兩部分,第一部分是在氮氣環境下,以 10 ºC/min 之升溫速率由 30 ºC 升溫至 700 ºC,由開始有重量損失,以每一分鐘(10 ºC)為間隔,觀察質譜圖在每個區間的變化情形,並藉由所出現的 m/z 去推測其熱裂解產物及其熱裂解機制,可得知在脂肪族的高分子中,一開始進行一次 β-hydrogen 的斷裂後,產生末端以雙鍵為主的產物,及末端以羧基為主的產物;而末端以羧基為主的產物,也可能脫去丁二酸酐,產生末端以羥基為主的產物,或是進行脫羧反應,脫去二氧化碳,產生末端以甲基為主的產物。
第二部分是藉由第一部分的 TGA 圖譜,選擇重量損失達 10% 時的溫度點,由 30 ºC 升溫到此溫度點後,恆溫 20 分鐘,探討剛開始熱裂解時的斷裂機制為何,並判斷產物是否會因為溫度延遲的現象,導致在恆溫階段才出現。在此部分,我們得知不論是脂肪族或是芳香族高分子,首先皆先經過 β-hydrogen 的斷裂後產生末端為 COOH 與末端為 // 的產物;接著,末端為 COOH 的產物,聚丁二酸二丁酯(PBSu)、聚2-甲基-1, 3-丁二酸二丙酯(PMPSu)、聚丁二酸二丙酯(PPSu)、聚丁二酸二乙酯(PESu) 會脫去丁二酸酐,而聚對苯二甲酸乙二醇酯(PET)、聚對苯二甲酸丁二醇酯(PBT) 則會脫去4-甲醛苯甲酸,產生末端為 OH 的產物;接著,末端為 OH 的產物再經由 β-hydrogen 的斷裂產生末端分別為 OH 及 COOH 的產物與末端分別為 OH 及 // 的產物。
Abstract
Abstract

In this study, the mechanisms and kinetics of thermal degradation of the homopolyesters and copolyesters with different amounts of β-hydrogen were examined using thermogravimetric analysis (TGA) combined with low-temperature plasma (LTP) mass spectroscopy (MS), which allowed the identification of specific volatile compounds issued from the degradation. This study contains two parts. In the first part, TGA experiments temperature were set from 30 ºC to 700 ºC with a heating rate of 10 ºC/min under nitrogen. From the beginning of the loss of weight, recorded the variants of mass spectra with an interval of 1 minutes (10 ºC), and guessed not only the thermal degradation products but the thermal degradation mechanism as well by the appeared m/z. First, aliphatic homopolymer did β-hydrogen bond scission. Second, the carboxyl end group removed succinic anhydride to form the hydroxyl end group or went decarboxylation to form the methyl end group.
In the second part, we used thermogravimetric analysis figure, which came from the first part. We selected the temperature on the 10% of weight loss, and set programmed from 30 ºC to this temperature then did isothermal continued 20 minutes. In this part, aliphatic and aromatic homopolymer were also done likely scission. First, they did β-hydrogen bond scission. Second, PBSu, PMPSu, PPSu, PESu homopolymer removed succinic anhydride to form the hydroxyl end group, and PBT, PET homopolymer removed 4- formaldehyde acid to form the hydroxyl end group. Third, the hydroxyl end group did β-hydrogen bond scission.
目次 Table of Contents
目錄

致謝...............................................................................................................i
摘要.........................................................................................................ii
Abstract.....................................................................................................iii
目錄....................................................................................................................iv
圖目錄.......................................................................................................viii
表目錄.........................................................................................................xvi
第一章 緒論.........................................................................................................1
1.1 簡介........................................................................................................1
1.2 研究目的................................................................................................2
第二章 基礎理論與文獻回顧.................................................................................4
2.1 軟性游離源............................................................................................4
2.2 介電質放電游離技術............................................................................5
2.3 熱裂解行為的相關研究........................................................................7
第三章 實驗........................................................................................................19
3.1 樣品........................................................................................................19
3.2 實驗儀器................................................................................................21
3.3 熱重分析儀銜接質譜儀實驗................................................................24
第四章 結果與討論.................................................................................................27
4.1 PBSu的熱裂解機制...............................................................................27
4.1.1熱重分析儀結果分析......................................................................27
4.1.2質譜儀結果分析..............................................................................28
4.1.3熱裂解機制......................................................................................39
4.1.4前段熱裂解產物與機制分析..........................................................42
4.2 PMPSu的熱裂解機制...........................................................................46
4.2.1熱重分析儀結果分析......................................................................46
4.2.2質譜儀結果分析..............................................................................47
4.2.3熱裂解機制......................................................................................60
4.2.4前段熱裂解產物與機制分析..........................................................63
4.2.5 PBSu 與 PMPSu 間的差異...........................................................67
4.3 PPSu的熱裂解機制..............................................................................68
4.3.1熱重分析儀結果分析......................................................................68
4.3.2質譜儀結果分析..............................................................................69
4.3.3熱裂解機制......................................................................................81
4.3.4前段熱裂解產物與機制分析..........................................................83
4.4 PESu的熱裂解機制..............................................................................86
4.4.1熱重分析儀結果分析......................................................................86
4.4.2質譜儀結果分析..............................................................................86
4.4.3熱裂解機制......................................................................................97
4.4.4前段熱裂解產物與機制分析..........................................................99
4.5 PBMPSu 50/50的熱裂解機制..............................................................103
4.5.1熱重分析儀結果分析.....................................................................103
4.5.2質譜儀結果分析.............................................................................104
4.5.3熱裂解機制.....................................................................................113
4.6 PBPSu 50/50的熱裂解機制..................................................................115
4.6.1熱重分析儀結果分析......................................................................115
4.6.2質譜儀結果分析..............................................................................116
4.6.3熱裂解機制.....................................................................................125
4.7 PEBSu 50/50的熱裂解機制.................................................................129
4.7.1熱重分析儀結果分析.....................................................................129
4.7.2質譜儀結果分析.............................................................................130
4.7.3熱裂解機制.....................................................................................139
4.8 PEPSu 60/40的熱裂解機制..................................................................143
4.8.1熱重分析儀結果分析.....................................................................143
4.8.2質譜儀結果分析.............................................................................144
4.8.3熱裂解機制.....................................................................................151
4.9 PBCSu 90/10的熱裂解機制.................................................................155
4.9.1熱重分析儀結果分析.....................................................................155
4.9.2質譜儀結果分析.............................................................................156
4.9.3熱裂解機制.....................................................................................164
4.10 PBT的熱裂解機制..............................................................................165
4.10.1熱重分析儀結果分析...................................................................165
4.10.2質譜儀結果分析...........................................................................166
4.10.3熱裂解機制...................................................................................173
4.10.4前段熱裂解產物與機制分析.......................................................174
4.11 PET的熱裂解機制..............................................................................177
4.11.1熱重分析儀結果分析....................................................................177
4.11.2質譜儀結果分析............................................................................178
4.11.3熱裂解機制....................................................................................183
4.11.4前段熱裂解產物與機制分析........................................................184
4.12 PEN的熱裂解機制.............................................................................188
4.12.1熱重分析儀結果分析...................................................................188
4.12.2質譜儀結果分析...........................................................................189
4.12.3前段熱裂解產物與機制分析.......................................................189
第五章 結論.....................................................................................................196
參考文獻.............................................................................................................199














圖目錄

圖 2-1以低溫電漿為基礎之相關游離技術.............................................................5
圖 2-2介電質放電電漿游離法裝置示意圖.............................................................6
圖 2-3低溫電漿探針之(A)裝置示意圖,及(B)實際照片......................................7
圖 2-4 β-hydrogen bond scission................................................................................7
圖 2-5 α-hydrogen bond scission................................................................................8
圖 2-6在 395 ºC 和450 ºC,PBSu 熱裂解時所得之GC圖譜...........................9
圖 2-7在氮氣環境下,以 5 ºC/min 升溫,PBSu熱裂解時所得之光譜圖........9
圖 2-8 PBSu的熱裂解機制.......................................................................................10
圖 2-9在 395 ºC 和450 ºC,PMPSu裂解時所得之GC圖譜.............................10
圖 2-10在氮氣環境下,以 5 ºC/min 升溫,PMPSu熱裂解時所得之光譜圖...11
圖 2-11 PMPSu的熱裂解機制..................................................................................11
圖 2-12 PET、PBT的熱裂解機制............................................................................16
圖 2-13 在氮氣環境下,以 5 ºC/min 升溫,PEN熱裂解時所得之光譜圖........17
圖 3-1 低溫電漿游離原之高電壓電路示意圖.........................................................22
圖 3-2 熱重分析儀與低溫電漿游離質譜法結合介面裝置示意圖.........................22
圖 3-3 熱重分析儀與低溫電漿游離質譜法結合介面實際儀器圖.........................23
圖 4-1 PBSu 之熱重分析圖譜..................................................................................27
圖 4-2 PBSu 之微分熱重圖......................................................................................27
圖 4-3 PBSu 之總離子電流圖譜..............................................................................28
圖 4-4 PBSu 之背景質譜圖,以及在 25~41 分鐘(280~440 ºC),以每一分鐘(10 ºC)為間隔,表示的所有質譜圖.......................................................................................29
圖 4-5 PBSu 在不同溫度出現的m/z 及其相對強度..............................................34
圖 4-6 PBSu 之 EIC 圖譜........................................................................................36
圖 4-7 PBSu 可能進行的熱裂解路徑、所對應的產物、所對應的分子量..........41
圖 4-8將PBSu由30 ºC加熱至337 ºC後,恆溫20分鐘之熱重分析圖譜........42
圖 4-9將PBSu由30 ºC加熱至337 ºC後,恆溫20分鐘之總離子電流圖譜....42
圖 4-10 PBSu 在熱裂解初期,23~24 min (260~270 ºC) 的質譜圖........................43
圖 4-11 PBSu 在恆溫階段,31~32 min (337 ºC) 的質譜.........................................43
圖 4-12 PBSu 在熱裂解初期的熱裂解機制............................................................45
圖 4-13 PMPSu 之熱重分析圖譜.............................................................................46
圖 4-14 PMPSu 之微分熱重圖.................................................................................46
圖 4-15 PMPSu 之總離子電流圖譜.........................................................................47
圖 4-16 PMPSu 之背景質譜圖,以及在 17~39 分鐘(200~420 ºC),以每一分鐘(10
ºC)為間隔,表示的所有質譜圖....................................................................48
圖 4-17 PMPSu 在不同溫度出現的m/z 及其相對強度.........................................56
圖 4-18 PMPSu 之 EIC 圖譜...................................................................................58
圖 4-19 PMPSu 可能進行的熱裂解路徑、所對應的產物、所對應的分子量....62
圖 4-20將PMPSu由30 ºC加熱至337 ºC後,恆溫20分鐘之熱重分析圖譜........64
圖 4-21將PMPSu由30 ºC加熱至337 ºC後,恆溫20分鐘之總離子電流圖譜....64
圖 4-22 PMPSu 在熱裂解初期,21~22 min (240~250 ºC) 的質譜圖...................65
圖 4-23 PMPSu 在恆溫階段,31~32 min (337 ºC) 的質譜...................................65
圖 4-24 PMPSu 在熱裂解初期的熱裂解機制.........................................................67
圖 4-25 PPSu 之熱重分析圖譜...............................................................................69
圖 4-26 PPSu 之微分熱重圖...................................................................................69
圖 4-27 PPSu 之總離子電流圖譜...........................................................................69
圖 4-28 PPSu 之背景質譜圖,以及在 22~39 分鐘(250~420 ºC),以每一分鐘(10
ºC)為間隔,表示的所有質譜圖....................................................................70
圖 4-29 PPSu 在不同溫度出現的m/z 及其相對強度..........................................76
圖 4-30 PPSu 之 EIC 圖譜.....................................................................................78
圖 4-31 PPSu 可能進行的熱裂解路徑、所對應的產物、所對應的分子量.........82
圖 4-32將PPSu由30 ºC加熱至344 ºC後,恆溫20分鐘之熱重分析圖譜........83
圖 4-33將PPSu由30 ºC加熱至344 ºC後,恆溫20分鐘之總離子電流圖譜....83
圖 4-34 PPSu 在熱裂解初期,26~27 min (290~300 ºC) 的質譜圖......................84
圖 4-35 PPSu 在恆溫階段,31~32 min (337 ºC) 的質譜.......................................84
圖 4-36 PPSu 在熱裂解初期的熱裂解機制...........................................................86
圖 4-37 PESu 之熱重分析圖譜...............................................................................87
圖 4-38 PESu 之微分熱重圖...................................................................................87
圖 4-39 PESu 之總離子電流圖譜...........................................................................87
圖 4-40 PESu 之背景質譜圖,以及在 23~42 分鐘(260~450 ºC),以每一分鐘(10
ºC)為間隔,表示的所有質譜圖.................................................................................88
圖 4-41 PESu 在不同溫度出現的m/z 及其相對強度..........................................95
圖 4-42 PESu 之 EIC 圖譜....................................................................................95
圖 4-43 PESu 可能進行的熱裂解路徑、所對應的產物、所對應的分子量.........98
圖 4-44將PESu由30 ºC加熱至317 ºC後,恆溫20分鐘之熱重分析圖譜........99
圖 4-45將PESu由30 ºC加熱至317 ºC後,恆溫20分鐘之總離子電流圖譜....100
圖 4-46 PESu 在熱裂解初期,20~21 min (230~240 ºC) 的質譜圖......................100
圖 4-47 PESu 在恆溫階段,34~35 min (317 ºC) 的質譜.......................................101
圖 4-48 PESu 在熱裂解初期的熱裂解機制...........................................................102
圖 4-49 PBMPSu 50/50 之熱重分析圖譜...............................................................103
圖 4-50 PBMPSu 50/50 之微分熱重圖...................................................................103
圖 4-51 PBMPSu 50/50 之總離子電流圖譜...........................................................104
圖 4-52 PBMPSu 50/50 之背景質譜圖,以及在 23~39 分鐘(260~420 ºC),以每
一分鐘(10 ºC)為間隔,表示的所有質譜圖..............................................................105
圖 4-53 PBMPSu 50/50 在不同溫度出現的m/z 及其相對強度..........................111

圖 4-54 PBSu、PBMPSu 50/50、PMPSu 的重量損失百分比達 10% 時,所出現
的 m/z.................................................................................................................114
圖 4-55 PBSu、PBMPSu 50/50、PMPSu 的重量損失百分比達 20% 時,所出現
的m/z.............................................................................................................114
圖 4-56 PBPSu 50/50 之熱重分析圖譜..................................................................115
圖 4-57 PBPSu 50/50 之微分熱重圖......................................................................115
圖 4-58 PBPSu 50/50 之總離子電流圖譜..............................................................116
圖 4-59 PBPSu 50/50 之背景質譜圖,以及在 23~39 分鐘(260~420 ºC),以每一
分鐘(10 ºC)為間隔,表示的所有質譜圖..................................................................117
圖 4-60 PBPSu 50/50 在不同溫度出現的m/z 及其相對強度..............................125
圖 4-61 當PBSu、PBPSu 50/50、PPSu 的重量損失百分比達 10% 時,所出現
的 m/z.............................................................................................128
圖 4-62 當PBSu、PBPSu 50/50、PPSu 的重量損失百分比達 20% 時,所出現
的 m/z......................................................................................................129
圖 4-63 PEBSu 50/50 之熱重分析圖譜..................................................................130
圖 4-64 PEBSu 50/50 之微分熱重圖......................................................................130
圖 4-65 PEBSu 50/50 之總離子電流圖譜..............................................................130
圖 4-66 PEBSu 50/50 之背景質譜圖,以及在 25~38 分鐘(280~410 ºC),以每一
分鐘(10 ºC)為間隔,表示的所有質譜圖..................................................................131
圖 4-67 PEBSu 50/50 在不同溫度出現的m/z 及其相對強度.............................136
圖 4-68 當PESu、PEBSu 50/50、PBSu 的重量損失百分比達 10% 時,所出現
的 m/z.......................................................................................................142
圖 4-69 當PESu、PEBSu 50/50、PBSu 的重量損失百分比達 20% 時,所出現
的 m/z.........................................................................................................142
圖 4-70 PEPSu 60/40 之熱重分析圖譜..................................................................143
圖 4-71 PEPSu 60/40 之微分熱重圖......................................................................143
圖 4-72 PEPSu 60/40 之總離子電流圖譜..............................................................144
圖 4-73 PEPSu 60/40 之背景質譜圖,以及在 24~37 分鐘(270~400 ºC),以每一
分鐘(10 ºC)為間隔,表示的所有質譜圖..................................................................145
圖 4-74 PEPSu 60/40 在不同溫度出現的m/z 及其相對強度..............................151
圖 4-75 當PESu、PEPSu 60/40、PPSu 的重量損失百分比達 10% 時,所出現
的 m/z.....................................................................................................154
圖 4-76 當PESu、PEPSu 60/40、PPSu 的重量損失百分比達 20% 時,所出現
的 m/z..................................................................................................154
圖 4-77 PBCSu 90/10 之熱重分析圖譜..................................................................155
圖 4-78 PBCSu 90/10 之微分熱重圖......................................................................155
圖 4-79 PBCSu 90/10 之總離子電流圖譜..............................................................156

圖 4-80 PBCSu 90/10 之背景質譜圖,以及在 24~39 分鐘(270~420 ºC),以每一
分鐘(10 ºC)為間隔,表示的所有質譜圖..................................................................157
圖 4-81 PBCSu 50/50 在不同溫度出現的m/z 及其相對強度.............................162
圖 4-82推測 PBCSu 90/10 熱裂解產物中,m/z 416 與 m/z 470 的產物..........165
圖 4-83 PBT 之熱重分析圖譜................................................................................166
圖 4-84 PBT 之微分熱重圖....................................................................................166
圖 4-85 PBT 之總離子電流圖譜............................................................................166
圖 4-86 PBT 之背景質譜圖,以及在 23~42 分鐘(260~450 ºC),以每一分鐘(10
ºC)為間隔,表示的所有質譜圖.................................................................................167
圖 4-87 PBT 在不同溫度出現的m/z 及其相對強度............................................171
圖 4-88 PBT 可能進行的熱裂解路徑、所對應的產物、所對應的分子量.........173
圖 4-89將PBT由30 ºC加熱至378 ºC後,恆溫20分鐘之熱重分析圖譜........174
圖 4-90將PBT由30 ºC加熱至378 ºC後,恆溫20分鐘之總離子電流圖譜....174
圖 4-91 PBT 在熱裂解初期,27~28 min (300~310 ºC) 的質譜圖.......................175
圖 4-92 PBT 在恆溫階段,36~37 min (378 ºC) 的質譜.......................................175
圖 4-93 PBT 在熱裂解初期的熱裂解機制............................................................177
圖 4-94 PET 之熱重分析圖譜................................................................................178
圖 4-95 PET 之微分熱重圖....................................................................................178
圖 4-96 PET 之總離子電流圖譜............................................................................178
圖 4-97 PET 之背景質譜圖,以及在 23~42 分鐘(260~450 ºC),以每一分鐘(10
ºC)為間隔,表示的所有質譜圖............................................................................179
圖 4-98 PET 在不同溫度出現的m/z 及其相對強度....................................183
圖 4-99 PET 可能進行的熱裂解路徑、所對應的產物、所對應的分子量....184
圖 4-100將PET由30 ºC加熱至402 ºC後,恆溫20分鐘之熱重分析圖譜........185
圖 4-101將PET由30 ºC加熱至402 ºC後,恆溫20分鐘之總離子電流圖譜....185
圖 4-102 PET 在熱裂解初期,27~28 min (300~310 ºC) 的質譜圖..................186
圖 4-103 PET 在恆溫階段,39~40 min (402 ºC) 的質譜.................................186
圖 4-104 PET 在熱裂解初期的熱裂解機制..........................................................188
圖 4-105 PEN 之熱重分析圖譜..............................................................................189
圖 4-106 PEN 之微分熱重圖..................................................................................189
圖 4-107將PEN由30 ºC加熱至419 ºC後,恆溫20分鐘之熱重分析圖譜.......190
圖 4-108將PEN由30 ºC加熱至419 ºC後,恆溫20分鐘之總離子電流圖譜...190
圖 4-109 PEN 在熱裂解初期,38~39 min (410~420 ºC) 的質譜圖......................191
圖 4-110 PEN 在恆溫階段,42~43 min (419 ºC) 的質譜...................................191
圖 4-111 PEN 在熱裂解初期的熱裂解機制..........................................................193



表目錄

表 2-1在 395 ºC 和450 ºC,以 Py-GC 分析 PBSu 在熱裂解時所出現的滯留時間,並假設其對應的熱裂解產物..................................................................12
表 2-2在 395 ºC 和450 ºC,以 Py-GC 分析 PMPSu 在熱裂解時所出現的滯留時間,並假設其對應的熱裂解產物..............................................................13
表 2-3使用TVA,將PET、PBT、PDMT以每分鐘 10˚C/min 的升溫速率由30˚C 升溫至 500˚C的熱裂解產物.....................................................................................15
表 2-4使用TVA,將PET、PBT、PDMT以每分鐘 10˚C/min 的升溫速率由30˚C 升溫至 500˚C的芳香族產物......................................................................................15
表 2-5 PEN 熱裂解過程之相關產物.......................................................................18
表 3-1 熱重分析儀銜接質譜儀實驗的實驗條件......................................................26
表 4-1 PBSu 在不同溫度出現的 m/z 及其相對強度.............................................35
表 4-2 PBSu 進行熱裂解時,所推測產物的末端官能基,及可能經由的路徑...41
表 4-3 PBSu 在恆溫實驗中,隨著不同時間所出現的m/z及其相對強度...........44
表 4-4 PMPSu 在不同溫度出現的 m/z 及其相對強度..........................................57
表 4-5 PMPSu進行熱裂解時,所推測產物的末端官能基,及可能經由的路徑.63
表 4-6 PMPSu在恆溫實驗中,隨著不同時間所出現的 m/z 及其相對強度.......66
表 4-7 PPSu 在不同溫度出現的 m/z 及其相對強度..............................................77
表 4-8 PPSu 進行熱裂解時,所推測產物的末端官能基,及可能經由的路徑....82
表 4-9 PPSu在恆溫實驗中,隨著不同時間所出現的 m/z 及其相對強度...........85
表 4-10 PESu 在不同溫度出現的 m/z 及其相對強度............................................94
表 4-11 PESu 進行熱裂解時,所推測產物的末端官能基,及可能經由的路徑......99
表 4-12 PESu在恆溫實驗中,隨著不同時間所出現的 m/z 及其相對強度….....101
表 4-13 PBMPSu 50/50 在不同溫度出現的 m/z 及其相對強度..........................112
表 4-14 PBMPSu 50/50 進行熱裂解時,所推測產物的末端官能基及其m/z.......113
表 4-15 PBPSu 50/50 在不同溫度出現的 m/z 及其相對強度.............................123
表 4-16 PBPSu 50/50 進行熱裂解時,所推測產物的末端官能基及其m/z........126
表 4-17 PEBSu 50/50 在不同溫度出現的 m/z 及其相對強度.............................137
表 4-18 PEBSu 50/50 進行熱裂解時,所推測產物的末端官能基及其m/z........139
表 4-19 PEPSu 60/40在不同溫度出現的 m/z 及其相對強度..............................150
表 4-20 PEPSu 60/40 進行熱裂解時,所推測產物的末端官能基及其m/z........152
表 4-21 PBCSu 90/10 在不同溫度出現的 m/z 及其相對強度............................163
表 4-22 PBSu 與 PBCSu 90/10出現的 m/z 及其相對應溫度............................164
表 4-23 PBT 在不同溫度出現的 m/z 及其相對強度...........................................172
表 4-24 PBT在恆溫實驗中,隨著不同時間所出現的m/z及其相對強度.........176
表 4-25 PET 在不同溫度出現的 m/z 及其相對強度...........................................182
表 4-26 PET在恆溫實驗中,隨著不同時間所出現的m/z及其相對強度.........187
表 4-27 PEN在恆溫實驗中,隨著不同時間所出現的m/z及其相對強度.........192

表 4-28同聚酯進行非等溫實驗所得之起始溫度(Tstart)、最大裂解溫度(Tmax)、殘留量(Residue)以及質譜分析產物……………………………………………......194
表 4-29同聚酯進行等溫實驗所得之恆溫溫度(THold)以及質譜分析產物...........195
參考文獻 References
參考文獻

1. Ray, S. S.; Yamada, K.; Okamoto, M.; Ueda, K. Polylactide-layered silicate nanocomposite: A novel biodegradable material. Nano Letters, 2002;2:1093-1096.
2. Iwata, T.; Doi, Y. Crystal structure and biodegradation of aliphatic polyester crystals. Macromol. Chem. Phys, 1999;200:2429–2442.
3. Gan, Z.; Abe, H.; Doi, Y. Crystallization, melting, and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol % ethylene succinate) copolyester. Biomacromolecules, 2001;2:313-321.
4. Gan, Z.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules, 2001;2:605-613.
5. Ahn, B. D.; Kim, S. H.; Kim, Y. H.; Yang, J. S. Synthesis and characterization of the biodegradable copolymers from succinate acid and aliphatic acid with 1,4-butanediol. J. Appl. Polym. Sci., 2001;82:2808-2826.
6. Nikolic, M. S.; Djonlagic, J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym. Degrad. Stab.,2001;74:263
-270.
7. Kuwabara, K.; Gan, Z.; Nakamura, T.; Abe, H.; Doi, Y. Molecular mobility and phase structure of biodegradable poly(butylene succinate) and poly(butylene succinate-co-butylene adipate). Biomacromolecules, 2002;3:1095-1100.
8. Zhu, C.; Zhang, Z.; Liu, Q.; Wang, Z.; Jin, J. Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acid and diols. J. Appl. Polym. Sci., 2003;90:982-990.
9. Cao, A.; Okamura, T.; Nakayama, K.; Inoue, Y.; Masuda, T. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co- ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym. Degrad. Stab., 2002;8:107-117.
10. Cao, A.; Okamura, T.; Ishigure, C.; Nakayama, K.; Inoue, Y.; Masuda, T. Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-Ɛ-caprolactone)s. Polymer, 2002;43:671-679.
11. Kim, M. N.; Kim, K. H.; Jin, H. J.; Park, J. K.; Yoon, J. S. Biodegradability of ethyl and n-octyl branched poly(ethylene adipate) and poly(butylene succinate). Eur. Polym. J., 2001;37:1843-1847.
12. Chae, H. G.; Park, S. H.; Kim, B. C.; Kim, D. K. Effect of methyl substitution of the ethylene unit on the physical properties of poly(butylene succinate). J. Polym. Sci. Part B:Polym. Phys., 2004;42:1759-1766.
13. Oishi, A.; Nakano, H.; Fujita, K.; Yuasa, M.; Taguchi, Y. Copolymerization of poly(butylene succinate) with 3-alkoxy-1,2-propanediols. Polym. J., 2002;34:742-
747.
14. Mani, R.; Bhattacharya, M.; Leriche, C.; Nie, L.; Bassi, S. Synthesis and characterization of functional aliphatic copolyesters. J. Polym. Sci. Part A: Polym. Chem., 2002;40:3232-3239.
15. Nikolic, M. S.; Poleti, D.; Djonlagic, J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene fumarate)s. Eur. Polym. J., 2003;39:2183-2192.
16. Mochizuki, M.; Mukai, K.; Yamada, K.; Ichise, N.; Murase, S.; Iwaya, Y. Structure effects upon enzymatic hydrolysis of poly(butylene succinate-co- ethylene succinate)s. Macromolecules, 1997;30:7403-7407.
17. Rizzarelli, P.; Puglisi, C.; Montaudo, G. Soil burial and enzymatic degradation in solution of aliphatic copolyesters. Polym. Degrad. Stab., 2004;85:855-863.
18. Bikiaris, D. N.; Papageorgiou, G. Z.; Achilias, D. S. Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polym. Degrad. Stab., 2006;91:31-43.
19. Sullivan; C. J.; Dehm, D. C.; Reich, E. E.; Dillon, M. E. Polyester resins based upon 2-methyl-1,3-propanediol. J. Coat. Technol., 1990;62:37-45.
20. Bello, P.; Bello, A.; Riande, E. Conformational characteristics and crystalline order in poly(2-methyl-1,3-propane glycol terephthalate). Macromolecules, 1990;32:8197-9203.
21. Nalampang, K.; Johnson, A. F. Kinetics of polyesterification: modelling and simulation of unsaturated polyester synthesis involving 2-methyl-1,3-propanediol. Polymer, 2003;44:6103-6109.
22. Suh, J.; Spruiell, J. E.; Schwartz, S. A. Melt spinning and drawing of 2-methylene- 1,3-propanediol-substituted poly(ethylene terephthalate). J. Appl. Polym. Sci., 2003;88:2598-2606.
23. Lewis, C. L.; Spruiell, J. E. Crystallization of 2-methylene-1,3-propanediol substituted poly(ethylene terephthalate). I. Thermal behavior and isothermal crystallization. J. Appl. Polym. Sci., 2006;100:2592-2603.
24. Huang, Y. J.; Jiang, W. C. Effects of chemical composition and structure of unsaturated polyester resin on the miscibility, cured sample morphology and mechanical properties for styrene/unsaturated polyester/low-profile additive ternary system: 1. Miscibility and cured sample morphology. Polymer, 1998;39:6630-6641.

25. Huang, Y. J.; Chen, L. D. Effects of chemical composition and structure of unsaturated polyester resins on the miscibility, cured sample morphology and mechanical properties for styrene/unsaturated polyester/low-profile additive ternary systems: 2. Mechanical properties. Polymer, 1998;39:7049-7059.
26. Kharas, G. B.; Kamenetsky, M.; Simantirakis, J.; Beinlich, K. C.; Rizzo, A. M. T.; Caywood, G. A.; Watson, K. Synthesis and characterization of fumarate-based polyesters for use in bioresorbable bone cement composites. J. Appl. Polym. Sci., 1997;66:1123-1137.
27. Rizzarelli, P.; Puglisi, C.; Montaudo, G. Matrix-assisted laser desorption/ ionization time-of-flight/time-of-flight tandem mass spectra of poly(butylene adipate). Rapid Commun Mass Spectrom, 2006;20:16831694.
28. DuPont Teijin Films, TDFJ 2007.
29. Belana, J.; Pujal, M.; Colomer, P.; Montserrat, S. Cold crystallization effect on α and β amorphous poly(ethylene terephthalate) relaxations by thermally stimulated discharge currents. Polymer, 1988;29:1738-1744.
30. Liu, R. Y. F.; Schiraldi, D. A.; Hiltner, A.; Baer, E. Oxygen-barrier properties of cold‐drawn polyesters. J. Polym. Sci., Part B: Polym. Phys., 2002;40:862-877.
31. Buchner, S.; Wiswe, D.; Zachmann, H. G. Kinetics of crystallization and melting behaviour of poly(ethylene naphthalene-2,6-dicarboxylate). Polymer, 1989;30: 480-488.
32. Nakamae, K.; Nishino, T.; Tada, K.; Kanamoto, T.; Ito, M. Elastic modulus of the crystalline regions of poly(ethylene 2,6-naphthalate). Polymer, 1993;34: 3322-3324.
33. Schoukens, G.; Verschuere, M. Shrinkage behaviour of uniaxially drawn poly (ethylene naphthalate) films. Polymer, 1999;40:3753-3761.
34. McGonigle, E. A.; Liggat, J. J.; Pethrick, R. A.; Jenkins, S. D.; Daly, J. H.; Hayward, D. Permeability of N2, Ar, He, O2, and CO2 through as-extruded amorphous and biaxially oriented polyester films: Dependence on chain mobility. J. Polym. Sci., Part B: Polym. Phys., 2004;42:2916-2929.
35. Laskarakis, A.; Logothetidis, S. Study of the electronic and vibrational properties of poly(ethylene terephthalate) and poly(ethylene naphthalate) films. J. Appl. Phys., 2007;101:053503-053503.
36. Chrissafis, K.; Paraskevopoulos, K. M.; Papageorgiou, G. Z.; Bikiaris D. N. Thermal decomposition of poly(propylene sebacate) and poly(propylene azelate) biodegradable polyesters: Evaluation of mechanisms using TGA, FTIR and GC/MS. J. Anal. Appl. Pyrol., 2011;92:123–130.
37. Bikiaris, D. N.; Chrissafis K.; Paraskevopoulos, K. Investigation of thermal degradation mechanism of an aliphatic polyester using pyrolysisgas chromatographymass spectrometry and a kinetic study of the effect of the amount of polymerisation catalyst. Polym. Degrad. Stab., 2007;92:525–536.
38. Rizzarelli, P.; Carroccio, S. Thermo-oxidative processes in biodegradable poly(butylene succinate). Polym. Degrad. Stab., 2009;94:1825–1838.
39. Hung, J. H. Low-temperature plasma ionization mass spectometry combined with thermal analysis for polymer characterization. Master Thesis, 2014.
40. Yamashita, M.; Fenn, J. B. Electrospray Ion Source. Another Variation on the Free-Jet Theme. J. Phys. Chem., 1984;88:4451-4459.
41. Iribarne, J. V.; Thomson, B. A. On the Evaporation of Small Ions from Charged Droplets. J. Chem. Phys., 1976;64:2287-2294.
42. Konermann, L.; Ahadi, E.; Rodriguez, A. D.; Vahidi, S. Unraveling the Mechanism of Electrospray Ionization. Anal. Chem., 2013;85:2-9.
43. Robb, D. B.; Covey, T. R.; Bruins, A. P. Atmospheric Pressure Photoionization:  An Ionization Method for Liquid Chromatography−Mass Spectrometry. Anal. Chem., 2000;72:3653-3659.
44. Dzidic, I.; Carroll, D. I.; Stillwell, R. N.; Horning, E. C. Comparison of Positive Ions Formed in Nickel-63 and Corona Discharge Ion Sources Using Nitrogen, Argon, Isobutane, Ammonia and Nitric Oxide as Reagents in Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem., 1976;48:1763-1768.
45. Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D.; Horning, E. C. Atmospheric Pressure Ionization Mass Spectrometry. Corona Discharge Ion Source for Use in a liquid Chromatograph-Mass Spectrometer-Computer Analytical System. Anal. Chem., 1975;47:2369-2373.
46. Ding, X.; Duan, Y. Plasma-Based Ambient Mass Spectrometry Techniques: The Current Status and Future Prospective. Mass Spectrom. Rev., 2014;34:49-473.
47. Na, N.; Zhao, M.; Zhang, S.; Yang, C.; Zhang, X. Development of a Dielectric Barrier Discharge Ion Source for Ambient Mass Spectrometry. J. Am. Soc. Mass. Spectrom., 2007;18:1859-1862.
48. Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Cooks, R. G.; Ouyang, Z. Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal. Chem., 2008;80:9097-9104.
49. Nørgaard, A. W.; Kofoed-Sørensen, V.;Svensmark, B.; Wolkoff, P.; Clausen, P. A. Gas Chromatography Interfaced with Atmospheric Pressure Ionization- Quadrupole Time-of-Flight-Mass Spectrometry by Low-Temperature Plasma Ionization. Anal. Chem., 2012;85:28-32.
50. J. March. Advanced Organic Chemistry: Reactions, Mechanism, and Structure; 3rd Edn, John Wiley & Sons, New York, 1985, p. 897.
51. Lu, J. S. Nonisothermal crystallization and thermal degradation behaviors of poly(butylene succinate) and its copolyesters with minor amounts of 2-methyl- 1,3-propaylene succinate. Doctorate Dissertation, 2012.
52. Chrissafis, K.; Paraskevopoulos, K. M.; Bikiaris, D. N. Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polym. Degrad. Stab., 2006;91:60–68.
53. Buxbaum, L. H. The degradation of poly (ethylene terephthalate). Angew. Chem. Int. Ed. Engl., 1968;7: 182-190.
54. Zimmermann, H.; Grassie, N. Developments in polymer degradation. Appl. Sci., 1984;5:79-119.
55. McNeill, I. C.; Bounekhel, M. Thermal degradation studies of terephthalate polyesters: 1. Poly (alkylene terephthalates). Polym. Degrad. Stab., 1991;34:187-
204.
56. Wang, J. R. Crystallization and thermal degradation behaviors of poly(ethylene naphthalate). Master Thesis, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code