Responsive image
博碩士論文 etd-0101118-112854 詳細資訊
Title page for etd-0101118-112854
論文名稱
Title
不同燃料供應路徑對平面式燃料電池組性能影響分析
Performance Analysis of Different Fuel Supply Paths on the Planar Fuel Cell Stack
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-17
繳交日期
Date of Submission
2018-02-01
關鍵字
Keywords
微型直接甲醇燃料電池、燃料供給路徑、平面陣列模組、流場板、燃料電池組、微機電、雙極板
planar array module, bipolar plate, MEMS, fuel cell stack, flow field plate, fuel supply path, DMFC
統計
Statistics
本論文已被瀏覽 5626 次,被下載 37
The thesis/dissertation has been browsed 5626 times, has been downloaded 37 times.
中文摘要
本研究針對DMFC在平面式電池組,提出以不同燃料供給路徑設計,對於平面配置模組化(以4顆為一個單位)設計。利用微機電 (MEMS) 製程及微電鑄技術製作出微型直接甲醇燃料電池之流道,且組裝成總反應面積 1.92 cm2 之4個分電池的平板式微型直接甲醇燃料電池組。本實驗以單顆電池在不同的流道寬度、流量、溫度及濃度下找出實驗最佳參數後,以不同燃料供給路徑配合不同電池數量(2、4顆)的電池組來進行 VI/PI 的性能測試,並以長時間 (50 hrs) 觀察不同路徑下電池組的性能變化及電池組中各分電池的性能影響。實驗結果顯示單電池最佳參數為:流道寬度600 μm、濃度0.5 M、溫度80℃以及流量5 sccm,2顆電池組的串聯供給路徑性能表現優於並聯,4顆電池組在type4有最佳的電池性能表現最大功率密度為63.6 mW/cm2 、最大電流513.5 mA/cm2,相較於type1的並聯形式提升約21.6%。
Abstract
This study aimed at DMFC in the planar battery pack, proposed with varied fuel supply path design, modular configuration for the plane (in units of 4) design. Using MEMS process and micro-electroforming technology to produce a miniature direct methanol fuel cell flow field plate and assembled into a total reaction area of 1.92 cm2 of 4 cell plate micro direct methanol fuel cell stack. This experiment with a single cell in varied flow channel width, flow rate, temperature and concentration to find the best experimental parameters, the VI/PI curve was tested with varied fuel supply paths with different battery numbers (2, 4), and in a long time (50 hrs) observed under varied paths of battery performance changes and battery pack sub-battery performance impact. Experimental results show that the best cell parameters are: flow path width 600 μm, concentration 0.5 M, temperature 80℃ and flow rate 5 sccm, 2-cell stack in series supply path performance is better than parallel. The 4-cell stacks have the best performance in type 4 with a peak power density of 63.6 mW/cm2 and a limiting current density of 513.5 mA/cm2, an increase of approximately 21.6% over the parallel version of type 1.
目次 Table of Contents
致謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
NOMENCLATURE x
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Types of fuel cell 2
1.3 Literature survey 7
1.4 Objective 16
CHAPTER 2 PRINCIPLE AND COMPONENTS 20
2.1 Principle of DMFC 20
2.2 Main component 23
CHAPTER 3 THEORETICAL BACKGROUND 33
3.1 Electrode Thermodynamics 33
3.2 Polarization 41
3.3 Methanol Crossover 45
CHAPTER 4 EXPERIMENTS 49
4.1 Experimental apparatus 49
4.2 Material property 53
4.3 Experimental procedure 56
CHAPTER 5 DATA REDUCTION AND UNCERTAINTIES 63
CHAPTER 6 RESULTS AND DISCUSSION 68
6.1 Effect of operating conditions on the performance of single cell 68
6.2 Effect of fuel supply path on the performance of cell stack 73
6.3 Each individual cell on the performance comparison of cell stack 74
6.4 Long-term experiment of 4-cell stack 77
CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 95
7.1 Conclusion 95
7.2 Recommendations for future work 96
REFERENCES 97
Appendix A 102
參考文獻 References
1. Li, X. and A. Faghri, Effect of the cathode open ratios on the water management of a passive vapor-feed direct methanol fuel cell fed with neat methanol. Journal of Power Sources, 2011. 196(15): p. 6318-6324.
2. Park, Y.-C., et al., Effects of serpentine flow-field designs with different channel and rib widths on the performance of a direct methanol fuel cell. Journal of Power Sources, 2012. 205: p. 32-47.
3. Reeve, R., Characteristics of a direct methanol fuel cell based on a novel electrode assembly using microporous polymer membranes. Journal of Power Sources, 2004. 128(1): p. 1-12.
4. Song, S.Q., et al., Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structural properties and cell performance. Journal of Power Sources, 2005. 145(2): p. 495-501.
5. Reshetenko, T.V., et al., Performance of a direct methanol fuel cell (DMFC) at low temperature: Cathode optimization. Journal of Power Sources, 2006. 160(2): p. 925-932.
6. Wong, C.W., et al., Experimental investigations of the anode flow field of a micro direct methanol fuel cell. Journal of Power Sources, 2006. 155(2): p. 291-296.
7. Zhang, J., et al., Effects of MEA preparation on the performance of a direct methanol fuel cell. Journal of Power Sources, 2006. 160(2): p. 1035-1040.
8. Baldauf, M. and W. Preidel, Status of the development of a direct methanol fuel cell. Journal of Power Sources, 1999. 84(2): p. 161-166.
9. Lu, G.Q. and C.Y. Wang, Development of micro direct methanol fuel cells for high power applications. Journal of Power Sources, 2005. 144(1): p. 141-145.
10. Hyun, M.-s., et al., Prediction of anode performances of direct methanol fuel cells with different flow-field design using computational simulation. Journal of Power Sources, 2006. 157(2): p. 875-885.
11. Shimpalee, S. and J. Vanzee, Numerical studies on rib & channel dimension of flow-field on PEMFC performance. International Journal of Hydrogen Energy, 2007. 32(7): p. 842-856.
12. Yoon, Y.-G., et al., Effects of channel configurations of flow field plates on the performance of a PEMFC. Electrochimica Acta, 2004. 50(2-3): p. 709-712.
13. Wang, X.-D., et al., Local transport phenomena and cell performance of PEM fuel cells with various serpentine flow field designs. Journal of Power Sources, 2008. 175(1): p. 397-407.
14. Wang, X.-D., et al., Channel aspect ratio effect for serpentine proton exchange membrane fuel cell: Role of sub-rib convection. Journal of Power Sources, 2009. 193(2): p. 684-690.
15. Manso, A.P., et al., Numerical analysis of the influence of the channel cross-section aspect ratio on the performance of a PEM fuel cell with serpentine flow field design. International Journal of Hydrogen Energy, 2011. 36(11): p. 6795-6808.
16. Chan, Y.H., et al., A small mono-polar direct methanol fuel cell stack with passive operation. Journal of Power Sources, 2008. 178(1): p. 118-124.
17. Kuan, Y.-D., S.-M. Lee, and M.-F. Sung, The Cathode Airflow Effect on the Direct Methanol Fuel Cell From Single Cell to a Planar Module. Journal of Fuel Cell Science and Technology, 2009. 6(1).
18. Nakagawa, N. and Y. Xiu, Performance of a direct methanol fuel cell operated at atmospheric pressure. Journal of Power Sources, 2003. 118(1-2): p. 248-255.
19. Argyropoulos, P., et al., Empirical Model Equations for the Direct Methanol Fuel Cell DMFCs. Fuel Cells, 2002. 2(2): p. 78-82.
20. Ge, J. and H. Liu, Experimental studies of a direct methanol fuel cell. Journal of Power Sources, 2005. 142(1-2): p. 56-69.
21. Casalegno, A., R. Marchesi, and F. Rinaldi, Systematic Experimental Analysis of a Direct Methanol Fuel Cell. Journal of Fuel Cell Science and Technology, 2007. 4(4).
22. Kim, D., et al., Recent progress in passive direct methanol fuel cells at KIST. Journal of Power Sources, 2004. 130(1-2): p. 172-177.
23. Liu, J., et al., Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC. Journal of Power Sources, 2004. 133(2): p. 175-180.
24. Guo, Z. and A. Faghri, Development of planar air breathing direct methanol fuel cell stacks. Journal of Power Sources, 2006. 160(2): p. 1183-1194.
25. Scott, K., et al., Limiting current behaviour of the direct methanol fuel cell. Electrochimica Acta, 1999. 45(6): p. 945-957.
26. Hashim, N., S.K. Kamarudin, and W.R.W. Daud, Design, fabrication and testing of a PMMA-based passive single-cell and a multi-cell stack micro-DMFC. International Journal of Hydrogen Energy, 2009. 34(19): p. 8263-8269.
27. Wu, Q.X., et al., Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol. International Journal of Hydrogen Energy, 2010. 35(19): p. 10547-10555.
28. Xu, C., A. Faghri, and X. Li, Improving the water management and cell performance for the passive vapor-feed DMFC fed with neat methanol. International Journal of Hydrogen Energy, 2011. 36(14): p. 8468-8477.
29. Ali Abdelkareem, M. and N. Nakagawa, DMFC employing a porous plate for an efficient operation at high methanol concentrations. Journal of Power Sources, 2006. 162(1): p. 114-123.
30. Dohle, H. and K. Wippermann, Experimental evaluation and semi-empirical modeling of U/I characteristics and methanol permeation of a direct methanol fuel cell. Journal of Power Sources, 2004. 135(1-2): p. 152-164.
31. Li, X. and A. Faghri, Development of a direct methanol fuel cell stack fed with pure methanol. International Journal of Hydrogen Energy, 2012. 37(19): p. 14549-14556.
32. Thomas, S., Direct methanol fuel cells: progress in cell performance and cathode research. Electrochimica Acta, 2002. 47(22-23): p. 3741-3748.
33. Yang, H. and T.S. Zhao, Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells. Electrochimica Acta, 2005. 50(16-17): p. 3243-3252.
34. Suo, C., et al., Design of MEMS-based micro direct methanol fuel cell stack. Procedia Chemistry, 2009. 1(1): p. 1179-1182.
35. Cao, J., et al., Planar air-breathing micro-direct methanol fuel cell stacks based on micro-electronic–mechanical-system technology. Journal of Power Sources, 2008. 185(1): p. 433-438.
36. Piela, P., R. Fields, and P. Zelenay, Electrochemical Impedance Spectroscopy for Direct Methanol Fuel Cell Diagnostics. Journal of The Electrochemical Society, 2006. 153(10).
37. Jiang, R., C. Rong, and D. Chu, Determination of energy efficiency for a direct methanol fuel cell stack by a fuel circulation method. Journal of Power Sources, 2004. 126(1-2): p. 119-124.
38. Oedegaard, A. and C. Hentschel, Characterisation of a portable DMFC stack and a methanol-feeding concept. Journal of Power Sources, 2006. 158(1): p. 177-187.
39. Chen, C.Y., J.Y. Shiu, and Y.S. Lee, Development of a small DMFC bipolar plate stack for portable applications. Journal of Power Sources, 2006. 159(2): p. 1042-1047.
40. Dohle, H., et al., Recent developments of the measurement of the methanol permeation in a direct methanol fuel cell. Journal of Power Sources, 2002. 105(2): p. 274-282.
41. Sammes, N., A. Smirnova, and O. Vasylyev, Fuel Cell Technologies: State and Perspectives. Series II: Mathematics, Physics and Chemistry, 2005. 202.
42. Kamarudin, S.K. and N. Hashim, Materials, morphologies and structures of MEAs in DMFCs. Renewable and Sustainable Energy Reviews, 2012. 16(5): p. 2494-2515.
43. Li, X.-Y., et al., Effect of anode micro-porous layer on species crossover through the membrane of the liquid-feed direct methanol fuel cells. Applied Thermal Engineering, 2012. 48: p. 392-401.
44. Wainright, J.S., Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte. Journal of The Electrochemical Society, 1995. 142(7).
45. Wasmus, S., Real-Time Mass Spectrometric Investigation of the Methanol Oxidation in a Direct Methanol Fuel Cell. Journal of The Electrochemical Society, 1995. 142(11).
46. Wang, J.T., Real-Time Mass Spectrometric Study of the Methanol Crossover in a Direct Methanol Fuel Cell. Journal of The Electrochemical Society, 1996. 143(4).
47. Wang, F., et al., Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. Journal of Membrane Science, 2002. 197(1-2): p. 231-242.
48. Xing, P., et al., Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials. Polymer, 2005. 46(10): p. 3257-3263.
49. Yao, S.-C., et al., Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy, 2006. 31(5): p. 636-649.
50. Bai, H. and W.S.W. Ho, New poly(ethylene oxide) soft segment-containing sulfonated polyimide copolymers for high temperature proton-exchange membrane fuel cells. Journal of Membrane Science, 2008. 313(1-2): p. 75-85.
51. Hickner, M.A., et al., Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 2004. 104(10): p. 4587-4612.
52. Miyake, N., J.S. Wainright, and R.F. Savinell, Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: II. Methanol Uptake and Methanol Permeability. Journal of The Electrochemical Society, 2001. 148(8).
53. Yang, C., et al., Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature. Electrochemical and Solid-State Letters, 2001. 4(4).
54. Staiti, P., et al., Hybrid Nafion–silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics, 2001. 145(1-4): p. 101-107.
55. Tricoli, V., Proton and Methanol Transport in Poly(perfluorosulfonate) Membranes Containing Cs[sup +] and H[sup +] Cations. Journal of The Electrochemical Society, 1998. 145(11).
56. Pu, C., A Methanol Impermeable Proton Conducting Composite Electrolyte System. Journal of The Electrochemical Society, 1995. 142(7).
57. Liu, J., et al., Nafion–polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells. Journal of Membrane Science, 2005. 246(1): p. 95-101.
58. Ma, Z., A palladium-alloy deposited Nafion membrane for direct methanol fuel cells. Journal of Membrane Science, 2003. 215(1-2): p. 327-336.
59. Liang, Z.X. and T.S. Zhao, New DMFC Anode Structure Consisting of Platinum Nanowires Deposited into a Nafion Membrane. The Journal of Physical Chemistry C, 2007. 111(22): p. 8128-8134.
60. Wan, C.-H. and C.-L. Chen, Mitigating ethanol crossover in DEFC: A composite anode with a thin layer of Pt50–Sn50 nanoparticles directly deposited into Nafion® membrane surface. International Journal of Hydrogen Energy, 2009. 34(23): p. 9515-9522.
61. Wan, C.-H. and C.-H. Lin, A composite anode with reactive methanol filter for direct methanol fuel cell. Journal of Power Sources, 2009. 186(2): p. 229-237.
62. Wan, C.-H., et al., A Reactive Methanol Filter with a Layer of Nanometer-sized Pt50-Sn50 Catalyst Particles Directly Deposited onto the Proton Exchange Membrane Surface. International Journal of ELECTROCHEMICAL SCIENCE, 2011. 6: p. 889-900.
63. Uchida, H., Y. Mizuno, and M. Watanabe, Suppression of Methanol Crossover and Distribution of Ohmic Resistance in Pt-Dispersed PEMs under DMFC Operation. Journal of The Electrochemical Society, 2002. 149(6).
64. Chen, S., F. Ye, and W. Lin, Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst. International Journal of Hydrogen Energy, 2010. 35(15): p. 8225-8233.
65. Kamarudin, S.K., F. Achmad, and W.R.W. Daud, Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy, 2009. 34(16): p. 6902-6916.
66. Wong, C.W., et al., Transient Capillary Blocking in the Flow Field of a Micro-DMFC and Its Effect on Cell Performance. Journal of The Electrochemical Society, 2005. 152(8).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code