Responsive image
博碩士論文 etd-0102108-104040 詳細資訊
Title page for etd-0102108-104040
論文名稱
Title
抽絲塔研製超寬頻摻鉻光纖之製程與特性
Fabrication and Characteristics of Ultra Broadband Cr-doped Fibers by Drawing Tower
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
132
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-12-22
繳交日期
Date of Submission
2008-01-02
關鍵字
Keywords
摻鉻光纖、抽絲塔、超寬頻
Cr-doped fiber, drawing-tower, ultra broadband
統計
Statistics
本論文已被瀏覽 5719 次,被下載 0
The thesis/dissertation has been browsed 5719 times, has been downloaded 0 times.
中文摘要
隨著去除光纖製程 OH- 離子的技術之發展,開啟可傳輸波長得以擴展至 1.3 μm至 1.6 μm 整個光纖低損耗波段的可能性,而使得光纖通訊成為具有滿足未來頻寬需求之傳輸系統。在光通訊分波多工技術系統,可使用通訊通道數主要係根據光纖放大器的增益頻寬而定,然目前所常用的單一掺鉺光纖放大器無法涵蓋整個1.3 μm至1.6 μm 頻寬範圍。近來,摻鉻光纖( Cr-doped fiber )已被證實擁有波長1.3 μm至1.6 μm 的寬頻之螢光頻譜,其極具有發展成為超寬頻300 nm光纖放大光源的潛力。
本研究以掺鉻晶棒(Cr:YAG)作為纖芯(core),採用管中棒 (Rod in Tube, RIT) 的方法來製作預型體,然後再利用抽絲塔的製程加上預型體管內的負壓力控制來製作摻鉻光纖。研究成果已成功研製抽絲之纖芯為16 μm 及26 μm 的掺鉻光纖,其自發性輻射頻譜可展示出300nm之頻寬,恰涵蓋了1.2到1.55 μm 的常用通訊波段,輻射功率強度也提升至nW/nm的數量級。抽絲塔製程的優點在於其光纖生長速度可達200 m/min、所抽絲之纖芯直徑均勻及真圓度可小於3%,本製程極適合於商業化量產。本研究超寬頻摻鉻光纖成果,容易與一般單模光纖結合,明顯擁有極大的潛力可應用於的超寬頻的光纖放大器。
Abstract
The breakthrough technology in dry fiber fabrication has opened the possibility for using fiber bandwidths all the way from 1.3 to 1.6 μm. However, the fiber amplifier used in commercial product, such as erbium-doped fiber amplifier (EDFA), can not fully cover the whole fiber bandwidths from 1.3 to 1.6 μm with a single fiber amplifier. Recently, the Cr4+-doped fiber has shown a broadband emission from 1.3 to 1.6 μm. Therefore, it is interesting to develop a single fiber amplifier which can operate the wide bandwidth of the 1.3 ~ 1.6 μm emission.
In this study, we have successfully fabricated and measured the Cr-doped fibers by using a commercial drawing-tower technique. The Cr-doped YAG preform was firstly fabricated by a rod-in-tube method. By employing a negative pressure control in drawing-tower technique on the YAG preform, the Cr-doped fibers with a better core circularity and uniformity, and good interface between core and cladding were fabricated. The drawing speed was up to 200m/min. The core diameters were 26 and 16 μm and the non-circularity was smaller than 3%. The spontaneous emission spectrum showed a broadband emission of 1.2 to 1.6 μm with the output power density about a few nW/nm. The Cr-doped fibers fabricated by drawing tower are beneficial when integrated with the standard single-mode fibers and broadband WDM couplers for lightwave communication systems. Therefore, the Cr-doped fibers may be used as a broadband fiber amplifier to cover the whole 1.3-1.6 μm range of silica fibers and have a potential for commercial production and application to lightwave communication systems.
目次 Table of Contents
內 容 目 錄
中文摘要
英文摘要
誌 謝
內容目錄 i
圖目錄 iv
表目錄 x
第一章 緒 論 1
1.1 前言 1
1.2 研究動機 3
1.3 研究目標與章節介紹 10
1.4 參考文獻 11
第二章 Cr4+:YAG 晶體的特性 15
2.1 Cr4+:YAG 的晶體結構與特性 15
2.2 Cr4+:YAG 的能階模型與吸收及放射頻譜 21
2.3 參考文獻 25
第三章 掺鉻光纖預型體製程 27
3.1 材料性質 27
3.2 套管式製程 29
3.3 管中棒製程 35
3.3.1 第一代掺鉻光纖預型體 35
3.3.2 第二代掺鉻光纖預型體 39
3.4 參考文獻 41
第四章 掺鉻光纖抽絲塔製程與特性量測 42
4.1 掺鉻光纖抽絲製程 43
4.1.1 一般光纖抽絲過程 43
4.1.2 掺鉻光纖抽絲製程 45
4.2 掺鉻光纖特性量測 60
4.2.1 掺鉻光纖之自發性輻射頻譜 60
4.2.2 掺鉻光纖之折射率量測 72
4.2.3 掺鉻光纖之損耗量測 74
4.2.4 掺鉻光纖之遠場模態量測 78
4.3 參考文獻 80
第五章 負壓控制之掺鉻光纖抽絲塔製程與特性量測 82
5.1 負壓控制之掺鉻光纖抽絲製程 82
5.2 掺鉻光纖特性量測 85
5.2.1 掺鉻光纖之折射率量測 85
5.2.2 掺鉻光纖之自發性輻射頻譜 89
5.2.3 掺鉻光纖之成分分析 96
5.2.4 掺鉻光纖之損耗量測 99
5.2.5 掺鉻光纖之遠場模態量測 101
5.3 參考文獻 104
第六章 結論與討論 106
6.1 結 論 106
6.2 討 論 109
6.2.1 Cr4+ 離子濃度及輻射能量密度之提升 109
6.2.2 降低摻鉻光纖之纖芯直徑 110
6.2.3 摻鉻光纖放大器 111
作者著作 113
作者簡介 115






圖 目 錄

第一章
圖1-1 光纖損耗圖 1
圖1-2 光纖通訊傳輸架構簡圖 2
圖1-3 拉曼放大器原理 7
第二章
圖2-1 Cr4+ :YAG單一晶格結構圖 17
圖2-2 Cr4+:YAG晶體之能階示意圖 21
圖2-3 Cr:YAG晶體於室溫之吸收譜線 23
圖2-4 Cr4+:YAG晶體於室溫之自發輻射譜線 24
第三章
圖3-1 Cr4+:YAG晶棒及石英管之實體照片 28
圖3-2 Cr4+:YAG晶棒套石英管示意圖 30
圖3-3 自動焰磨車床 30
圖3-4 Cr4+:YAG晶棒縮套製程 31
圖3-5 Cr4+:YAG晶棒套石英管流程 33
圖3-6 退火中預型體破裂 34
圖3-7 退火中預型體斷裂 34
圖3-8 利用管壁較厚之套管製作掺鉻光纖預型體退火後的情形 35
圖3-9 Cr4+:YAG光纖預型體鑽孔圖 36
圖3-10 第一代Cr4+:YAG光纖預型體示意圖 36
圖3-11 Cr4+:YAG光纖預型體實體圖 37
圖3-12 晶棒受重力移動示意圖 38
圖3-13 外徑突然變大的摻鉻光纖 38
圖3-14 第二代Cr4+:YAG光纖預型體示意圖 39
第四章
圖 4-1 LHPG生長法示意圖 42
圖 4-2 抽絲塔示意圖 43
圖 4-3 一般光纖抽絲流程圖 45
圖 4-4 掺鉻光纖預型體推進至加熱爐過程 46
圖 4-5 掺鉻光纖預型體因熱應力而斷裂 46
圖 4-6 修正之掺鉻光纖預型體推進至加熱爐過程 48
圖 4-7 觀察預型體初始掉絲狀況 49
圖 4-8 剛開始掉絲的頭端 49
圖 4-9 調整剛開始掉絲外徑滾輪 50
圖4-10 穿過眼膜並上被覆 51
圖4-11 自動收絲軸 51
圖4-12 自動導絲軸 52
圖4-13 自動導絲後的光纖絲 52
圖4-14 抽絲塔手動控制面板 53
圖4-15 抽絲塔電腦控制面板 53
圖4-16 光纖外徑監測面板 54
圖4-17 抽絲過程中晶棒因重力作用下降示意圖 55
圖4-18 外徑突然變大的摻鉻光纖 56
圖4-19 一次抽絲後的光纖預型體頭端 57
圖4-20 二次抽絲的光纖預型體 57
圖4-21 掺鉻光纖抽絲流程圖 58
圖4-22 掺鉻光纖端面圖 59
圖4-23 掺鉻光纖側面圖 60
圖4-24 共焦顯微術成像示意圖 61
圖4-25 反射螢光頻譜量測架構圖 62
圖4-26 分光器特性曲線 62
圖4-27 掺鉻光纖的Cr4+ 螢光映像 63
圖4-28 掺鉻光纖反射螢光頻譜 65
圖4-29 掺鉻光纖自發輻射穿透螢光頻譜量測架構 66
圖4-30 6.1 cm 掺鉻光纖自發輻射頻譜 67
圖4-31 8.3 cm 掺鉻光纖自發輻射頻譜 67
圖4-32 雙纖衣掺鉻光纖之內纖衣自發輻射螢光頻譜 69
圖4-33 以MCVD法將鉻離子摻雜至石英之掺鉻光纖螢光頻譜 69
圖4-34 不同長度的掺鉻光纖吸收及輻射架構示意圖 70
圖4-35 8.3cm 掺鉻光纖之自發性頻譜的高斯比對圖 71
圖4-36 EXFO-NR9200 72
圖4-37 EXFO-NR9200量測原理示意圖 73
圖4-38 9
參考文獻 References
第一章
[1] John George, “Ethernet in the First Mile Optical Architectures and Fibers,”
IEEE EFM Meeting, Hilton Head NC, Mar. 2001.
[2] D. W. Hewak, “Progress towards a 1300 nm fiber amplifier,” New
Developments in Optical Amplifiers (Ref. No. 1998/492), IEE Colloquium,
Vol. 26, pp. 12/1-12/5, 1998.
[3] J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan,
“High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,”
Electronics Letters 26, pp. 1645-1646, 1990.
[4] E. Desurvire, “Erbium-Doped Fiber Amplifiers: Principles and
Applications,” Ch. 4, New York: Wiley, 1994.
[5] J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. R. F. Oliveira, and
M.A. Romero, “All Silica S-Band Double-Pass Erbium-Doped Fiber
Amplifier,” IEEE Photonics Technology Letters, Vol. 17, No. 7, pp.
1399-1401, Jul. 2005.
[6] T. Sakamoto, S. Aozasa, M. Yamada and M. Shimizu, “High-gain hybrid
amplifier consisting of cascaded fluoride-based TDFA and silica-based
EDFA in 1458-1540 nm wavelength region,” Electronics Letters, Vol. 39, No.
7, pp. 597-599, Apr. 2003.
[7] T. Sakamoto, S.I. Aozasa, M. Yamada, and M. Shimizu, “Hybrid Fiber
Amplifiers Consisting of Cascaded TDFA and EDFA for WDM Signals,”
Journal of Lightwave Technology, Vol. 24, No. 6, Jun. 2006.
[8] Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H.
Sigel, Jr., “Pr3+-doped fluoride fiber amplifier operating at 1.31 μm,” Optics
Letters 16, pp. 1747-1749, 1991.
[9] R.S. Quimby, B.N. Samson, B.G. Aitken, “Improved efficiency of Pr-doped
sulfide fiber amplifier using a dual pump scheme,” Lasers and
Electro-Optics, Conference(CLEO 2000), CWJ5, pp. 285 – 286, May 2000.
[10] T. Kasamatsy, Y. Yano, and H. Seller, “1.50-μm-band gain-shifted
12
thulium-doped fiber amplifier with 1.05- and 1.56-μm dual-wavelength
pumping,” Opt. Lett. 24, pp. 1684-1686, 1999.
[11] S. Aozasa, H. Masuda, H. Ono, T. Sakamoto, T. Kanamori, Y. Ohishi, and M.
Shimizu, “1480-1510 nm-band Tm doped fiber amplifier (TDFA) with a
high power conversion efficiency of 42 %,” Optical Fiber Communication
(OFC) Conference, Vol. 4, pp. PD1, 2001.
[12] S. Aozasa, H. Masuda, and M. Shimizu, “S-Band Thulium-Doped Fiber
Amplifier Employing High Thulium Concentration Doping Technique,”
Journal of Lightwave Technology, Vol. 24, No. 10, pp. 3842-3848, Oct.
2006.
[13] E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza,
and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics
Technology Letters, Vol. 16, No. 3, pp. 777-779, Mar. 2004.
[14] Y. Miyajima, T. Kamukai, and T. Sugawa, “ 1.31-1.36 μm optical
amplification in Nd3+ -doped fluorescent fiber,” Electron. Letters, Vol. 26, pp.
194-195, 1990.
[15] P.R. Watekar, S. Ju, and W.T. Han, “A Nd-YAG Laser-Pumped Tm-Doped
Silica Glass,” IEEE Photonics Technology Letters, Vol. 18, No. 15, pp.
1651-1653, Aug. 2006.
[16] S. Shimada and H. Ishio, “Optical Amplifiers and their Applications,” New
York: Wiley, 1994, Ch. 2.
[17] Michael J. Connelly, “Semiconductor Optical Amplifiers,” Kluwer
Academic Press, 2002.
[18] A. Sharaiha, “Semiconductor optical amplifiers for future optical networks,”
in Proceedings of IEEE Conference on Information and Communication
Technologies: From Theory to Applications, pp. 165-166, Apr. 2004.
[19] M.N. Islam, “Raman amplifiers for telecommunications,” IEEE J. of
Selected Topics in Quant. Electron., Vol. 38, No. 3, pp. 548-559, May/June
2002.
[20] A. Mori, H. Masuda, K. Shikano, K. Oilkawa, K. Kato and M. Shimizu,
“Ultra-wideband tellurite-based Raman fibre amplifier,” Electronics Letters.,
13
Vol. 37, No. 24, pp.1442-1443, Nov. 2001.
[21] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal
grown by the laser-heated pedestal growth method,” Journal of Crystal
Growth, Vol. 183, pp. 614-621, 1998.
[22] C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S.
Lin, and P.S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics
Letters, Vol. 30, pp. 129-131, 2005.
[23] C.Y. Lo, K.Y. Huang, J.C. Chen, S.Y. Tu, and S.L. Huang, “Glass-clad
Cr4+ :YAG crystal fiber for the generation of superwideband amplified
spontaneous emission,” Optics Letters, Vol. 29, pp. 439-441, 2004.
[24] M. V. Iverson, J. C. Windscheif, and W. A. Sibley, “Optical parameters for
the MgO:Ni2 + laser system,” Appl. Phys. Lett., Vol. 36, pp. 183-184, 1980.
[25] T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in
zinc—alumino—silicate glass,” Appl. Phys. Lett., Vol. 84, pp. 3804-3806,
2004.
[26] S. Tanabe and X. Feng, “Temperature variation of near-infrared emission
from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys.
Lett., Vol. 77, pp. 818-820, 2000.
[27] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV)
in alumino-silicate glasses,” Optical Materials, Vol. 20, pp.63-72, 2002.
[28] Cz. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy
of chromium ions in various valence states in glass,” J. of Alloys and
compounds, Vol. 341, pp. 19-27, 2002.
[29] C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced
room-temperature emission in Cr4+ ions containing alumino-silicate
glasses,” Appl. Phys. Lett., Vol. 82, pp. 4035-4037, 2003.
[30] V. Felice, B. Dussardier, J.K. Jones, G. Monnom, D.B. Ostrowsky,
“Chromium-doped silica optical fibres: influence of the core composition on
the Cr oxidation states and crystal field,” Optical Materials, Vol. 16,
pp.269-277, 2003.
[31] V.V. Dvoyrin, V.M. Mashinsky, V.B. Neustruev, E.M. Dianov, A.N.
14
Guryanov, and A.A. Umnikov, “Effective room-temperature luminescence in
annealed chromium-doped silicate optical fibers,” J. of Optical Society of
America B, Vol. 20, pp.280-283, 2003.
[32] Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, H.M. Yang, M.T.
Sheen, S.L. Huang, T.Y. Chang, and W.H. Cheng, “Fabrication of Cr-doped
Fibers by Drawing Tower,” OFC, Anaheim, CA, pp. OWI21, 2006.
[33] Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and
W.H. Cheng, “Broadband emission from Cr-doped fibers fabricated by
drawing tower,” Opt. Exp., Vol. 14, pp. 8492-8497, 2006.
[34] Y.C. Huang, J.S. Wang, Y.K. Lu, W.K. Liu, K.Y Huang, S.L. Huang, and
W.H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband
Cr-doped fibers,” Opt. Exp., Vol. 15, pp. 14382-14388, 2007.
[35] J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao. S.Y. Tu, and S.L. Huang,
“Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers,”
J. Crystal Growth., Vol. 274, pp. 522-529, 2005.
第二章
C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S.
Lin, and P.S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics
Letters, Vol. 30, pp. 129-131, 2005.
[2] C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced
room-temperature emission in Cr4+ ions containing alumino-silicate
glasses,” Appl. Phys. Lett., Vol. 82, pp. 4035-4037, 2003.
[3] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV)
in alumino-silicate glasses,” Optical Materials, Vol. 20, pp. 63-72, 2002.
[4] Cz. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy
of chromium ions in various valence states in glass,” J. of Alloys and
Compounds, Vol. 341, pp. 19-27, 2002.
[5] U. Hommerich, X. Wu, and V. R. Davis, “Demonstration of
room-temperature laser action at 2.5 m from Cr2+:Cd0.85Mn0.15Te,” Optics
Letters, Vol. 22, pp. 1180-1182, 1997.
[6] S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev “CW and pulsed
Cr2+:ZnS and ZnSe microchip laser ,” Technical Digest, Lasers and
Electro-Optics, pp. 120-121 (2002).
[7] J. McKay, K. L. Schepler and G. C. Catella, “Efficient grating-tuned
mid-infrared Cr2+ : CdSe laser,” Optics Letters, Vol. 24, No. 22, pp.
1575-1577, 1999.
[8] S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the
Cr4+-center in YAG,“ OSA Proceedings on Advanced Solid-State Lasers, Vol.
10, pp. 92-94, 1991.
[9] Alexander A. Kaminskii, “Laser crystal,” 1st ed, Springer-Verlag Berlin
Heidelberg New York, Vol. 241, pp. 381-382, 1981.
[10] S. Aoshima, H. Itoh, K. Kuroyanagi, Y. Takiguchi, Y. Ohbayashi, I. Hirano,
and Y. Tsuchiya, “Tunable picosecond all solid-state Cr:LiSAF Laser,”
IEEE, IMCT’94, pp. 937-940, 1994.
26
[11] Yen-Kuang Kuo, Man-Fang Huang, and Milton Bimbaum, “Tunable Cr4+:
YSO Q-switched Cr:LiCAF laser,” J. of Quantum Electron, Vol. 31, No. 4,
pp. 657-663, 1995.
[12] Takashi Fujii, Masahiro Nagano, and Koshichi Nemoto, “Spectroscope and
laser oscillation characteristics of high Cr4+-doped forsterite,” J. of Quantum
Electron, Vol. 32, No. 8, pp. 1497-1503, 1996.
[13] J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao. S.Y. Tu, and S.L. Huang,
“Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers,”
J. Crystal Growth, Vol. 274, pp. 522-529, 2005.
[14] M. A. Gulgun, W. Y. Ching, Y.N. Xu, and M. Ruhle, “Electron states of YAG
probed by energy-loss near-edge spectrometry and ab initio calculations,”
Phil. Mag. B, Vol. 79, pp. 921, 1999.
[15] S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber,
“Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” OSA
Proceedings on Advanced Solid-State Lasers, Vol. 15, pp. 334-338, 1993.
[16] 黃光瑤, “摻鉻釔鋁石榴石晶體光纖之超寬頻自發輻射放大光源之研製,”
碩士畢業論文, 國立中山大學, 2003.
[17] A. G. Okhrimchuk and A. V. Shestakov, “The local vibration absorption
band in the YAG:Cr4+ crystal,” in J. J. Jayhoswski (Ed.), OSA Trends in
Optics and Photonics (TOPS), Advanced Solid-State Photonics, Vol. 83, pp.
224, 2003.
[18] J. C. Chen, C. N. Tsai, K. Y. Huang, Y. S. Lin, F. J. Kao, and S. L. Huang,
“Effects of side deposition and annealing for increasing Cr4+ concentration
in Cr:YAG crystal fiber,” Conference on Lasers and Electro-Optics, Pacific
Rim, , Tokyo, Japan, pp. CTuK4-7, 2005.
[19] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in
continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B, Vol. 18,
No. 11, pp. 1578-1586, 2001.
[20] H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Peterman, G. Huber, and W.
Jia, “Performance of a Cr:YAG laser,” IEEE Journal of Quantum Electronics
Vol. 29, pp. 2508, 1993.
第三章
Cr:YAG crystal rod, Fujian JDSU CASIX Inc., Fujian, China (2005).
[2] GE Quartz, Inc. www.ge.com/quartz .
[3] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser
crystal grown by the laser-heated pedestal growth method,” Journal of
Crystal Growth, Vol. 183, pp. 614-621, 1998.
[4] S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single-crystal
fiber laser,” OSA Trends in Optics and Photonics, 34, Advanced
Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds. (Optical
Society of America, Washington, DC), pp. 426-430, 2000.
[5] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV)
in alumino-silicate glasses,” Optical Materials, Vol. 20, pp. 63-72, 2002.
[6] V. Felice, B. Dussardier, J.K. Jones, G. Monnom, D.B. Ostrowsky,
“Chromium-doped silica optical fibres: influence of the core composition
on the Cr oxidation states and crystal field,” Optical Materials, Vol. 16, pp.
269-277, 2003.
[7] L.S. Watkins, “Control of Fiber Manufacturing Processes,” in Proceedings
of The IEEE(invited paper), Vol. 70, No. 6, pp. 626-634, Jun. 1982.
[8] Robert H. Doremus, “Viscosity of silica,” Journal of Applied Physics, Vol.
92, No. 12, pp. 7619-7629, Dec. 2002.
[9] E. Snitzer and R. Tummineli, “SiO2-clad fibers with selectively volatilized
soft-glass cores,” Optics Letters, Vol. 14, pp. 757-759, 1989.
[10] K. Lyytikainen, J. Canning, J. Digweed and J. Zagari, “Geometry controlof
air-silica structured optical fibres using pressurisation,” in Proceedings of
SBO/IEEE MTT-S IMOC 2, pp. 1001-1005, 2003.
[11] M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri,” Modeling of Photonic
Crystal Fiber Raman Amplifiers,” Journal of Lightwave Technology, Vol.
22, No. 7, Jul. 2004.
[12] K.J. Lyytikäinen, “Control of Complex Structural Geometry in Optical
Fibre Drawing,” Ph.D dissertation, University of Sydney, 2004.
第四章
S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser
crystal grown by the laser-heated pedestal growth method,” J. Crystal
Growth, Vol. 183, pp. 614-621, 1998.
[2] C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S.
Lin, and P.S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics
Letters, Vol. 30, pp. 129-131, 2005.
[3] C.Y. Lo, K.Y. Huang, J.C. Chen, S.Y. Tu, and S.L. Huang, “Glass-clad
Cr4+:YAG crystal fiber for the generation of superwideband amplified
spontaneous emission,” Optics Letters, Vol. 29, pp. 439-431, 2004.
[4] 華榮電線電纜抽絲標準作業手冊
[5] 王雍舜,”雙光子共焦顯微鏡和顯微光譜之應用:牙齒和KTP 晶體的二
次倍頻影像,” 碩士畢業論文, 國立中山大學, 2000.
[6] 黃茂闊, “雙光子共焦顯微鏡和顯微光譜之應用:氮化鎵銦發光二極體
的光致電流影像和顯微光譜,” 碩士畢業論文, 國立中山大學, 2000.
[7] J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao. S.Y. Tu, and S.L. Huang,
“Fluorescence mapping of oxidation state of Cr ions in YAG crystal
fibers,” J. Crystal Growth, Vol. 274, pp. 522-529, 2005.
[8] 黃昱銘, “抽絲塔製程之摻鉻光纖, ” 碩士畢業論文, 國立中山大學,
2006.
[9] 劉文貴, “超寬頻摻鉻光纖製程與特性之研究, ” 碩士畢業論文, 國立
中山大學, 2007.
[10] 陳建誠, “雙纖衣掺鉻釔鋁石榴石晶體光纖之螢光光譜研究, ” 博士畢
業論文, 國立中山大學, 2006.
[11] S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single-crystal
fiber laser,” OSA Trends in Optics and Photonics, 34, Advanced
Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds. (Optical
Society of America, Washington, DC), pp. 426-430, 2000.
[12] Cz. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy
of chromium ions in various valence states in glass,” J. of Alloys and
81
compounds, Vol. 341, pp. 19-27, 2002.
[13] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV)
in alumino-silicate glasses,” Optical Materials, Vol. 20, pp. 63-72, 2002.
[14] Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive
Q-switches,” Progress in Quantum Electronics, Vol. 28, pp. 249-303, 2004.
[15] Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and
W.H. Cheng, “Broadband emission from Cr-doped fibers fabricated by
drawing tower,” Opt. Exp., Vol. 14, pp. 8492-8497, 2006.
[16] Y.C. Huang, J.S. Wang, Y.K. Lu, W.K. Liu, K.Y Huang, S.L. Huang, and
W.H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband
Cr-doped fibers,” Opt. Exp., Vol. 15, pp. 14382-14388, 2007.
[17] C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced
room-temperature emission in Cr4+ ions containing alumino-silicate
glasses,” Appl. Phys. Lett., Vol. 82, pp. 4035-4037, 2003.
[18] V. Felice, B. Dussardier, J.K. Jones, G. Monnom, D.B. Ostrowsky,
“Chromium-doped silica optical fibres: influence of the core composition
on the Cr oxidation states and crystal field,” Optical Materials, Vol. 16, pp.
269-277, 2003.
[19] V. Felice, B. Dussardier, J. K. Jones, G. Monnom, and D. B. Ostrowsky, ”
Cr4+-doped silica optical fibres: absorption and fluorescence properties,”
The European Physical Journal Applied Physics, Vol. 11, pp. 107, 2000.
[20] V. V. Dvoyrin, E. M. Dianov, V. M. Mashinsky, V. B. Neustruev, A. N.
Guryanov, A. Y. Laptev, A. A. Umnikov, M. V. Yashkov, and N. S.
Vorobiev, “Absorption and luminescence properties of Cr4+-doped silica
fibres,” Quantum Electronics, Vol. 31, pp. 996-998, 2001.
[21] V.V. Dvoyrin, V.M. Mashinsky, V.B. Neustruev, E.M. Dianov, A.N.
Guryanov, and A.A. Umnikov, “Effective room-temperature luminescence
in annealed chromium-doped silicate optical fibers,” J. of Optical Society
of America B, Vol. 20, pp. 280-283, 2003.
[22] EXFO-NR9200 操作手冊
[23] Gerd Keisser, “Optical Fiber Communications,” third edition, 2000.
第五章
K. Lyytikainen, J. Canning, J. Digweed and J. Zagari, “Geometry controlof
air-silica structured optical fibres using pressurisation,” in Proceedings of
SBO/IEEE MTT-S IMOC 2, pp. 1001-1005, 2003.
[2] M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri,” Modeling of Photonic
Crystal Fiber Raman Amplifiers,” Journal of Lightwave Technology, Vol. 22,
No. 7, Jul. 2004.
[3] K.J. Lyytikäinen, “Control of Complex Structural Geometry in Optical Fibre
Drawing,” Ph.D dissertation, University of Sydney, 2004.
[4] Y.C. Huang, J.S. Wang, Y.K. Lu, W.K. Liu, K.Y Huang, S.L. Huang, and
W.H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband
Cr-doped fibers,” Opt. Exp., Vol. 15, pp. 14382-14388, 2007.
[5] 黃昱銘, “抽絲塔製程之摻鉻光纖, ” 碩士畢業論文, 國立中山大學,
2006.
[6] 劉文貴, “超寬頻摻鉻光纖製程與特性之研究, ” 碩士畢業論文, 國立中
山大學, 2007.
[7] 陳建誠, “雙纖衣掺鉻釔鋁石榴石晶體光纖之螢光光譜研究, ” 博士畢業
論文, 國立中山大學, 2006.
[8] Cz. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy
of chromium ions in various valence states in glass,” J. of Alloys and
compounds, Vol. 341, pp. 19-27, 2002.
[9] S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the
Cr4+-center in YAG, “OSA Proceedings on Advanced Solid-State Lasers, Vol.
10, pp. 92-94, 1991.
[10] S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber,
“Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” SOA
Proceedings on Advanced Solid-State Lasers, Vol. 15, pp. 334-338, 1993.
[11] C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S.
Lin, and P.S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics
105
Letters, Vol. 30, pp. 129-131, 2005.
[12] Y.S. Lin, C.C. Lai, K.Y. Huang, J.C. Chen, C.Y. Lo, S.L. Huang, T.Y. Chang,
J.Y. Ji, P.Y. Shen, “Nanostructure formation of double-clad Cr4+:YAG crystal
fiber grown by co-drawing laser-heated pedestal,” J. of Crystal Growth, Vol.
289, pp. 515-519, 2006.
[13] J.C. Chen, K. Y. Huang, C. N. Tsai, Y. S. Lin, C. C. Lai, G. Y. Liu, F. J. Kao,
and S. L. Huang, C. Y. Lo, Y. S. Lin, and P. Shen, “Composition dependence
of the micro-spectroscopy of Cr ions in double-clad Cr:YAG crystal fiber,” J.
Applied Physics, Vol. 99, pp. 93-113, May 2006.
[14] C.Y. Lo, K.Y. Huang, J.C. Chen, S.Y. Tu, and S.L. Huang, “Glass-clad Cr4+
YAG crystal fiber for the generation of superwideband amplified
spontaneous emission,” Optics Letters, Vol. 29, pp. 439-441, 2004.
[15] J. C. Chen, C. N. Tsai, K. Y. Huang, Y. S. Lin, F. J. Kao, and S. L. Huang,
“Effects of side deposition and annealing for increasing Cr4+ concentration
in Cr:YAG crystal fiber,” Conference on Lasers and Electro-Optics, Pacific
Rim, paper CTuK4-7, Tokyo, Japan, 2005.
[16] J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao. S.Y. Tu, and S.L. Huang,
“Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers,”
J. Crystal Growth, Vol. 274, pp. 522-529, 2005.
[17] Y.C. Huang, J.S. Wang, Y.K. Lu, C.T. Wu, S.L. Huang, W.H. Cheng,
“Fabrication of 300-nm Cr-Doped Fibers Using Fiber Drawing with Pressure
Control,” OFC, San Diego, CA (2008), paper JWA1.
[18] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV)
in alumino-silicate glasses,” Optical Materials, Vol. 20, pp. 63-72, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.225.56.41
論文開放下載的時間是 校外不公開

Your IP address is 54.225.56.41
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code