Responsive image
博碩士論文 etd-0102116-181721 詳細資訊
Title page for etd-0102116-181721
論文名稱
Title
高效率鈣鈦礦太陽能電池之低溫製程研究
Low-temperature Technique for High-efficiency Perovskite Hybrid Photovoltaic Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-12-30
繳交日期
Date of Submission
2016-02-08
關鍵字
Keywords
新世代能源、有機–無機太陽能電池、鈣鈦礦太陽能電池、低壓鄰近蒸鍍法、大氣製程
Perovskite Solar Panels Cells, Perovskite, Low Pressure Proximity Evaporation Technique (LPPET), New-age Energy, Organic-inorganic Hybrid Solar Panels Cells
統計
Statistics
本論文已被瀏覽 5728 次,被下載 0
The thesis/dissertation has been browsed 5728 times, has been downloaded 0 times.
中文摘要
從18世紀工業革命以來,隨著人類科技發展及石化燃料的逐漸枯竭,能源議題備受重視,各界也積極投入發展替代性能源。在眾多太陽能電池中,鈣鈦礦太陽能電池在近五六年以非常快的速度串起,光電轉換效率由3 %線性提升到了超過20 %,引起了許多研究的興趣。
本研究針對鈣鈦礦太陽能電池進行低溫製程研究,特別著墨於低壓鄰近蒸鍍法(LPPET),期盼藉由達到節省生產能源及兼容可撓性基板應用的方法,並改良製程技術以增進元件之光電轉換效率,進一步達成產業化的目標。
氧化鋅由於具有良好的電子傳輸能力及光穿透率,在高分子太陽能電池中廣被使用。本研究首先以溶液製程成長氧化鋅薄膜,並使用簡單的二步驟製程,在氧化鋅基板上成長CH3NH3PbI3,且利用調變二步驟製程的濃度參數、氧化鋅層的架構來提升元件效率。並修正了實驗室標準製程中ZnO溶液的濃度可使鈣鈦礦層成長較佳,成功將元件轉換效率提升至13.44 %。
由於鈣鈦礦的生長過程中非常容易受環境中水氧的影響,再加上鈣鈦礦層的形成若太快會導致晶粒小且雜亂,使介面接觸不好影響載子傳輸。因此我們利用溶液製程搭配低壓鄰近蒸鍍法(LPPET),加上傳統熱蒸鍍機蒸鍍PbI2來製備順置結構鈣鈦礦太陽能電池。這樣的製程具有的優勢包括較慢速的方式來成長鈣鈦礦層,以形成較佳結晶,此外改善了倒置結構中的磁滯現象和ZnO熱穩定性不佳的問題。並透過嘗試(side方式)許多不同LPPET的參數,找到最佳元件光電轉換效率為11.29 %,及非常不錯的短路電流18.38 mA/cm2。
為改善低壓鄰近蒸鍍法不易使底層PbI2反應完全,且容易使表層MAI蒸鍍過量的現象,我們提出一個溶液製程搭配低壓鄰近蒸鍍法的應用,即製作MAI/ PbI2/MAI之三明治結構,使MAI和PbI2能夠反應完全,得到高品質的鈣鈦礦層。
接著更進一步優化低壓鄰近蒸鍍法的製程,在先前的元件結構中的電子傳輸修飾層PEI更換為BCP,此中介層能相當有效阻擋電洞,使電子更順利的傳輸。此外也將LPPET side的方式改用top方式來鍍製,增進了鈣鈦礦層的結晶。最重要的是,我們在三明治結構中加入了退火之步驟,尤其是PbI2之退火。大大地提升鈣鈦礦層的結晶性和緻密性。得到品質極佳的鈣鈦礦層,元件之光電轉換效率最高為15.52 %;Jsc為23.91 mA/cm2,及其他優異的電性。
Abstract
Due to the development of technology and gradual depletion of fossil fuels, the energy issue has received wide attention in this century. Solar energy is one of the best choices. Among many types of solar cells, perovskite solar cells suddenly appear on the horizon and the power conversion efficiency has been improved from 3 % to over 20 % in just 6 years. This makes many scholars who originally study in polymer and dye-sensitized solar cells start doing research about perovskite PVs.
Halide perovskites have recently emerged as promising materials because of low-cost and high-efficiency. In this study, we develop a new method, Low Pressure Proximity Evaporation Technique (LPPET), combined with Solution Process (SP) to fabricate planar sandwich-like perovskite thin films. We also optimize the methods to improve the power conversion efficiency of the devices.
Zinc oxide is widely used in polymer solar cells because of its good electron conductivity and high light transmittance. As a results, we first applied solution processed zinc oxide based on inverted-structure and a simple two-step solution process to fabricate perovskite PV cells. We modified the concentration of CH3NH3I solution to improve the efficiency. We analyzed the effect of interface morphology between perovskite and ZnO and finally, gained a PCE of 13.44 %.
Because two-step process is very susceptible to the atmosphere and the formation of perovskite is too quick that causes perovskite grains small and messy, we developed a new method, called Low Pressure Proximity Evaporation Technique (LPPET) to fabricate perovskite layer. At first, we investigate two layered perovskite devices. In order to achieve complete formation of the bottom PbI2 and avoid the excess deposition of MAI on surface, we bring up an idea of using solution process along with LPPET to form a sandwich structure of MAI/PbI2/MAI. However, due to poor thermal stability of the perovskite layer, we found the LPPET process is different to be exercised on ZnO substrate. With appropriate LPPET parameters, we got a PCE of 11.29 % and a very good short-circuit current density of 18.38 mA/cm2.
After that, we optimized LPPET process on traditional-structure perovskite PV devices. We found that the annealing step of sandwich-like perovskite layer is the most important factors to get best quality devices. The best crystallization and structure of perovskite could be obtained at 160℃, 35 minutes PbI2 annealing. Consequently, with adequate parameters of LPPET, we achieved efficiency of 15.52 % and large Jsc, 23.91 mA/cm2, also others good electric properties. For a low temperature process under whole atmosphere or under vacuum condition, this is a breakthrough of the perovskite solar cells and mass production.
目次 Table of Contents
目錄
論文審定書 ............................................................................................................................................. I
誌謝 ........................................................................................................................................................ II
中文摘要 .............................................................................................................................................. III
ABSTRACT ........................................................................................................................................ IV
目錄 ........................................................................................................................................................ V
第壹章 緒論 ........................................................................................................................................... 1
1.1 研究背景 .......................................................................................................................................... 1
1.1.1 科學與人類文明 ....................................................................................................................... 1
1.1.2 全世界能源與太陽能使用發展 ............................................................................................... 2
1.2 文獻回顧簡述 .................................................................................................................................. 4
1.2.1 太陽能電池之發現與演進歷程 ............................................................................................... 4
1.2.2 鈣鈦礦太陽能電池之崛貣與發展歷程 ................................................................................... 9
1.3 研究目的 ........................................................................................................................................ 13
第貳章 實驗原理簡介 .......................................................................................................................... 14
2.1 太陽能電池之基本原理 ................................................................................................................. 14
2.1.1 P-N接面 ................................................................................................................................. 14
2.1.2 光伏效應 ................................................................................................................................ 15
2.1.3 重要性能表徵 ......................................................................................................................... 16
2.2簡介鈣鈦礦太陽能電池 .................................................................................................................. 20
2.2.1鈣鈦礦太陽能電池之物理 ...................................................................................................... 20
2.2.2 鈣鈦礦太陽能電池之材料應用 ............................................................................................. 25
2.3製程技術簡述與文獻回顧 .............................................................................................................. 27
2.3.1 一步驟溶液製程法 (ONE-STEP SOLUTION PROCESS) ............................................................ 27
2.3.2 一步驟溶液製程法進化:溶劑及介面工程 (SOLVENT ENGINEEERING) .............................. 28
2.3.3 二步驟溶液製程法 (TWO-STEP SOLUTION PROCESS, TSP) .................................................... 29
2.3.4 二步驟溶液製程法進化:介面擴散法 (INTERDIFFUSION) ................................................... 30
2.3.5 二步驟溶液製程法進化:蒸汽輔助溶液製程 (VASP) ....................................................... 32
2.3.6 二步驟溶液製程法進化:熱蒸鍍法 (THERMAL EVAPORATION) ......................................... 32
2.3.7 二步驟溶液製程法進化:低壓鄰近蒸鍍法 (LPPET) ......................................................... 33
vi
第叁章 實驗設備與流程簡介 .............................................................................................................. 35
3.1 製程設備 ........................................................................................................................................ 35
3.1.1 手套箱 .................................................................................................................................... 35
3.1.2 旋轉塗布機與加熱盤 ............................................................................................................. 36
3.1.3 熱蒸鍍機 ................................................................................................................................ 36
3.1.4 低壓鄰近蒸鍍法 (LPPET) ..................................................................................................... 37
3.2 量測設備 ........................................................................................................................................ 38
3.2.1 太陽能模擬器 ......................................................................................................................... 38
3.2.2 X光繞射儀 (XRD) ................................................................................................................. 39
3.2.3 場發射掃描式電子顯微鏡 (FE-SEM) ................................................................................... 40
3.2.4 外部量子效應 (EQE) ............................................................................................................. 41
3.3 實驗流程 ........................................................................................................................................ 42
3.3.1 基板清洗與表面處理 ............................................................................................................. 42
3.3.2 電(子/洞)傳輸層旋塗 ............................................................................................................. 42
3.3.3 鈣鈦礦層製作 ......................................................................................................................... 43
3.3.4 電(洞/子)傳輸層旋塗 ............................................................................................................. 43
3.3.5 蒸鍍電極 ................................................................................................................................ 43
第肆章 以二步驟溶液製程法製備倒置結構鈣鈦礦太陽能電池 ....................................................... 44
4.1 研究動機 ........................................................................................................................................ 44
4.2 實驗設計 ........................................................................................................................................ 45
4.2.1 藥品配置 ................................................................................................................................ 46
4.2.2 元件製程 ................................................................................................................................ 49
4.3 結果與討論 .................................................................................................................................... 50
4.3.1 低成本電洞傳輸層應用於二步驟溶液製程之元件特性比較.............................................. 50
4.3.2 不同濃度的氧化鋅溶液元件比較 ......................................................................................... 52
4.3.3 使用不同基板之元件比較 ..................................................................................................... 54
4.4 小結 ................................................................................................................................................ 55
第伍章 以低壓鄰近蒸鍍法製備順置結構鈣鈦礦太陽能電池........................................................... 57
5.1 研究動機 ........................................................................................................................................ 57
5.2 實驗設計 ........................................................................................................................................ 57
5.2.1 藥品配置 ................................................................................................................................ 58
5.2.2 元件製程 ................................................................................................................................ 59
vii
5.3 結果與討論 .................................................................................................................................... 62
5.3.1 雙層結構之鈣鈦礦太陽能電池 ............................................................................................. 62
5.3.2 三明治鈣鈦礦結構中的碘化鉛膜厚效應 ............................................................................. 63
5.3.3 低壓鄰近蒸鍍法之溫度與時間效應 ..................................................................................... 66
5.3.4 使用不同前驅物(MAI, MACL)之元件晶體結構特性比較 .................................................. 68
5.4 小結 ................................................................................................................................................ 68
第陸章 溶液製程結合低壓鄰近蒸鍍法之優化與元件特性表現分析 ............................................... 69
6.1 研究動機 ........................................................................................................................................ 69
6.2 實驗設計 ........................................................................................................................................ 69
6.2.1 藥品配置 ................................................................................................................................ 70
6.2.2 元件製程 ................................................................................................................................ 71
6.3 結果與討論 .................................................................................................................................... 74
6.3.1製程優化後之溫度與時間效應 .............................................................................................. 75
6.3.2低壓鄰近蒸鍍法之不同蒸鍍方式之元件特性比較 .............................................................. 84
6.4 小結 ................................................................................................................................................ 85
第柒章 結論與未來展望 ...................................................................................................................... 86
7.1 結論 ................................................................................................................................................ 86
7.2 未來展望 ........................................................................................................................................ 87
第捌章 附錄 ......................................................................................................................................... 89
8.1三明治結構中PBI2的退火效應 ..................................................................................................... 89
8.2三明治結構中PBI2的厚度效應 ..................................................................................................... 92
REFERENCES .................................................................................................................................... 94
參考文獻 References
[1] 高涌泉,“形上集:時間的方向”,《科學人》No. 59, 2006.
[2] 柯文哲,https://www.youtube.com/watch?v=N0zhdMwD2Z8 – 『生死的智慧:柯文哲 (Wen-je Ko)』,TEDxTaipei, 2013.
[3] Perez, R. and M. Perez, (2009): “A Fundamental Look at Energy Reserves for the Planet” IEA SHC Solar Update, 50, p. 2-3, 2015.
[4] 鄭景尤,http://www.mem.com.tw/article_content.asp?sn=1406200010 –“中/日安裝量上衝下半年太陽能市場需求火熱”, 2014.
[5] 廖學中,“太陽光電產業的新星–鈣鈦礦太陽能電池”,《台灣奈米資訊電子報》, 2014.
[6] US International Energy Agency(IEA) Annual Energy Outlook, 2015.
[7] OpenEI, http://en.openei.org/
[8] International Energy Agency, “Energy Supply Security 2014”.
[9] E. Becquerel, “Mémoire sur les effets électriques produits sous l'influence des rayons solaires”, Compt. Rend. 9, 561-567, 1839.
[10] J. Perlin, “From Space to Earth-The story of Solar Electricity” , AATEC Publications, Ann. Arbor, Michigan, 1999.
[11] S. Sun, Z. Fan, Y. Wang, J. Haliburton, “Organic Solar Cell Optimizations”, J. materials science, 40, 6, 1429 –1443, 2005.
[12] D. Chapin, C. Fuller and G. Pearson, “A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power.”, J. Appl. Phys., 25, 5, p.676, 1954.
[13] D. Carlson and C. Wronski, “Amorphous Silicon Solar Cell”, Appl. Phys. Lett., 28, 11, p.671, 1976.
[14] G. Conibeer, “Third-generation Photovoltaics”, Materials Today, 10, p.42-50, 2007.
[15] W. Shockley and J. Queisser, “Detailed Balance Limit of Efficiency of P-N Junction Solar Cells”, J. Appl. Phys., 32, p.510-519, 1961.
[16] “Best Research-Cell Efficiencies” , National Renewable Energy Laboratory, (NREL), Rev. 08-06-2015.
[17] Martin A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “Solar
cell efficiency tables (version 46)”, Prog. Photovolt: Res. Appl., 23, p.805-812, 2015.
[18] N. Espinosa et al., “Solar Cells with One-Day Energy Payback for the Factories of the Future”, Energy Environ. Sci., 5, 5117, 2012.
[19] A. Kojima et al., “Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (2)”, Proc. 210th ECS Meeting, 2006.
[20] A. Kojima et al., “Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 131, 17, p.6050-6051, 2009.
[21] J. Im et al., “6.5% Efficient Perovskite Quantum-dot-sensitized Solar Cell”, Nanoscale, 3, 10, p.4088, 2011.
[22] J. Salbeck et al., “Low Molecular Organic Glasses for Blue Electroluminescence” , Synthetic Metals, 91, 1-3, p.209-215, 1997.
[23] H. Kim et al., “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%” , Sci. Rep., 2, p.591, 2012.
[24] M. Lee et al., “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites” , Science, 338, 6107,p.643-647, 2012.
[25] J. Noh et al., “Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells” , Nano. Lett., 13, p.1764-1769, 2013.
[26] B. O'regan and M. Grätzel, “A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films”, Nature, 353, p.737-740, 1991.
[27] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phy. Lett., 48, p.183-185, 1986.
[28] J. Tsukamoto et al., “A Schottky-barrier Type Solar-cell Using Polyacetylene”, Jpn. J. Appl. Phys., 20, 2, p.127-129, 1981.
[29] http://www.wikiwand.com/zh-tw/PN结
[30] S. Kasap et al., “Springer Handbook of Electronic and Photonic Materials”, Springer Science + Business Media, Inc., 2006.
[31] J. Fan et al., “Perovskite-based low-cost and high-efficiency hybrid halide solar cells”, Photon. Res., 2, 5, p.111-120, 2014.
[32] M. Green et al., “The Emergence of Perovskite Solar Cells”, Nature Photon., 8, 7, p.506-514, 2014.
[33] David B. Mitzi, “Templating and Structural Engineering in Organic-Inorganic Perovskites”, J. Chem. Soc., Dalton Trans., 1, p.1-12, 2001.
[34] C. C. Stoumpos et al., “Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties”, Inorg. Chem., 52, 15, p.9019-9038, 2013.
[35] J. Lee et al., “High-Efficiency Perovskite Solar Cells Based on the Black
Polymorph of HC(NH2)2PbI3”, Adv. Mater., 26, 29, p.4991-4998, 2014.
[36] G. E. Eperon et al., “Formamidinium Lead Trihalide: a Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells”, Energy Environ. Sci., 7, 3, p.982-988, 2014.
[37] H. Kim et al., “Organolead Halide Perovskite: New Horizons in Solar Cell Research”, J. Phys. Chem. C, 118, 11, p.5615-5625, 2014.
[38] N. K. McKinnon et al., “5-HT3 Receptor Ion Size Selectivity is a Property of the Transmembrane Channel, Not the Cytoplasmic Vestibule Portals”, J. Gen. Physiol., 138, 4, p.453-466, 2011.
[39] B. N. Cohen et al., “Mutations in M2 Alter the Selectivity of the Mouse Nicotinic Acetylcholine Receptor for Organic and Alkali Metal Cations”, J. Gen. Physiol., 100, 3, p.373-400, 1992.
[40] T. Koh et al., “Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells”, J. Phys. Chem. C, 118, 30, p.16458-16462, 2014.
[41] M. Green et al., “The emergence of perovskite solar cells”, Nature Photon., 8, 7, p.506-514, 2014.
[42] 章聖愷,《低溫製程高效率鈣鈦礦型太陽能電池》,國立臺灣大學光電工
程學研究所碩士論文,2015.
[43] G. Xiu et al., “Review of Recent Progress in Chemical Stability of Perovskite Solar Cells”, J. Mater. Chem. A, 3, 17, p.8970-8980, 2015.
[44] P. Gao et al., “Organohalide Lead Perovskites for Photovoltaic Applications”, Energy Environ. Sci., 7, 8, p.2448, 2014.
[45] R. Hull, “Properties of Crystalline Silicon”, London: INSPEC, The Institutioiz of Electrical Engineers, p.392, 1999.
[46] K. Feron, “Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer”, IJMS, 13, 12, p.17019-17047, 2012.
[47] V. D’Innocenzo et al., “Excitons Versus Free Charges in Organo-lead Tri-halide Perovskites”, Nature Comms., 5, 2014.
[48] A. Kojima et al., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 131, 17, p.6050–6051, 2009.
[49] J. Heo et al., “Efficient Inorganic-organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors”, Nature Photon., 7, 6, p. 486-491, 2013.
[50] J. Bell et al., “Low-temperature Processed Meso-superstructured to Thin-film Perovskite Solar Cells”, Energy Environ. Sci., 6, 6, p.1739, 2013.
[51] M. Liu et al., “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Science, 501, p.395-398, 2013.
[52] G. Eperon et al., “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells”, Adv. Funct. Mater., 24, 1, p.151-157, 2013.
[53] N. Jeon et al., “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nat. Mater., 13, 9, p.897-903, 2014.
[54] M. Xiao et al., “A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells”, Angew. Chem., 126, p.10056 –10061, 2014
[55] N. Jeon et al., “Compositional engineering of perovskite materials for high-performance solar cells”, Nature, 517, 7535, p.476-480, 2015.
[56] H. Zhou et al., “Interface engineering of highly efficient perovskite solar cells”, Science, 345, 6196, p.542-546, 2014.
[57] Q. Hu et al., “Engineering of Electron-Selective Contact for Perovskite Solar Cells with Efficiency Exceeding 15%”, ACS Nano, 8, 10, p.10161-10167, 2014.
[58] Y. Zhou et al., “Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells”, J. Mater. Chem. A, 3, 15, p.8178-8184, 2015.
[59] W. Nie et al., “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science, 347, 6221, p.522-525, 2015.
[60] K. Liang et al., “Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique”, Chem. Mater., 10, 1, p.403-411, 1998.
[61] J. Burschka et al., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature, 499, 7458, p.316-319, 2013.
[62] J. Im et al., ”Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells”, Nat. Nanotech., 9, 11, p.927-932, 2014.
[63] Z. Xiao et al., “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci., 7, 8, p.2619-2623, 2014.
[64] C. Chiang et al., “Planar heterojunction perovskite/PC[71]BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process”, J. Mater. Chem. A, 2, 38, p.15897-15903, 2014.
[65] Q. Chen et al., “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process”, J. Am. Chem. Soc.. 136, 2, p.622-625, 2014.
[66] Q. Chen et al., “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells”, Nano. Lett., 14, 7, p.4158-4163, 2014.
[67] R. Sheng et al., “Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition”, J. Phys. Chem. C, 119, 7, p.3545-3549, 2015.
[68] C. Liu et al., “Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process”, ACS Appl. Mater. Interfaces, 7, 17, p.9066-9071, 2015.
[69] M. Liu et al., “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, 501, 7467, p.395-398, 2013.
[70] O. Malinkiewicz et al., “Metal-Oxide-Free Methylammonium Lead Iodide Perovskite-Based Solar Cells: the Influence of Organic Charge Transport Layers”, Adv. Energy Mater., 4, 15, 1400345, p.1-9, 2014.
[71] O. Malinkiewicz et al., “Perovskite solar cells employing organic charge-Transport layers”, Nat. Photon., 8, 2, p.128-132, 2013.
[72] L. Gil-Escrig et al., “Efficient photovoltaic and electroluminescent perovskite devices”, Chem. Commun., 51, 3, p.569-571, 2015.
[73] L. Polander et al., “Hole-transport material variation in fully vacuum deposited perovskite solar cells”, APL Mater., 2, 8, p.081503, 2014.
[74] B. Kim et al., “Fully vacuum-processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers”, Organic Electronics, 17, p.102-106, 2015.
[75] J. Seo et al., “Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells”, Energy Environ. Sci., 7, 8, p.2642-2646, 2014.
[76] M. Lee et al., “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites”, Science, 338, 6107, p.643-647, 2012.
[77] P. Tiwana et al., “Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells”, ACS Nano, 5, 6, p.5158-5166, 2011.
[78] D. Bi et al., “Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells”, J. Phys. Chem. Lett., 4, 9, p.1532-1536, 2013.
[79] Z. He et al., “Enhanced Power-conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure”, Nature Photon., 6, 9, p.593-597, 2012.
[80] L. Shen et al., “Performance Improvement of TiO2/P3HT Solar Cells Using CuPc as a Sensitizer”, Appl. Phys. Lett., 92, 073307, 2008.
[81] L. Wang et al., “Utilization of Water/alcohol-soluble polyelectrolyte as an electron injection layer for fabrication of high-efficiency multilayer saturated red-phosphorescence polymer light-emitting diodes by solution processing.”, Appl. Phys. Lett., 89, 15, p.151115-151115-3, 2006.
[82] Z. He et al., “Simultaneous Enhancement of Open-circuit Voltage, Short Circuit Current Density, and Fill Factor in Polymer Solar Cells”, Adv. Mater., 23, 40, p.4636-4643, 2011.
[83] S. Ryu et al., “Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature”, J. Mater. Chem. A., 3, 7, p.3271-3275, 2015.
[84] P. Liang et al., “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells”, Adv. Mater., 26, 22, p.3748-3754, 2014.
[85] C. Chen et al., “Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition”, Adv. Mater., 26, 38, p.6647-6652, 2014.
[86] A. Dualeh et al., “Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Pervoskite Solid-State Solar Cells”, Adv. Funct. Mater., 24, 21, p.3250-3258, 2014.
[87] M. Saliba et al., “Influence of thermal processing protocol upon the crystallization and photovoltaic performance of organic-inorganic lead trihalide perovskites”, J. Phys. Chem. C, 118, 30, p.17171-17177, 2014.
[88] L. Yan et al., “Effect of PEI cathode interlayer on work function and interface resistance of ITO electrode in the inverted polymer solar cells”, Organic Electronics, 17, p.94-101, 2015.
[89] X. Min et al., “Polyethylenimine aqueous solution: a low-cost and environmentally friendly formulation to produce low-work function eletrodes for efficient easy-to-fabricate organic solar cells”, ACS Appl. Mater. Interfaces, 6, 24, p.22628-22633, 2014.
[90] M. Lin et al., “Role of Solution-Processable Polyethylenimine Electrode Interlayer in Fabricating Air-Stable Polymer Light-Emitting Diodes”, Israel J. Chem., 54, 7, p.935-941, 2014.
[91] C. M. Björström et al., “Multilayer formation in spin-coated thin films of low-bandgap polyfluorene: PCBM blends”, J. Phys.: Condens. Matter., 17, p.L529-L534, 2005.
[92] W. Yan et al., “High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization”, RSC Adv., 4, p.33039-33046, 2014.
[93] D. Yuan et al., “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells”, Phys. Chem. Chem. Phys., 17, p. 26653-26658, 2015.
[94] J. Yeoa et al., “Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer”, Nano Energy, 12, p.96-104, 2015.
[95] W. Chen et al., “Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells”, Energy Environ. Sci., 8, p.629-640, 2015.
[96] J. Xi et al., “Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells”, Nanoscale, 7, p.10699-10707, 2015.
[97] F. Hao et al., “Lead-free solid-state organic-inorganic halide perovskite solar cells”, Nat. Photon., 8, p.489-494, 2014.
[98] N. K. Noel et al., “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications”, Energy Environ. Sci., 7, p.3061-3068, 2014.
[99] T. Oku, “Solar Cells- New Approaches and Reviews”, InTech., p.86-87, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.250.1
論文開放下載的時間是 校外不公開

Your IP address is 3.149.250.1
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code