Responsive image
博碩士論文 etd-0102116-182456 詳細資訊
Title page for etd-0102116-182456
論文名稱
Title
以空氣品質模式解析高屏空品區臭氧特性
Characteristics of Ozone using Air Quality Model in the Kao-Pin Air Basin
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-21
繳交日期
Date of Submission
2016-02-17
關鍵字
Keywords
臭氧、揮發性有機物、二氧化氮、TAPM
Ozone, TAPM, Nitrogen oxides, Volatile organic compounds
統計
Statistics
本論文已被瀏覽 5675 次,被下載 450
The thesis/dissertation has been browsed 5675 times, has been downloaded 450 times.
中文摘要
台灣依行政區共分7大空品區,自2006 – 2015年間全台空氣品質不良率中,高屏空品區不良率達42.80%為全台之冠,為次高的雲嘉南空品區(23.21%)1.84倍之多,高屏空品區不良日中臭氧不良率達67.5%,惟臭氧污染影響較大。
空氣品質模式The Air Pollution Model(TAPM)臭氧模擬4案例中,春(3月, 2013)、夏(8月, 2013)及冬(1月, 2014)等3案例氣候類行均屬高氣壓類型,擴散不佳,污染物隨盛行風(西北風或西南西風)向往下風處累積,導致下風處屏東地區為臭氧高濃度區。其中以春(3月, 2013)季案例中濃度90–105 ppb影響為最大。逐時濃度模擬得知高臭氧濃度時段發生在11–15時,夜間至清晨時段實測值往往低於模式設定之背景濃度(10 ppb)。模擬值與實測值經量化分析結果為高度相關(R = 0.913),一致性指數IOA = 93.9%,顯示模擬結果合理。亦即,TAPM模擬臭氧濃度值可隨實測值趨勢變化。
透過VOC/NOX減量模擬,高雄地區VOC減量9.38–12.10%,能使高屏地區臭氧濃度下降10%,而NOX則需減量17.39–27.50 %。亦即,高雄市臭氧敏感性為VOC-limited,屏東地區臭氧受高雄地區傳輸而來影響較大。經排放源解析得知,高屏地區VOC受一般製造業(13.26–40.70%)與生活排放(31.58–63.58%)影響,NOX排放受移動源(25.90–59.00%)影響為主。
Abstract
The air quality of Kao-Ping Air Basin has been the worst among seven airbasins in Taiwan. The percentage of annual air quality that Pollution Standard Index (PSI) exceeded 100 in Kao-Ping Air Basin was 42.80%, which was twice of that in Yun-Chia-Nan Air Basin (23.21%) during the past decade (2006–2015).
Simulations of surface ozone variations using TAPM model were performed for the spring (March, 2013), summer (August, 2013) and winter (January, 2014) cases in southern Taiwan during which high pressure prevailed with poor atmospheric diffusion. Simulation results reveal that the downwind site in Pingtung County experienced polluted plumes in the spring when a northerly or northeasterly wind prevailed, demonstrating the cross-regional transport of pollutants. The corresponding concentration contours of ozone concentration were high of approximately 90–105 ppb at Pingtung County. Simulations of hourly ozone concentrations agree well with measurements. Predictions of hourly ozone concentrations reveal that high ozone concentrations occurred in the period around 11:00–15:00, while measured ozone concentrations during night and early morning were often lower than the model background concentrations at 10 ppb. Although predictions of model were in some cases higher or lower than measurements, simulated values were generally in agreement with measured values, with a correlation coefficient of R = 0.913, and an index of agreement (IOA)=93.9%.
Reduction VOC/NOX suggest that peak ozone concentration in the spring case can be reduced by 10% by reducing VOC emissions by 9.38–12.10% and NOx emissions by 17.39–27.50%. Sensitivity analyses suggest that reducing emissions of VOC is more effective in lowering the ambient ozone concentration than is reducing emissions of NOx. In Kao-Ping area, the predominant contributors of VOC emissions were manufacturing industries (13.26–40.70%) and living activities (31.58–63.58%), and the predominant contributors of NOx emissions were mobile sources (25.90–59.00%).
目次 Table of Contents
目 錄
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 背景概況分析及文獻回顧 3
2.1 高屏地區空氣品質趨勢 3
2.2 高屏地區指標污染物臭氧與懸浮微粒趨勢變化 6
2.3 高屏空品區氣象概述 10
2.4 臭氧危害與生成機制 13
2.4.1 臭氧概況與危害 13
2.4.2 光化反應 14
2.4.3 臭氧與VOCS/NOX敏感性 16
2.4.4 臭氧與氣象因子之相關性 19
2.5 空氣品質模式相關研究 20
2.5.1 箱型模式(BOX MODEL) 20
2.5.2 高斯模式(GAUSSIAN MODEL) 21
2.5.3 計算流體動力模式(COMPUTATIONAL FLUID DYNAMIC MODEL, CFD) 22
第三章 研究方法 25
3.1 監測點位置與現況 26
3.2 TAPM空氣品質模式概述 29
3.2.1 大氣運動制御方式 29
3.2.2 紊流擴散係數 31
3.2.3 污染物反應方程式 32
3.2.4 TAPM模擬區域及網格分配 36
3.2.5 TAPM模式輸入資料 38
3.3 模式評估工具 41
3.4 污染參數及氣象因子相關性分析 42
第四章 結果與討論 45
4.1 TAPM模擬結果 45
4.1.1 2013年春季案例(03月7 – 8日) 45
4.1.2 2013年夏季案例(08月7–8日) 52
4.1.3 2014年冬季案例(01月16–17日) 58
4.1.4 2014年夏季案例(07月17–18日) 64
4.1.5 量化分析與小結 70
4.2 模擬VOC/NOX減量分析 71
4.2.1 模擬2013年春季案例(03月7–8日)期間VOC/NOX減量分析 71
4.2.2 模擬2014年夏季案例(07月17–18日)期間VOC/NOX減量分析 74
4.2.3 VOC/NOX減量模擬小結 77
4.3 高屏空品區VOC與NOX來源分析 78
4.4 臭氧濃度與各污染參數及氣象因子相關性分析 80
第五章 結論與建議 83
5.1 結論 83
5.2 建議 85
參考文獻 87

附錄A 楠梓園區、楠梓測站及潮州測站檢測數據表
附錄B 個人簡歷與研究著作

圖目錄
圖2.1-1 台灣7大空品區分佈圖 3
圖2.1-2 台灣7大空品區不良日數統計 5
圖2.1-3 民國95–104年高屏地區空氣品質不良日數比例 5
圖2.2-1 高屏地區2005–2014年臭氧濃度趨勢變化 8
圖2.2-2 高屏地區2005–2014年懸浮微粒濃度趨勢變化 9
圖2.3-1 高雄地區2005–2014年各月份降雨量 11
圖2.4-1 臭氧濃度與VOCs及NOX關聯性(Seinfeld,1986) 16
圖3.1-1 研究流程圖 25
圖3.1-2 楠梓加工出口區空氣車採樣示意圖 27
圖3.1-3 模擬區域範圍與監測點位置示意圖 28
圖3.2-1 模擬區域排放網格設定示意圖 37
圖3.2-2 各高層模擬濃度示意圖 37
圖4.1-1 案例2013年03月7–8日之氣象因子 47
圖4.1-2 案例2013年03月7–8日之風花圖 47
圖4.1-3 案例2013年03月7–8日地面天氣圖 48
圖4.1-4 案例2013年03月7日15:00–16:00風場示意圖 50
圖4.1-5 案例2013年03月7日15:00–16:00臭氧等濃度分佈圖 50
圖4.1-6 案例2013年03月7–8日臭氧逐時濃度圖 51
圖4.1-7 案例2013年08月7–8日之氣象因子 53
圖4.1-8 案例2013年08月7–8日之風花圖 53
圖4.1-9 案例2013年08月7–8日地面天氣圖 54
圖4.1-10 案例2013年08月7–8日13:00–14:00風場示意圖 56
圖4.1-11 案例2013年08月7–8日13:00–14:00臭氧等濃度分佈圖 56
圖4.1-12 案例2013年08月7–8日臭氧逐時濃度圖 57
圖4.1-13 案例2014年01月16–17日之氣象因子 59
圖4.1-14 案例2014年01月16–17日之風花圖 59
圖4.1-15 案例2014年01月16–17日地面天氣圖 60
圖4.1-16 案例2014年01月16–17日13:00–14:00風場示意圖 62
圖4.1-17 案例2014年01月16–17日13:00–14:00臭氧等濃度分佈圖 62
圖4.1-18 案例2014年01月16–17日臭氧逐時濃度圖 63
圖4.1-19 案例2014年07月17–18日之氣象因子 65
圖4.1-20 案例2014年07月17–18日之風花圖 65
圖4.1-21 案例2014年07月17–18日地面天氣圖 66
圖4.1-22 案例2014年07月17日13:00–14:00風場示意圖 68
圖4.1-23 案例2014年07月17日13:00–14:00臭氧等濃度分佈圖 68
圖4.1-24 案例2014年07月17–18日臭氧逐時濃度圖 69
圖4.1-25 模式模擬值與實測值量化分析 70
圖4.2-1 案例2013年春季VOC、NOX減量時臭氧趨勢圖 73
圖4.2-2 案例2013年春季VOC及NOX減量對臭氧濃度影響趨勢圖 73
圖4.2-3 案例2014年夏季VOC及NOX減量對臭氧濃度影響趨勢圖 76
圖4.3-1 高雄地區VOC與NOX貢獻源分佈圓餅圖 79
圖4.3-2 屏東地區VOC與NOX貢獻源分佈圓餅圖 79


表目錄
表2.3-1 高雄地區2005–2014年各月份平均氣象資料統計表 12
表3.2-1 污染物初始及邊界條件 39
表3.2-2 TEDS 8.1空氣污染排放量清單 39
表3.2-3 模式土地使用分類 40
表3.4-1 相關係數的相關程度 43
表4.2-1 高雄市固定源VOC減量模擬結果 72
表4.2-2 高雄市固定源NOX減量模擬結果 72
表4.2-3 高雄市VOC減量模擬結果 75
表4.2-4 高雄市NOX減量模擬結果 75
表4.4-1 高雄市楠梓區空氣污染物與氣象因子相關性矩陣 82
表4.4-2 屏東縣屏東市空氣污染物與氣象因子相關性矩陣 82
參考文獻 References
Altshuller, A.P., 1987. Estimate of the Natural Background of Ozone Presentat Surface Rural Locations. J. Air Pollut. Cont. Assoc., 37, 1409-1417.
Balczo, M., Farago, T. and Lajos, T., 2005. Modelling urban pollution dispersion by using MISKAM. In: Proceedings der Konferenz microCAD 2005., Miskolc University.
Chen, T.F. and Chang, K.H., 2006. Formulating the relationship between ozonepollution features and the transition value of photochemical indicators. Atmos. Environ., 40, 1816-1827.
Chang, M.E. and Cardelino, C., 2000. Application of the urban airshed model to forecasting next-day peak ozone concentrations in Atlanta, Georgia. J. Air Waste Manag. Assoc., 50, 2010-2024.
Chen, K.S., Ho, Y.T., Lai, C.H. and Chou, Y.M., 2003. Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kaohsiung, Taiwan. Atmos. Environ., 37, 1811-1823.
Chen, K.S., Ho, Y.T., Lai, C.H., Ysai, Y.A. and Chen, S.J., 2004. Trends in concentration of ground-level ozone and meteorological conditions during high ozone episodes in the Kao-Ping airshed, Taiwan. J. Air Waste Manag. Assoc., 54, 36-48.

Chiang, H. L., Tsai, J. H., Chen, S. Y., Lin, K. H. and Ma, S.Y., 2007. VOC concentration profiles in an ozone non-attainment area: A case study in an urban and industrial complex metroplex in southern Taiwan. Atmos. Environ., 41, 1848-1860.
Galbally, I.E., 1986. Surface Ozone at Rural Sites in the Latrobe Vally and Cape Grim, Austrlia. Atmos. Environ., 28, 2403-2422.
Heek, W.W., Taylor, O.C., Adams, R., Bingharn, G., Miller, J., Prestom, E. and Weinstein, L., 1982. Assessment of Crop Loss from Ozone. J. Air Pollut. Cont. Assoc., 32, 353-361.
Hidy, G.M., 2000. Ozone process insights from field experiments part I: Overview. Atmos. Environ., 34, 2001-2022.
Holmes, N.S. and Morawska, L., 2006. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ., 40, 5902-5928.
Huang, C.H., Chen, K.S. and Wang, H.K., 2012. Measurements and PCA/APCS Analyses of Volatile Organic Compounds in Kaohsiung Municipal Sewer Systems, Southern Taiwan. Aerosol Air Qual. Res., 12, 1315-1326.
Hurley, P., Manins, P., Lee, S., Boyle, R., Ng, Y.L. and Dewundege, P., 2003. Year-long, high-resolution, urban airshed modelling: Verification of tapm predictions of smog aound particles in Melbrne, Australia. Atmos. Environ., 37, 1899-1910.
Hurley, P.J., Blockley, A. and Rayner, K., 2001. Verification of a prognostic meteorological and air pollution model for year-long predictions in the kwinana industrial region of Western Australia. Atmos. Environ., 35, 1871-1880.
Hurley, P., 2008. The Air Pollurion Model (TAPM) Version V4, Part 1: Technical Description, CSIRO Marine and Atmospheric Research Paper No. 25, Aspendale, Victoria.
Johnson, G.M., 1984. A simple model for predicting the ozone concentration of ambient air, Proceedings of the 8th International Clean Air and Environment Conference, New Zealand, Clean Air Society of Australia and New Zealand.
Kim, M.J., Park, R.J. and Kim, J.J., 2012. Urban air quality modeling with full O3-NOx-VOC chemistry: Implications for O3 and pm air quality in a street canyon. Atmos. Environ., 47, 330-340.
Kwak, K.H., Baik, J.J., Ryu, Y.H. and Lee, S.H., 2015. Urban air quality simulation in a high-rise building area using a CFD model coupled with mesoscale meteorological and chemistry-transport models. Atmos. Environ., 100, 167-177.
Langford, A.O., Aikin, K.C., Eubank, C.S. and Williams, E.J., 2009. Stratospheric contribution to high surface ozone in Colorado during springtime. Geophys. Res. Lett., 36.

Lefohn, A.S., Emery, C., Shadwick, D., Wernli, H., Jung, J. and Oltmans, S.J., 2014. Estimates of background surface ozone concentrations in the United States based on model-derived source apportionment. Atmos. Environ., 84, 275-288.
Lin, M.Y., Fiore, A.M., Horowitz, L.W., Cooper, O.R., Naik, V., Holloway, J., Johnson, B.J., Middlebrook, A.M., Oltmans, S.J., Pollack, I.B., Ryerson, T.B., Warner, J.X., Wiedinmyer, C., Wilson, J. and Wyman, B., 2012. Transport of Asian ozone pollution into surface air over the western United States in spring. J. Geophys. Res-Atmos., 117.
Luhar, A.K., Galbally, I.E. and Keywood, M., 2006. Modelling PM10 concentrations and carrying capacity associated with woodheater emissions in Launceston, Tasmania. Atmos. Environ., 40, 5543-5557.
Mensink, C., Colles, A., Janssen, L. and Cornelis, J., 2003. Integrated air quality modelling for the assessment of air quality in streets against the council directives. Atmos. Environ. 37, 5177–5184.
Nyberg, B.F. and Pershagen, G., 2000. Epidemiologic studies on the health effectsof ambient particulate air pollution. Scand J Work Environ Health., 26, 49-89.
Oettl, D., Sturm, P., Almbauer, R., 2005. Evaluation of GRAL for the pollutant dispersion from a city street tunnel portal at depressed level. Environ. Modell. Softw., 20, 499-504.

Peng, Y.P., Chen, K.S., Lai, C.H., Lu, P.J.and Kao, J.H., 2006. Concentrations of H2O2 and HNO3 and O3–VOC–NOX sensitivity in ambient air in southern Taiwan. Atmos. Environ., 40, 6741-6751.
Petroeschevsky A., Simpson R.W., Thalib L. and Rutherford S., 2001. Associationsbetween outdoor air pollution and hospital admissions in Brisbane, Australia. Arch Environ. Heal., 56, 37-52.
Pope C.A., 2000. What Do Epidemiologic Finding Tell Us about Health Effectsof Environment Aerosols?. J Aerosol Med., 13, 335-354.
Russell, A. and Dennis, R., 2000. NARSTO critical review of photochemical models and modeling. Atmos. Environ., 34, 2283-2324.
Seinfeld J. H., 1986. Atmospheric Chemistry and Physics of Air Pollution. John Wiley & Sons, Inc., p. 738.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wily & Sons, Inc.: New York, NY.
Sillman, S., 1999. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ., 33, 1821-1845.
Tsai, Y.I., Chen, C.L., 2006. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan. Atmos. Environ. 40, 4751-4763.
TEDs-8.1., 2014. Taiwan Emission Data System (Version 8.1). Environmental Protection Administration, Taipei, Taiwan, ROC.
Trainer, M., Parrish, D.D., Goldan, P.D., Roberts, J. and Fehsenfeld, F.C., 2000. Review of observation-based analysis of the regional factors influencing ozone concentrations. Atmos. Environ., 34, 2045-2061.
Wang, W.C. and Chen, K.S., 2008. Modeling and Analysis of Source Contribution of PM10 during Severe Pollution Events in Southern Taiwan. Aerosol Air Qual. Res., 8, 319-338.
Wang, W.C., Chen, K.S., Wang, S.K., Lee, H.C. and Tsai, M.Y., 2009. Modeling atmospheric PM10 concentrations during severe pollution events in southern Taiwan. Atmos. Res., 92, 159-171.
Wang, H.K., Huang, C.H., Chen, K.S., Peng, Y.P. and Lai, C.H., 2010. Measurement and Source Characteristics of Carbonyl Compounds in the Atmosphere in Kaohsiung City, Taiwan. J. Hazard. Mater., 179, 1115-1121.
Wang, Y.J., DenBleyker, A., McDonald-Buller, E., Allen, D. and Zhang, K.M., 2011. Modeling the chemical evolution of nitrogen oxides near roadways. Atmos. Environ., 45, 43-52.
Willmott, C.J., 1982. Some comments on the evaluation of model performance. B. Am. Meteorol. Soc., 63, 1309-1313.
Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., Odonnell, J. and Rowe, C.M., 1985. Statistics for the evaluation and comparison of models. J. Geophys. Res-Oceans., 90, 8995-9005.
Zawar-Reza, P., Kingham, S. and Pearce, J., 2005. Evaluation of a year-long dispersion modelling of PM10 using the mesoscale model TAPM for Christchurch, New Zealand. Sci. Total Environ., 349, 249-259.
Zhang, L., Jacob, D.J., Boersma, K.F., Jaffe, D.A., Olson, J.R., Bowman, K.W., Worden, J.R., Thompson, A.M., Avery, M.A., Cohen, R.C., Dibb, J.E., Flock, F.M., Fuelberg, H.E., Huey, L.G., McMillan, W.W., Singh, H.B. and Weinheimer, A.J., 2008. Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: An integrated analysis using satellite, aircraft, ozonesonde, and surface observations. Atmos. Chem. Phys., 8, 6117-6136.
Zhang, L., Jacob, D.J., Kopacz, M., Henze, D.K., Singh, K. and Jaffe, D.A., 2009. Intercontinental source attribution of ozone pollution at western US sites using an adjoint method. Geophys. Res. Lett., 36.
鄭任軒及陳康興,2014,「以空氣品質模式(TAPM)模擬南臺灣臭氧傳輸之研究」,第四屆海峽兩岸環境保護會議–福州論壇。
高苙凱,2013,「以大氣擴散模式探討半導體業排放對區域性之影響-以中科三期后里園區為例」,國立中山大學環境工程研究所碩士論文。
經濟部加工出口區,2014,「101–103年度楠梓園區環境品質調查分析計畫期末報告(定稿本)」,高雄市楠梓加工區。
交通部中央氣象局高雄氣象站,http://www.cwb.gov.tw/V7/index.htm。
廖琇怡,2005,「高雄市臭氧特性與氣象因子之相關性探討」,國立中山大學環工所碩士論文
戚啟勲,1990,「普通氣象學」,正中書局,台灣。
行政院環境保護署,2006,「93 年台灣地區空氣污染防制總檢討」,行政院環境保護署。
王文正,2008,「以空氣品質模式及受體模式解析懸浮微粒排放源之貢獻量」,國立中山大學環境工程研究所博士論文。
吳明隆 ,2011,「SPSS統計應用學習實務」,易習圖書,台灣。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code