Responsive image
博碩士論文 etd-0103108-185456 詳細資訊
Title page for etd-0103108-185456
論文名稱
Title
有序結構的介孔二氧化矽、二氧化鈦與碳材料的合成與介觀結構鑑定
Template Synthesis and Mesostructural characterization of Ordered Mesoporous Silica, Titania and Carbon Materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
164
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-12-18
繳交日期
Date of Submission
2008-01-03
關鍵字
Keywords
有序結構的中孔洞二氧化矽、有序結構的中孔洞二氧化鈦、有序結構的中孔洞碳材、介觀結構、模版法
ordered mesoporous silica, template method, mesostructure, ordered mesoporous carbon, ordered mesoporous titania
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
  本研究為利用模版法製備有序結構的中孔洞二氧化矽、二氧化鈦與碳材並對其做介觀結構的鑑定。為了對模版與前驅物間的關係有更進一步的瞭解,所以本研究採用了2種不同種類的模版,分別是由界面活性劑經自我組裝而成的“液晶模版”,以及由二氧化矽奈米球(∼40 nm)經重力沈降堆疊而成的“有序排列的二氧化矽球模版”。本研究共包含4個相關的研究方向:(1)利用陽離子型界面活性劑模版製備有序結構的中孔洞二氧化矽材料(MCM-41與MCM-48),並將其表面官能基化,(2)利用陰離子界面活性劑模版與尿素(Urea)的幫助下來控制二氧化鈦的型態,(3)利用陽離子型界面活性劑模版製備有序結構的中孔洞二氧化鈦,(4)利用有二氧化矽球模版製備有序結構的中孔洞碳材。
  首先合成MCM-41與MCM-48並鑑定完成MCM-41為六方排列結構 (p6m),其比表面積為1006.90 m2/g,孔洞大小為37.65 Å;MCM-48為立方排列結構( ),其比表面積為1093.34 m2/g,孔洞大小為29.20 Å;表面官能基處理後的MCM-41與未處理前在N2吸脫附曲線上有著相同的趨勢。
  在陰離子型界面活性劑模版、溶凝膠合成與水熱的條件下,藉由尿素來控制二氧化鈦的表面型態,此一方法製備出不同型態的二氧化鈦,包含有棒狀、空心圓柱與平板狀,其二氧化鈦的主要結構為銳鈦礦。考慮水熱溫度、酸鹼值、等電點與表面電荷等因素提出“反式微胞”的生成機構。
  利用陽離子型界面活性劑模版與可溶性的過氧化鈦前驅物經S
Abstract
Template synthesis and mesostructural characterization of ordered mesoporous
silica, titania and carbon materials have been systematically investigated in this study. In order to obtain a better understanding of the template-precursor relationship, there are two templates adopted in this research. One is the “liquid crystal template (LCT)”, composed of surfactants via self-assembly pathway; the other is the “ordered silica spheres template”, composed of monodispersed SiO2 spheres (~40 nm) via gravity sedimentation. This work was carried out in four related directions: (1) Synthesis and functionalization of ordered mesoporous silicate (MCM-41 and MCM-48) via cationic surfactant template; (2) Using anionic surfactant template-assisted via urea treatment to control the morphology of the TiO2; (3) Synthesis of ordered mesoporous anatase TiO2 via cationic surfactant template; (4) Synthesis of ordered mesoporous carbon from mesophase pitch solution via silica spheres template.
Mesoporous silica materials MCM-41 and MCM-48 have been synthesized and identified. The MCM-41 has a hexagonal phase (p6m) with surface area of 1006.90 m2/g and pore size of 37.65 Å, The MCM-48 has cubic phase ( ) with surface area of 1093.34 m2/g and pore size of 29.20 Å. The calcined MCM-41was rehydrated by heating in water and functionalized with 3-amino propyltrimethoxysilane; this functionalized mesoporous silica is targeted as a template of metal oxides, such as TiO2. appears the same tendency of parent MCM-41 in the N2 sorption isotherm measurements.
Nanocrystalline TiO2 rods and hollow-tubes with an engraved pattern on the surface have been prepared by the anionic template-assisted sol-gel synthesis via urea treatment and under hydrothermal condition. X-ray diffractometry (XRD) results indicate that these nanocrystallines consist predominantly of anatase TiO2, with minor amounts of rutile and brookite. The crystallographic facetting found from SEM and TEM further reveals the polymorphic nature of the nanocrystalline TiO2 thus prepared. A “reverse micelle” formation mechanism taking into account the hydrothermal temperature, the pH effect of the sol-gel system, the isoelectric point, the formation of micelles, and the electrostatic interaction between the anionic surfactant and the growing TiO2 particulates is proposed to illustrate the competition between the physical micelle assembly of the ionic surfactants and the chemical hydrolysis and condensation reactions of the Ti precursors.
Ordered mesoporous TiO2 materials with an anatase framework have been synthesized by using a cationic surfactant template and soluble peroxytitanates as Ti precursor through an S+I− self-assembly pathway. The low-angle X-ray diffraction (XRD) pattern of the as-prepared mesoporous TiO2 materials indicates a hexagonal mesostructure. XRD and TEM results and N2 sorption isotherms measurements indicate the calcined mesoporous TiO2 possesses an anatase crystalline framework having a maximum pore size of 6.9 nm and a maximum BET specific surface area of 284 m2/g. This ordered mesoporous TiO2 also demonstrates a high photocatalytic activity for degradation of methylene blue under ultraviolet irradiation.
Under a lower carbonization temperature and with a mesophase pitch solution as the carbon precursor, ordered mesoporous carbon thick films with 35-nm pore size have been synthesized using SiO2 spheres as the template. The pore size of the mesoporous carbon thus fabricated was the smallest one ever reported using silica templates. SEM and TEM patterns show a discernible morphology of an ordered cubic close-packing of the mesopores interconnected via holes of 6 nm in diameter.
From this study, the template synthesis has been proven to be an effective method to fabricate mesoporous silica, polymorphic titania, ordered mesoporous TiO2, and ordered mesoporous carbon materials. Further utilization of this template synthesis is expected to offer a variety of porous networks with a wide range of pore sizes, well-defined morphologies on controllable length scales, and various chemical functionalities to match the needs of different applications.
目次 Table of Contents
Table of Contents
Dedication i
Acknowledgements ii
Table of Contents iv
List of Tables viii
List of Figures ix
List of Schemes xiii
Abstract xiv

Chapter 1 Introduction 1
1.1 Porous Materials 1
1.2 Mesoporous Materials 3
1.3 Surfactant 5
1.4 Preparation of Nanomaterials 7
1.5 Fabrication of Mesoporous Materials via Templating Method 7
1.6 Objectives of This Study 12

Chapter 2 Literature Review - General Survey 16
2.1 Self-assembling Templates 16
Mechanisms of Mesostructure Formation 20
2-2 Sol-gel Process 22
2.3 Mesoporous Silicates 25
Mechanisms of Mesoporous Silicates Formation 26
2.4 Non-siliceous Mesostructure Materials 28
Strategies for the Synthesis of Non-siliceous Ordered Mesoporous Materials 32
2.5 Titanium Dioxide 32
Mesoporous Titanium Dioxide 36
2.6 Mesoporous Carbon 40

Chapter 3 Synthesis and Functionalization of Mesoporous Silica 42
3.1 Previous Work on Functionalization of Mesoporous Silica 42
3.2 Experimental Section 43
3.2.1 Chemical Reagents 43
3.2.2 Characterization 44
3.3 Synthesis of Mesoporous Silica 46
3.3.1 Formation of Ordered Mesoporous SiO2 46
3.3.2 MCM-41 46
3.3.3 MCM-48 47
3.3.4 Functionalization of the Post-synthesis Silica Mold 49
3.4 Results and Discussion 51
3.4.1 Textural Characterization 51
3.4.2 Mesostructure Identification 54
3.4.3 Chemical Analysis 62
3.5 Summary 67

Chapter 4 Sol-gel Synthesis and Morphological Control of Nanocrystalline TiO2 via Urea Treatment 68
4.1 Previous Work on Morphological Control of Nanocrystalline TiO2 via Urea Treatment 68
4.2 Experimental Section 71
4.3 Results and Discussion 73
4.3.1 Phase Identification 73
4.3.2 Morphological Characterization 76
4.3.3 Formation Mechanism 82
4.4 Summary 84

Chapter 5 Novel Synthesis of Ordered Mesoporous TiO2 with Anatase Framework for Photocatalytic Applications 86
5.1 Previous Work on Synthesis of Ordered Mesoporous TiO2 86
5.2 Experimental Section 89
5.2.1 Preparation 89
5.2.2 Characterization 90
5.2.3 Measurement of Photocatalytic Activity 90
5.3 Results and Discussion 91
5.3.1 Formation of Ordered Mesoporous Anatase TiO2 91
5.3.2 Effect of Hydrothermal Time 93
5.3.3 Photocatalytic Activity 98
5.4 Summary 102


Chapter 6 Silica Template Synthesis of Ordered Mesoporous Carbon Thick Films with 35-nm Pore Size from Mesophase Pitch Solution 103
6.1 Previous Work on Silica Template Synthesis of Ordered Mesoporous Carbon 103
6.2 Experimental Section 105
6.2.1 Materials 105
6.2.2 Preparation of Silica Template 105
6.2.3 Preparation of Ordered Mesoporous Carbon 106
6.2.4 Characterization 106
6.3 Results and Discussion 107
6.4 Summary 113

Chapter 7 Concluding Remarks 114
7.1 Conclusions 114
A. Siliceous Mesoporous materials 114
B. Sol-gel Synthesis and Morphological Control of Nanocrystalline TiO2 via Urea Treatment 115
C. Novel Synthesis of Ordered Mesoporous TiO2 with Anatase Framework for Photocatalytic Applications 116
D. Silica Template Synthesis of Ordered Mesoporous Carbon Thick Films with 35-nm Pore Size from Mesophase Pitch Solution 117
E. Efficient Template Synthesis 118
7.2 Suggested Future Work 118
A. Nanocast of Titanium Dioxide on M41s Molds 118
B. Other Non-silicate Mesoporous Materials 118
C. Activation of Ordered Mesoporous Carbon 119

References 120

Appendices 128
A-1 Surfactants Properties and Applications 128
A-1-1 Physical Properties 128
A-1-2 Surfactant Categories 129
A-2 Hydrothermal Method 133
A-3 Structure of Titanium Dioxide (Rutile and Anatase) 135
A-4 JCPDs Cards for Compounds Related to This Study 137
A-5 Structure of SiO2 Spheres Template (opal) 139
VITA 144
Submitted or Published Papers Based on this Dissertation 144




List of Tables

Table 1.1 Pore-size regimes and representative porous inorganic materials 4

Table 2.1 Examples of Mesostructured Inorganic Materials Showing Different Interactions between the Surfactant and the Inorganic Framework 21

Table 2.2 General Pathways Used for the Synthesis of Non-siliceous Ordered Mesoporous Materials 33

Table 3.1 Chemical reagents of synthesis of mesoporous titanium oxide 44

Table 4.1 Summary of phase contents and crystallite sizes 76

Table 5.1 Textural Properties of Calcined Mesoporous Titanium Oxide 94






List of Figures
Figure 1.1 Model of (a) opal (adapted from Ref. 24), and (b) inverse opal (adapted from Ref. 24), and (c) the schematic of the replication of colloidal crystal structure into porous materials 15

Figure 2.1 Main synthetic approaches for mesostructured materials. The mesostructure can be previously formed (route A), or a cooperative process (route B) can take place. Route C makes use of preformed nanobuilding blocks (NBB) (adapted from Ref. 61) 19

Figure 2.2 Schematic representation of the different types of silica-surfactant interfaces. S represents the surfactant molecule and I, the inorganic framework. M+ and X
參考文獻 References
References

[1]Behrens, P., Adv. Mater. 1993, 5, 127.
[2]Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Angew. Chem. Int. Ed. 1999, 38, 56.
[3]Brinker, C. J.; Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego, 1990.
[4]Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppaard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., J. Am. Chem. Soc. 1992, 114, 10834.
[5]Tanev, P. T.; Pinnavaia, T. J., Science 1995, 267, 865.
[6]Attard, G. S.; Glyde, J. C.; Göltner, C. G., Nature 1995, 378, 366.
[7]Raman, N. K.; Anderson, M. T.; Brinker, C. J., Chem. Mater. 1996, 8, 1682.
[8]Sayari, A.; Liu, P., Microporous Mater. 1997, 12,, 149.
[9]Stein, A.; Melde, B. J.; Schroden, R. C., Adv. Marter. 2000, 12, 1403.
[10]Morey, M. S.; Davidson, A.; Stucky, G. D. J., Porous Mater. 1998, 5, 195.
[11]Alfredsson, V.; Anderson, M. W., Chem. Mater. 1996, 8, 1141.
[12]Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firoouzi, A.; Janicke, M.; Chmelka, B. F., Science 1993, 261, 1299.
[13]Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J., Science 1995, 269, 1242.
[14]Bagshaw, S. A.; Pinnavaia, E.; Pinnavaia, T. J., Angew. Chem. Int. Ed. Engl. 1996, 35, 1102.
[15]Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., J. Am. Chem. Soc. 1998, 120, 6024.
[16]Huo, Q.; Margolese, D. I.; Stucky, G. D., Chem. Mater. 1996, 8, 1147.
[17]Chan, V. Z.-H.; Hoffman, J.; Lee, V. Y.; Iatrou, H.; Avgeropoulos, A.; Hadjichristidis, N.; Miller, R. D.; Thomas, E. L., 1999, 286, 1716.
[18]Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; Sheppard, E. W., Adv. Catal. Nanostruct. Mater. 1996, 1, 19.
[19]Ciesla, U.; Schuth, F., Microporous Mesoporous Mater. 1999, 27, 131.
[20]Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D., Nature 1994, 368, 317.
[21]Antonelli, D. M.; Ying, J. Y., Angew. Chem. Int. Ed. Engl. 1995, 34, 2014.
[22]Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pietotti, R. A.; Rouquerol, J.; Siemienieska, T., Pure. Appl. Chem. 1985, 57, 603.
[23]McCusker, L. B.; Baerlocher, E. J.; Bulow, M., Zeolites 1991, 11, 308.
[24]Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowder, C., Nature 1988, 331, 698.
[25]Myers, D., Surfaces, Interfaces, and Colloids: Principles and applications. Wiley-Vch. New York, 1999; Vol. 2nd ed,.
[26]http://www.sigmaaldrich.com/img/assets/15402/Detergent_Selection_Table.pdf
[27]Kosonen, H. Functionalization of Polymers with Self-Assembled Nanostructures. Helsinki University of Technology, Espoo, Finland, 2004.
[28]Davis, M. E., Nature 2002, 417, 813.
[29]Schüth, F., Angew. Chem. Int. Ed. 2003, 42, 3604.
[30]Stein, A., Adv. Marter. 2003, 15, 763.
[31]López, C., Adv. Marter. 2003, 15, 1679.
[32]Holmberg, K., J. Colloid Interface Sci. 2004, 274, 355.
[33]Cundy, C. S.; Cox, P. A., Chem. Rev. 2003, 103, 663.
[34]Kyotani, T., Carbon 2000, 38, 269.
[35]Hentze, H.-P.; Antonietti, M., Curr. Opin. Solid State Mater. Sci. 2001, 5, 343.
[36]van Bommel, K. J. C.; Friggeri, A.; Shinkai, S., Angew. Chem., Int. Ed. 2003, 42, 980.
[37]Polarz, S.; Antonietti, M., Chem. Commun. 2002, 2593.
[38]Caruso, R. A., Top. Curr. Chem. 2003, 226, 91.
[39]Förster, S., Top. Curr. Chem. 2003, 226, 1.
[40]Linssen, T.; Cassiers, K.; Cool, P.; Vansant, E. F., Adv. Colloid Interface Sci. 2003, 103, 121.
[41]Soler-Illia, G. J. d. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J., Chem. Rev. 2002, 102, 4093.
[42]Zhao, X. S.; Su, F.; Yan, Q.; Guo, W.; Bao, X. Y.; Lv, L.; Zhou, Z., J. Mater. Chem. 2006, 16, 637.
[43]Yu, J.-S.; Yoon, S. B.; Chai, G. S., Carbon 2001, 39, 1442.
[44]Kang, S.; Yu, J.-S.; Kruk, M.; Jaroniec, M., Chem. Commun. 2002, 1670.
[45]Vix-Guterl, C.; Saadallah, S.; Vidal, L.; Reda, M.; Parmentier, J.; Patarin, J., J. Mater. Chem. 2003, 13, 2535.
[46]Kao, L.-H.; Hsu, T.-C., Mater. Lett. 2007, in press.
[47]Sayari, A., Stud. Surf. Sci. Catal. 1996, 102, 1.
[48]Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Nature 1992, 359, 710.
[49]Wei, Y.; Jin, D.; Ding, T.; Shih, W.-H.; Liu, X.; Cheng, S. Z. D.; Fu, Q., Adv. Mater. 1998, 3, 313.
[50]Wei, Y.; Xu, J.; Dong, H.; Dong, J.; Qiu, K.; Jansen-Varnum, S. A., Chem. Mater. 1999, 11, 2023.
[51]Wei, Y.; Bakthavatchalam, R.; Whitecar, C. K., Chem. Mater. 1990, 2, 337.
[52]Velev, O. D.; Kaler, E. W., Adv. Mater. 2000, 12, 531.
[53]Xia, Y.; Gate, B.; Yin, Y.; Lu, Y., Adv. Mater. 2000, 12, 693.
[54]Kulinowski, K. M.; Jiang, P.; Vaswani, H.; Colvin, V. L., Adv. Mater. 2000, 12, 833.
[55]Velev, O. D.; Lenhoff, A. M., Curr. Opin. Colloid In. 2000, 5, 56.
[56]Stein, A., Micropor. Mesopor. Mat. 2001, 44, 227.
[57]Stein, A.; Schroden, R. C., Curr. Opin. Solid. St. M. 2001, 5, 553.
[58]Colvin, V. L., MRS Bull. 2001, 26, 637.
[59]Braun, P. V.; Wiltzius, P., Curr. Opin. Colloid In. 2002, 7, 116.
[60]Reynolds, A. L. http://www.elec.gla.ac.uk/groups/opto/photoniccrystal/.
[61]Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin, I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G., Science 1998, 282, 897.
[62]Hall, N.; Ozin, G., Chem. Comm. 2003, 2639.
[63]Muthukumar, M.; Ober, C. K.; Thomas, E. L., Science 1997, 277, 1225.
[64]Ruokolainen, J.; Mäkinen, R.; Torkkeli, M.; Mäkelä, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O., Science 1998, 280, 557.
[65]Hamley, I. W., Nanotechnology with Soft Materials. Angew. Chem. Int. Ed. 2003, 42, 1692.
[66]Park, C.; Yoon, J.; Thomas, E. L., Polymer 2003, 44, 6725.
[67]Ikkala, O.; ten Brinke, G., Science 2002, 295, 2407.
[68]Whitesides, G. M.; Mathias, J. P.; Seto, C. T., Science 1991, 254, 1312.
[69]Whitesides, G. M.; Crzybowski, B., Science 2002, 295, 2418.
[70]Brehmer, M.; Mao, G.; Ober, C. K.; Zentel, R., Macromolecular Symposia 1997, 117, 175.
[71]Sanchez, C.; Soler-Illia, G. J. A. A.; Ribot, F.; Mayer, C.; Cabuil, V.; Lalot, T., Chem. Mater. 2001, 13, 3061.
[72]Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J., Nature 1994, 368, 32.
[73]Huo, Q. M., D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schüth, F.; Stucky, G. D. , Chem. Mater. 1994, 6, 1176.
[74]Huo, Q.; Leon, R.; Petroff, P. M.; Stucky, G. D., Science 1995, 268, 1324.
[75]Reddy, J. S.; Sayari, A., Catal. Lett. 1996, 38, 219.
[76]Yada, M.; Machida, M.; Kijima, T., Chem. Commun. 1996, 769.
[77]Ulagappan, N.; Rao, C. N. R., Chem. Commun. 1996, 1685.
[78]Attard, G. S.; Glyde, J. C.; Goltner, C. G., Nature 1995, 378, 366.
[79]Antonelli, D. M.; Ying, J. Y., Angew. Chem. Int. Ed. Engl. 1996, 108, 461.
[80]Livage, J.; Henry, M.; Sanchez, C., Prog. Solid State. Chem. 1988, 18, 259.
[81]Klein, L. C. E., : Park Ridge, Sol-Gel Technology. Noyes Publications. NJ, 1988.
[82]Hench, L. L.; West, J. K., Chem. Rev 1990, 90, 33.
[83]Davis, M. E.; Lobo, R. F., Chem. Mater. 1992, 4, 756.
[84]Flaigen, E. M.; Patton, R. L.; Wison, S. T., Stud. Surf. Sci. Catal. 1988, 37, 13.
[85]Lok, B. M.; Cannon, T. R.; Messina, C. A., Zeolites 1983, 3, 282.
[86]Ciesla, U.; Schacht, S.; Stucky, G. D.; Unger, K. K.; Schüth, F., Angew. Chem. Int. Ed. Engl. 1996, 35, 541.
[87]Ciesla, U.; Demuth, D. G.; Leon, R.; Petroff, P. M.; Stucky, G. D. U., K.; Schüth, F., Chem. Commun. 1994, 1387.
[88]Antonelli, D. M.; Ying, J. Y., Angew. Chem. Int. Ed. Engl. 1996, 35, 426.
[89]Antonelli, D. M.; Nakahira, A.; Ying, J. Y., Inorg. Chem. 1996, 35, 3126.
[90]Antonelli, D. M.; Ying, J. Y., Chem. Mater. 1996, 8, 874.
[91]Vaudry, F.; Khodabandeh, S.; Davis, M. E., Chem. Mater. 1996, 8, 1451.
[92]Sayari, A.; Liu, P.; Reddy, J. S., Mater. Res. Soc. Symp. Proc. 1996, 431, 101.
[93]Stein, A.; Fendorf, M.; Jarvie, T. P.; Mueller, K. T.; Garcia, M. E.; Mallouk, T. E., Mater. Res. Soc. Symp. Proc. 1995, 371, 69.
[94]Stein, A.; Fendorf, M.; Jarvie, T. P.; Mueller, K. T.; Benesi, A. J.; Mallouk, T. E., Chem. Mater. 1995, 7, 304.
[95]Janauer, G. G.; Dobley, A.; Guo, J.; Zavalij, P.; Whittingham, M. S., Chem. Mater. 1996, 8, 2096.
[96]Knowles, J. A.; Hudson, M. J., Chem. Commun. 1995, 2083.
[97]Kim, A. Y.; Bruinsma, P. J.; Chen, Y. L.; Liu, J., Mater. Res. Soc. Symp. Proc. 1996, 435, 131.
[98]Kim, A. Y.; Bruinsma, P. J.; Chen, Y. L.; Wang, L. Q.; Liu, J., Chem. Commun. 1997, 161.
[99] Huang, Y. Y.; McCarthy, T. J.; Sachtler, W. M. H., Appl. Catal. 1996, 148, 135.
[100] Liu, P.; Liu, J.; Sayari, A., Chem. Commun. 1997, 57.
[101] Schüth, F., Chem. Mater. 2001, 13, 3184.
[102] Wen, J.; Wilkes, G. L., Chem. Mater. 1996, 8, 1667.
[103] Wilkes, G. L.; Orler, B.; Huang, H., Polym. Prepr. 1985, 26, 300.
[104]Murray, J. L.; Wriedt, H. A., Phase Diagrams of Binary Titanium Alloys,. ASM International,. Metals Park, Ohio, , 1987.
[105] Di Renzo, F.; Cambon, H.; Dutarte, R., Microporous Mater. 1997, 10, 283.
[106] Corma, A.; Navarro, M. T.; Pérez-Pariente, J., Chem. Commun. 1994, 147.
[107] Koyano, K. A.; Tatsumi, T., Chem. Commun. 1996, 145.
[108] Zhang, W.; Pinnavaia, T., J. Catal. Lett. 1996, 38, 261.
[109] Zhang, W.; Wang, J.; Tanev, P. T.; Pinnavaia, T., Chem. Commun. 1996, 979.
[110] Gontier, S.; Tuel, A., Zeolites 1995, 15, 601.
[111] Sayari, A.; Karra, V. R.; Reddy, J. S.; Moudrakovski, I. L., Mater. Res. Soc. Symp. Proc. 1995, 371, 81.
[112] Schmide, I.; Krogh, A.; Wienberg, K.; Carlsson, A.; Brorson, M.; Jacobsen, C. J. H., Chem. Commun. 2000, 2157.
[113] Reddy, J. S.; A., D.; Sayari, A., In Synthesis of Microporous Materials: Zeolites, Clays, and Nanostructures, Occelli, M. L.; Kessler, H. (ed.), Marcel Dekker: New York, 1996.
[114] Gontier, S.; Tuel, A., J. Catal. 1996, 157, 124.
[115] Gontier, S.; Tuel, A., Stud. Surf. Sci. Catal. 1995, 97, 157.
[116] Stone, V. F.; Davis, R. J., Chem. Mater. 1998, 10, 1468.
[117] Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D., Chem. Mater. 1999, 11, 2813.
[118] Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D., Nature 1998, 396, 152.
[119] Yue, Y.; Gao, Z., Chem. Commun. 2000, 1755.
[120] Antonelli, D. M., Microporous Mesoporous Mater. 1999, 30, 315.
[121] Antonelli, D. M., Adv. Mater. 1999, 11, 487.
[122] Cabrera, S.; Haskouri, J. E.; Beltrán-Porter, A.; Beltrán-Porter, D.; Marcos, M. D.; Amorós, P., Solid State Sci. 2000, 2, 513.
[123] Saadoun, L.; Ayllón, J. A.; Jiménez-Becerril, J.; Peral, J.; Domènech, X.; Rodríguez-Clememte, R., Mater. Res. Bull. 2000, 35, 193.
[124] Dai, Q.; Zhang, Z.; He, N.; Li, P.; Yuan, C., Mater. Sci. Eng., C 1999, 8-9, 417.
[125] Yablonovitch, E., Phys. Rev. Lett. 1987, 58 2059.
[126] Lee, K. T.; Lytle, J. C.; Ergang, N. S.; Oh, S. M.; Stein, A., Adv. Funct. Mater. 2005, 15, 547.
[127] Cao, D.; Feng, P.; Wu, J., Nano Lett. 2004, 4, 1489.
[128] Lensveld, D., On the preparation and characterisation of MCM-41 supported heterogeneous nickel and molybdenum catalysts. Ponsen & Looijen BV. Wageningen, Netherlands, 2003; Vol. Chapter 2 pp.7-12.
[129] Lin, H. P.; Mou, C. Y., Acc. Chem. Res. 2002, 35, 927.
[130] Park, D. H.; Nishiyama, N.; Egashira, Y.; Ueyama, K., Ind. Eng. Chem. Res. 2001, 40, 6105.
[131] Lee, C. H.; Lin, T. S.; Mou, C. Y., J. Phys. Chem. B 2003, 107, 2543.
[132] Kruk, M.; Jaroniec, M.; Sayari, A., J. Phys. Chem. B 1997, 101, 583.
[133] Dabadie, T.; Ayral, A.; Guizard, C.; Cot, L.; Lacan, P., J. Mater. Chem. Comm. 1996, 6, 1789.
[134] Anderson, M. W., Zeolites 1997, 19, 220.
[135] Matsumoto, A.; Tsutsumi, K.; Schumacher, K.; Unger, K. K., Langmuir 2002, 18, 4014.
[136] Choi, W.; Hoffmann, M. R., Environ. Sci. Technol. 1997, 31, 89.
[137] Sun, B.; Smirniotis, P. G., Catal. Today 2003, 88, 49.
[138] Dagan, G.; Tomkiewicz, M., J. Phys. Chem. B 1993, 97, 12651.
[139] Hong, X.; Wang, Z.; Cai, W.; Lu, F.; Zhang, J.; Yang, Y.; N., M.; Liu, Y., Chem. Mater. 2005, 17, 1548.
[140] Savage, N.; Chwieroth, B.; Ginwalla, A.; Patton, B. R.; Akbar, S. A.; Dutta, P., Sensors and Actuators B 2001, 79, 17.
[141] Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M., Nature 1998, 395, 583.
[142] Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; M., S.; Wang, F., J. Am. Chem. Soc. 2004, 126, 14943.
[143] Luo, H.; Takata, T.; Lee, Y.; Zhao, J.; Domen, K.; Yan, Y., Chem. Mater. 2004, 16, 846.
[144] Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S., J. Phys. Chem. B. 2003, 107, 8607.
[145] Wang, C. C.; Ying, J. Y., Chem. Mater. 1999, 11, 3113.
[146] Yu, H.; Yu, J.; Cheng, B., J. Mol. Catal. A 2006, 253, 99.
[147] Negishi, N.; Takeuchi, K.; Ibusuki, T., J. Mater. Sci. Lett. 1999, 18, 515.
[148] Grosso, D.; Galo, J.; Soller-Illia, A. A., Adv. Mater. 2001, 13, 1085.
[149] Yu, J.; Guo, H.; Davis, S. A.; Mann, S., Adv. Funct. Mater. 2006, 16, 2035.
[150] Anderson, M.; Birkedal, H.; Franklin, N. R.; Ostomel, T.; Boettcher, S.; Palmqvist, A. E. C.; Stucky, G. D., Chem. Mater. 2005, 17, 1409.
[151] Cozzoli, P. D.; Korrowski, A.; Weller, H., J. Am. Chem. Soc. 2003, 125, 14539.
[152] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Langmuir 1998, 14, 3160.
[153] Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R., Chem. Mater. 1997, 9, 2544.
[154] Kyriaki, E. K.; Xenophon, E. V., J. Phys. Chem. B 1993, 97, 1184.
[155] Kobayashi, S.; Hanabusa, K.; Hamasaki, N.; Kimura, M.; Shirai, H.; Shinkai, S., Chem. Mater. 2000, 12, 1523.
[156] Hulteen, J. C.; Martin, C. R., J. Mater. Chem. 1997, 7, 1075.
[157] Bischoff, B. L.; Anderson, M. A., Chem. Mater. 1995, 7, 1772.
[158] Klein, L. C., Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, . Noyes Publications,. New Jersey, , 1987.
[159] Wu, M.; Long, J.; A., H.; Luo, Y., Langmuir 1999, 15, 8822.
[160] Yanagisawa, K.; Ovenstone, J., J. Phys. Chem. B. 1999, 103, 7781
[161] Zhang, Q.; Gao, L., Langmuir 2003, 19, 967.
[162] Kavan, L.; Kalbac, M.; Zukalova, M.; Exnar, I.; Lorenzen, V.; Nesper, R.; Graetzel, M., Chem. Mater. 2004, 16, 477.
[163] Banerjee, S.; Santhanam, A.; Dhathathreyan, A.; Rao, P. M., Langmuir 2003, 19 5522.
[164] Peng, T.; Hasegawa, A.; Qie, J.; Hirao, K., Chem. Mater. 2003, 15, 2011.
[165] Zhang, H.; Banfield, J. F., J. Phys. Chem. B 2000, 104, 3481.
[166] Alberius, P. C. A.; Frindell, K. L.; Hayward, R. C.; Kramer, E. J.; Stucky, G. D.; Chmelka, B. F., Chem. Mater. 2002, 14, 3284.
[167] Kang, S. H.; Hirasawa, I.; Kim, W.-S.; Choi, C. K., J. Colloid Interface Sci. 2005, 288, 496.
[168] Hopwood, J. D.; Mann, S., Chem. Mater. 1997, 9, 1819.
[169] Li, M.; Mann, S., Adv. Funct. Mater. 2002, 12, 773.
[170] Yu, J. C.; Zhang, L.; Yu, J., Chem. Mater. 2002, 14, 4647.
[171] Liu, C.; Fu, L.; Economy, J., J. Mater. Chem. 2004, 14, 1187.
[172] Zhang, Y.; Li, J.; Wang, J., Chem. Mater. 2006, 18, 2917.
[173] Huang, W.; Tang, X.; Wang, Y.; Koltypin, Y.; Gedanken, A., Chem. Commun. 2000, 1415.
[174] Shibata, H.; Ogura, T.; Ohkubo, T.; Sakai, H.; Abe, M., J. Am. Chem. Soc. 2005, 127, 16396.
[175] Goutailler, G.; Guillard, C.; Daniele, S.; Hubert-Pfalzgraf, L. G., J. Mater. Chem. 2003, 13, 342.
[176] Ohtani, B.; Ogawa, Y.; Nishimoto, S.-I., J. Phys. Chem. B 1997, 101, 3746.
[177] Trong On, D., Langmuir 1999, 15, 8561.
[178] Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J.; Serpone, N., J. Photochem. Photobiol. A: Chem. 2001, 140, 163.
[179] Mills, A.; Wang, J., J. Photochem. Photobiol. A: Chem. 1999, 127 123.
[180] Trong On, D.; Kaliaguine, S.; Bonneviot, L., J. Catal. 1995, 157, 235.
[181] Sing, K. S. W., Pure Appl. Chem. 1985, 57, 603.
[182] Yang, H.; Yan, Y.; Liu, Y.; Zhang, F.; Zhang, R.; Meng, Y.; Li, M.; Xie, S.; Tu, B.; Zhao, D., J. Phys. Chem. B 2004, 108, 17320.
[183] Stöber, W.; Fink, A.; Bohn, E., J. Colloid Interface Sci. 1968, 26, 62.
[184] Zhang, R. J.; Liu, R. P.; Cui, X. H., Mater. Chem. Phys. 2007, 101, 255.
[185] Su, F.; Zhao, X. S.; Wang, Y.; Zeng, J.; Zhou, Z.; Lee, J. Y., J. Phys. Chem. B 2005, 109, 20200.
[186] Bourlinos, A. B.; Steriotis, T. A.; Karakassides, M.; Sanakis, Y.; Tzitzios, V.; Trapalis, C.; Kouvelos, E.; Stubos, A., Carbon 2007, 45, 852.
[187] O'Donoghue, M., A guide to Man-made Gemstones. Van Nostrand Reinhold Company. 1983; p 40-44.
[188]Barrer, R. M., Hydrothermal Chemistry of Zeolites. Academic Press. London, 1982.
[189]Dawson, W. J., Ceram. Bull. 1988, 67, 1673.
[190]Augustynski, J., Electrochim. Acta 1993, 38, 43.
[191]Burdett, J. K., Inorg. Chem. 1985, 24, 2244.
[192]Burdett, J. K.; Hughbands, T.; Gordon, J. M.; Richardson, J. W., Jr.; Smith, J. V., J. Am. Chem. Soc. 1987, 109, 3639.
[193]Fahmi, A.; C., M.; Silvi, B.; Causa, M., Phys. Rev. B 1993, 47, 11717.
[194]Powder Diffraction File In The International Centre for Diffraction Data: 2007.
[195]Dinsmore, A. D.; Crocker, J. C.; Yodh, A. G., Curr. Opin. Colloid In. 1998, 3, 5.
[196]Ruhl, T.; Spahn, P.; Hellmann, G. P., Polymer 2003, 44, 7625.
[197]Mayoral, R.; Requena, J.; Moya, J. S.; Lopez, C.; Cintas, A.; Miguez, H.; Meseguer, F.; Vazquez, L.; Holgado, M.; Blanco, A., Adv. Mater. 1997, 9, 257.
[198]Miguez, H.; Meseguer, F.; Lopez, C.; Blanco, A.; Moya, J. S.; Requena, J.; Mifsud, A.; Fornes, V., Adv. Mater. 1998, 10, 480.
[199]Miguez, H.; Meseguer, F.; Lopez, C.; Mifsud, A.; Moya, J. S.; Vazquez, L., Langmuir 1997, 13, 6009.
[200]Davis, K. E.; Russel, W. B.; Glantschnig, W. J., J. Chem. Soc. Faraday Trans. 1991, 87, 411.
[201]Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L., Chem. Mater. 1999, 11, 2132.
[202]Hammond, C., The Basics of Crystallography and Diffraction. 2nd edition ed.; Oxford Publishing. New York 2001; Chapter 1.
[203]Verma, A. R.; Krishna, P., Polymorphism and Polytypism in Crystals. John Wiley & Sons Publishing. New York 1966; Chapter 4.
[204]West, A. R., Basic Solid State Chemistry. John Wiley & Sons Publishing. New York, 1988; Chapter 1.
.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.2.15
論文開放下載的時間是 校外不公開

Your IP address is 18.118.2.15
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code